’

Another Example (Circuits)

Neural Network taking 4 dimension vector P
s,

representation of wor

However, fyou soualy y that, the weghts
will change far t
hem “ovarconsat” and the loss wil
sctualy ncreesaciverge So i prac

will make t

ople usuall
Sl vals
they subtract

grew — gold

Reduce by 0.5 when validation error stops improving
B
convergence guarantees, with hys
poramaters ¢ anet and s fsraon

Btter yet: No hand-set learning of rates by using AdaGrad

15 a firt-order fterative opim;

negative

Defines the output of that node given an input
or setof inputs

=[O T

lz for MY

Sigmoid / Logistic

[0 for z<0
I@=1] ta 230 Binary
tanh(z) Tanh
Tpes
flz) =In(1+¢7) Softplus
Softmax
(@) = maxz; Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others

Is method used in artfcia neural networks to
alculate the error contribution of each neuron
aftr abtch fcta | calotes o gracient
of the loss function. It s commonly used n the

and distributed back through the network
iayers.

In this method, we reuse partial derivatives
SR
efficienc,

Simple Example (Circuits)
Intuition for backpropagation

‘Simple Example (Flowgraphs)

e Noura networks arooftn traned by gradent
e h descent on the weights. This mear

y malfpty sach dertative by & to each weight and subract it from that

called the “learning rate” bef

it from its corresponding weight.

aVyJi(0)

Simplst recie:keepf fxed and use the
same for all parameter

Tricks

Beter resuis by allowing learning rates to decrease Options:

egton gorthm for g the ik of 8 fncton, T a
1, one takes steps proportional to the

nt
s ppecotrats grachanof the okt Hha craot eIt Gradient Descent

aioad conalkasstace prportonl e psiive of e radert, one approaches a local

0J:(0)

Gradient descent uses total gradent over al
exampl
1 exarmy

But s s ot 1o bea misake bocause
ron in the network comps

e i e oy o

thesamo racients uting backcpropagation

and undergo:

i mmm
betusennewrons i he woihts

o loa 1o e

close

The implementation for weights might simply.
rawing valuesfom a ormldisrbuton with
0 mean, and unit standard daviation.
oo possibe 1o uss mal nuers e
uniform distrbution, but this se
have relativly itle impact on the fina beginning,
performance in practice. updates an

This ensures that all neurons n the network
Iniially have approximately the same output
distribution and empiricallyimproves the rate.

of convergence, The detailed derivations can

not consider the influence of ReLU neurons.

treated as symmetry breaking, The idea is that
oms to the neurons are

Graciot descot uses ot raint v o
updat Stochastic Gradient Descent (SGD)

e, SGD updates after only

e
Mini-batch Stochastic Gradient Descent
DA SRR S0

Idea: Add a fraction v of previous update to
curtent one. When the gradient keeps pointing

in the same direction, this wil Momentum
increase the size of the steps taken towards

the minimum.

Adaptive learning rates for sach parameter. Adagrad

In the ideal situation, with proper data
normalization it is reasonable o assume that
approximately half of the weighs wil be.
positive and half of them wil be negative. A
reasonable-sounding idea then might be to.
set all the intial weights to zero, which you
expect 1o be the "best guess” n expectation.

Al Zero Intialzation

Thus, you sil want the weighs to be very

but not identically zero. In his

Way, you can random these neurons to small

very close to zero, and itis

Initialzation with Smal Random Numbers
all random and unique in th

ey wil compute distinct
d integrate themselves as diverse

parts of the full network.

no prolm i e bove suggstons
et e clamtoion o the autputs
randomly nialzed neuron has a vaiance that
Grows wht the i of Inputs. s out
‘can normalize the variance of each

1 by scaling ts weight
vector by the square root of s fan-in (.. its
number of inputs)

Galibrating the Variances

Activation Functions.

Backpropagation

Learning Rate

Optimization

Weight Initiaization

Goncepts

Aunitoften refers to the activation
h

Unit (Newrons)

sever:
several outgoing connec

example by the
function). Usually, a unit has

al incoming connections and
tons.

