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[ BASIC MATHEMATICS
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{ Introduction to Set Theory

* A setisacollection of distinct items (Example: A ={1,2, 3, 4, 5})

Intersection Union

A
B
BcA

Sub-set & Super-set x € A; ac A;d e A; .




[ Introduction to Set Theory ]

« A={a,c,e,d, x,y, 2}

AnNB-={cd,vy}
Intersection

AzB CcB CcA
Sub-set & Super-set

B={b,c,d,y, m, n} C={c,d}

AuUB-={a,b,c,d,e,m,n,x,y,z}
Union

xeA; x¢gB; xe¢C
Belong Relationship

®/¢ is the empty set

NUCZe gAYV




[ Introduction to Set Theory

c An(BNC)=(AnB)NC & AuBuUC)=(AuB)UC
*c An(BUC)=(AnB)U(ANC)

¢« —(—-A)=A

* -(AnB)=-AuU —B




[ Introduction to Propositional Logic ]

e Itis also called the Zero Order Logic

A sentence X can be either true or false (1 or 0)

X Y XAY X Y XvY
X Y A v
0 0 0 0 0 0
0 0
0 1 0 0 1 1
1 1
1 0 0 1 0 1
1 1 1 1 1 1
X Y X=>Y X Y X XOR Y X=2Y==XVvY
0 | o 1 0 | o 1 S(XAY) =X v Y
0 1 1 0 1 0 XAX=X & XvX=X
1 0 0 1 0 0 Xv(YAZ)=(XVvY)A(XVZ)




Introduction to Vectors

Parrc 1

As Vectors

10



{ Introduction to Vectors ]

Adding two vectors
(0, Y1) + (X, ¥2) = (%) * X3, Y1 * )

Multiplying a vector by a constant and
adding it to another vector

(O, y) *+ (25,2, y,5) = (00 + 25, y1 + 2y5)

Multiplying a vector by -1

Ax. vY=(-x. v.)
M) AL )

Multiplying a vector by a constant
2. (x5, 5) = (2%5, 2y,)

v V+wW
w
‘Z ﬂ' V42 W
2'W
v
W
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{ Introduction to Vectors ]

Multiplying two orthogonal vectors equal to A
Zero. V2
Examples:

VI-(5,0) & V2-(0,4)

V1.V2=0

V1

VI=(5,4) & V2-(-4,5)
V1.V2-0 O N\

12



[ Eigen Values & Eigen Vectors ]

* An eigenvector of a matrix A4 is a nonzero Y“l
vector x; where A.x1is similar to applying V AX = X
a linear transformation A to x which, y
may change in length, but not direction X
* Aacts to stretch the vector x, not change
its direction, so xis an eigenvector of A 0 - X
AX—AIX=0
2 ax] [x (A= A)x =0
=A if there exist aninverse (A—Al)™',then x=0
_a'Zl a22__y_ _y_

we need det(A— Al) = 0to avoid the trevial solution x =0

det(A—A1)=0



[ Example on Eigen Values & Figen Vectors ]

* Suppose Ais 2x2 matrix

2 1
A=
{2—1
det |

A=1 or

for 1 =3, {
1

2
for 1 =1, {1

2

A=3

1
2

|
)

1 ,
2_/1}(2—/1) ~1=0

2x+y]| | 3x
x+2y| |3y
2x+y| | x
x+2y]| |y

The eigenvectors are:

i
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[ Representing Documents as Vectors ]

-

of charge

o

Journal of Artificial Intellicence

JAIR is a refereed ji
Artificial Intelli;

ering all are
istributed free

journalis also published by Morgan Kaufman..,

I the internet. Each volume of the

/

[\

Term Term
Count
0 learning
3 journal
j 2 intelligence
0 text
0 agent
3 ] Internet
0 webwatcher
0 Perl5
~\
1 volume

15



{

Documents as Vecrors

Suppose we have two documents containing three nouns only

Term T, | Term T, | TermT;
Document D, 2 3 5
Document D, 3 I 1
D, D,
Y FY
2 3
3 I
5 |
\ o \ o
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Dimensionality Reduction

>

Dimensionality Reduction

Term
Count Term
34 Home
32 Garden
15 Room
14 Window
11 Furniture
11 Restroom
6 Floor
5 Kitchen
5 Balcony
1 Chimney
1 Street
1 City
1 Dog
1 Lake

® [erm Count
o tfidf
® Chi-Square
® Information Gain
® Gain Ratio

Term

Count Term
15 Room
14 Window
11 Furniture
11 Restroom
6 Floor
5 Kitchen
5 Balcony
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[ What Is Probability? ]

* A priori probability P(e). The chance that e happens
« Conditional probability P(¥/e). The chance of f given e

* Joint probability P(e, ). The chance of e and f both happening; If e and
f are independent, then P(e, f) = P(e) * P(f); If e and f are dependent
then P(e,f)=P(e) * P(f | e)

For example, if e stands for “the first roll of the die comes up 5” and f
stands for “the second roll of the die comes up 3,” then P(e.f) = P(e) *
P(f) - 1/6 * 1/6 - 1/36.

> P(e)=1 3 Pe| f)=1




|

BASIC Probabilities ]

P(AU B)={

P(A)+P(B) A & B are not dependant

P(A)+P(B)-P(A,B) A & B are dependant

* For example, when drawing a single card at random from a regular deck of

cards, the chance of getting a heart or a face card (J,Q,K) (or one that is both) is

13 N 12 B 3 22
52 52 