Comprised of multple Real-Valued inputs. Each input

Input Layer must be linearly independent from each ot
Layers other than the input and
output layers. A layer i the
highest-level buiding block in
deop learning. A layer s
container that usually receives

Hidden Layers weighted input,transforms it with
a set of mostly non-linear
functions and then passes these
values as output to the next
layer

Batch Normalzation

CostiLoss(Min)
Objective(Max)
Functions

Reguiarization

With SGD, the raining proceeds i steps, and
a each stop e conser @ i bathx1..m

iz m. The mini-batch is used to apprOX.
ey tnelossfunctr wih
respe

mini-batch

ba A o et then m computaions for
b e e i e el Qe 1 Y Iy e o
Many cost funcions aoth el of applying arimum Liklinoo, Fornsiance th Least Squares
cost funcion can bs abained via Maxemum Lkeihaod. Goss-Enropy s anoiner esamp

Thenaturalogart of o thood fnctn, ale th o koloo. s moreconvariatt work i, Becaus he
afunc he same

the likelihood

M o LN e N)
outcomes x,is equal o the probabilty (density) assumed for those
e s P s e e T

logarithm
i the e stack i Panca
estimation and related techniques.

f(n

flz2

fan,2 0)=f

nf(

Maximum
Likelihood

Estimation (VLE) In general, for a fixed set of data and underlying

maximum likelivood

L0 21,5 = 3

{Buie} € fo

indeec mximizes th probabifty of th obseve dta
under the resuling distribution. Maximum-iikel
stinaiongives auiiod approach o estimation,
which is wel-defingd in the mal
e e

gmax £(0; 21,

1
Hipa) = L
b ol
Hp,9) = 3 pla) log ——
o R T 2 F
vt i acrine g e opiriason
Tho o propabiy i st e apol, and
GG e et ke
St st

H(p,g) = = 3 p(z) lo

Cross-Entropy

)log(t

e P —

Lo e
e)

V(f(@),v)

Logistic “The logistc loss function is defined as:)=

188 of a quadralic loss function is commn, for example when
g et sauarostotmiaue, ot mor mathematally
tractable than other loss functions because of the properties of
e

Quadratic

Ifthe target s 1, then a quadratic loss function i:

In statistics and decision thaary, a requently

Ol Loss j5ed loss function Is the 0-1 loss function

e hinge loss is a loss funotion used for
taing classfers. Forannended output = o) =
ssifer score y, the hinge I0ss of v
o0 prciciony s ceme e

Hinge Loss v)

Exponential

It used to quantiy the similarty between
Helinger Distance two probabilty distibutions. It is a type of -
divergence.

0\ The square of the Hellnger
itance between b ond G s deined 8 the

Is @ measre of how one probabilty

distribution diverges from @ second expet
babilty distrbution. Applications include

B o

informaton

cor e e

when wwp«rmg tatstoa modeis of

inferen

Kullback-Leibler Divengence
Discrete. Continuous

isameasure o th diferoncebetueen n

Hakura-Saito distance

rceptual measure, it is intended 1o reflect
sl et

https://en.wikipedia.org/wikiLoss functions for classification
L-normisdso own asfeast absol

eviations (LAD) lesst abeouts arrs e
i bascaly mmumzmg the sum of

Manhattan Distance

L1 norm
hrancas 1) betwaon he et
e e naia e
L2-norm s aiso known as least squares. Itis
o T —— basically minimizing the sum of the square of
L2 Euldeen Dy the differences () between the target vaiue
and the estimated values:
e Earty stopping rules provide guidance s to how many fterations can be
Earty Stopping run bofore the learmer begins to over-it and stop the algorithm then.
O T A e e T LU
o compleco-edaptations o raing data, It very eficint way of pefoming mode!
Dropout b e

P B

This regularizer defines an L2 norm on each
column and an L1 norm over all columns. It
an be solved by proximal methods.

R(w)

‘Sparse regularizer on columns

Nuclear norm regularization

his regularizer constrains the functions leared for each task to be similar to
ihe ovoral avrage o th untions acros ltake Thi s sl o

o sk s expoct
i sach iner k. A sxample & precicting biood fon vels measure
e e e e

Mean-constrained reguiarization

This regularizeris sfmiar to the mean-
consirane requiaize, bt instead enforces
simiarty botwoon tasks witin o

lustr, T can Capture moe complex prio
e P a A S
predict Netilx recommendations.

Clustered man-constrained regularization

More general than above, simiarty between
tasks can be define

Graph-based similrity

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity

Is an artificial neural network wherein connections between the units do not form a
cycle. In this network, the information moves in only one direction, forward, from the
input nodes, through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network.

The inputs are fed directly to the outputs viaa
series of weights. By adding an Logistic
activation function to the outputs, the model
is identical to a classical Logistic Regression
model.

Single-Layer Perceptron

This class of networks consists of multiple
layers of computational units, usually
interconnected in a feed-forward way. Each
neuron in one layer has directed connections
to the neurons of the subsequent layer. In
many applications the units of these networks
apply a sigmoid function as an activation
function.

Kinds

Multi-Layer Perceptron

o (W, - [hee1.))

An LSTM is well-suited to learn from

experience to classify, process and predict
time series given time lags of unknown size ¢)
and bound between important events. h tanh (W - [ry * hy_y,a])

1o =0 (W - [he1,24))

Feed Forward

Relative insensitivity to gap length gives an LEte
advantage to LSTM over alternative RNNs,
hidden Markov models and other sequence
leamning methods in numerous applications. Long short-term memory - It is a type of recurrent (RNN), allowing
data to flow both forwards and backwards within the network.

GANs or Generative

Adversarial Networks are a

class of artfical intelligence

algorithms used in

unsupervised machine GANs

learning, implemented by a
system of two neural networks
contesting with each other in a
zero-sum game framework.

The aim of an autoencoder
is to learn a representation
(encoding) for a set of data,
typically for the purpose of
dimensionality reduction.
Recently, the autoencoder
concept has become more
widely used for leaming
generative models of data.

Is an artificial neural network used for unsupervised
learning of efficient codings.

Pooling

Convolution
They have applications in image and video
recognition, recommender systems and
natural language processing.

Subsampling

Is a class of artificial neural network where connections between units form a
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs can use their internal memory to process
arbitrary sequences of inputs.

This makes them applicable to tasks such as
d g or

9 b
speech recognition.

Is a kind of deep neural
network created by applying
the same set of weights
recursively over a structure, to
produce a structured prediction
over variable-size input
structures, or a scalar
prediction on it, by traversing a
RNNs have been successful for instance in given structure in topological
learning sequence and tree structures in order.

natural language processing, mainly phrase

and sentence continuous representations

based on word embedding

Auto-Encoders

Convolutional Neural Networks (CNN)

RNNs (Recurrent)

RNNs (Recursive)

Architectures

Strategy

Structure: Single words, fixed windows,
sentence based, document level; bag of

1. Sel i
Select Network Structure appropriate for e BT

problem
Nonlinearity (Activation Functions)
1. Implement your gradient
2. Implement a finite difference computation
by looping through the parameters of your
network, adding and subtracting a small
epsilon (~10-4) and estimate derivatives

3. Compare the two and make sure they are
almost the same

If you gradient fails and you don’t know why?

2. Check for implementation bugs with
gradient checks

Using Gradient Checks

Example: Start from simplest model then go

to what you want:

Initialize hidden layer biases to 0 and output

(or reconstruction) biases to optimal value if

weights were 0 (e.g., mean target or inverse

3. Parameter initialization sigmeld of mean targe).
Initialize weights ~ Uniform(-r,), r inversely
proportional to fan-in (previous layer size) and
fan-out (next layer size):

Simplify your model until you have no bug!

What now? Create a very tiny synthetic model
and dataset

Only softmax on fixed input

Backprop into word vectors and softmax
Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add muttiple
units, bias + Add one softmax on top, then
two softmax layers

Add bias

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Ordinary gradient descent as a batch method

is very slow, should never be used. Use 2nd
Stochastic Gradient Descent (SGD) order batch method such as L-BFGS.
On large datasets, SGD usually wins over all
batch methods. On smaller datasets L-BFGS
or Conjugate Gradients win. Large-batch L~
BFGS extends the reach of L-BFGS [Le et al.
ICML 2011].

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Most commonly used now, Size of each mini

Mini-batch Stochastic Gradient Descent
(SGD) batch B: 20 to 1000

4. Optimization

Helps parallelizing any model by computing
gradients for multiple elements of the batch in
paralel

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will

increase the size of the steps taken towards
the minimum.

Momentum Reduce global learning rate when using a lot
of momentum
v = pv—aVyJy(0)
WUzl grew — gold 4,
Adaptive learning rates for each parameter!
pro Learning rate is adapting differently for each

parameter and rare parameters get larger
updates than frequently occurring parameters.
Word vectors!

If not, change model structure or make model “larger”

grew — ()‘r’l’j —aV,]f(e)

v is initialized at 0

Momentum often increased after some
epochs (0.5 2 0.99)

e Ji(0),then: 0, = 6, 1; —

Simple first step: Reduce model size by
lowering number of units and layers and other

parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave
best validation error

Sparsity constraints on hidden activations,

e.g., add to cost:

5. Check if the model is powerful enough to
overfit If you can overfit: Regularize to prevent
overfitting

Dropout

Training time: at each instance of evaluation
(in online SGD-training), randomly set 50% of
the inputs to each neuron to 0

Test time: halve the model weights (now twice
as many) This prevents feature co-adaptation:
A feature cannot only be useful in the
presence of particular other features.

In a single layer: A kind of middle-ground
between Naive Bayes (where all feature
weights are set independently) and logistic
regression models (where weights are set in
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

tvariable_scope()
Scopes

Provides simple name spacing to avoid cases

en querying

Creates/Access variables from a variable,
scope th.get_variable)

List of graph nodes. Returns the output of
these nodes.

Dictionary mapping from graph nodes to
concrete values.

‘Specified the value of each graph node given
in the dictionary.

TensorFlow s a deep learning library recently open-sourced by
Google. It provides primitives for defining functions on tensors and
automatically computing their derivatives, expressed as a graph.

‘The Tensorflow Graph i build to contain l placeholders for X and y,

allvariables for Ws and bs, all mathematical operations, the cost

function, and the optimisation procedure. Then, at runtime, the values Intuition
for the data are fed into that Graph, by placing the data batches in

the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node
over the network, and thus running Tensorfiow models can be
paralleised.

TensorFlow has some neat built-in visualization tools (TensorBoard). Tensorboard,

Assembles a computational graph

The computation oraph has i rumecical P
All computations add nodes to global default graph

A Session object encapsulates the environment
in which Tensor objects are evaluated Phases

Uses a session to execute ops in the graph

Declared variables must be initialised before 2 Zmiy

they have values.

When you train a model you use variables to hold and update
parameters. Variables are in-memory buffers containing tensors.

Stateful nodes that output their current value,
ther state is retained across multiple
executions of the graph.

Mostly Parameters we're interested in tuning,
such as Weights (W) and Biases (b).

e L
f.Variable objects around, or

Variables

Sharing
Implicitly wrapping tf Variable objects within
t.variable_scope objects

Nodes whose value is fed at execution time. Main Components

Placsholders
Inputs, Features (X) and Labels (y)

MatMul, Add, ReL U, etc. Methemalics)

Operations
‘They are Operations, containing any number
of inputs and outputs. Hodes Graph
The tensors that flow between the nodes, Edges
It a binding to a particular execution context: CPU, GPU.
Fetches
Session
Inputs. Running a Session
Feeds

Comparison to Numpy

Does lazy evaluation. Need to build the
graph, and then run itin a session.

iy

tlayers, t losses, thmetrics
e TensorFlow (Python) Packages

Core TensorFlow (C++)

CPU GPU TPU Android

Tensorflow.

trestimator

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

Main Steps

4. Define the Session and Initalise Variables

5. Train the Model

6. Test Trained Model

TensorFlow's high-level machine learning API
(tt.estimator) makes it easy 1o configure, train, and
evaluate a variety of machine learning models.

1. Define Feature Columns

2. Define your Layers, or use a prebuilt model

Main Steps

3. Wiite the input_fn function

4. Train the model

5. Predict and Evaluate

sess = tf. Interactiv 0
tf.9lobal_variables_initializer(). run()

tt.estimator LinearClassifier: Constructs a linear classification model.

testimatorL.

Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimatorDNNRegressor: Construct a neural network regression model.

tt.estimator DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

t.estimator.DNNRegressor: Construct a neural network and linear combined regression model

FeatureColumns are the primary way of
encoding features for pre-canned tf leam
Estimators.

Categorical Numerical

Continuous Features Gan be represented by real_valued_column

When using FeatureColumns with tf.Jearn
models, the type of feature column you
should choose depends on the feature type
and_the model type.

Gan be represented by any

Caisgoricalpeiliesy sparse_column_with vocabmar\/ file,
sparse_column_with_hash_bt
sparse_column_with megemd eature

Using a pre-built Logistic Regression
Classifier

“This function holds the actual data (features
and labels). Features is a python dictionary.

Using the it function, on the input_fin. Notice
that the feature columns are fed to the model
as arguments.

Using the eval_input_fn defined previously.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

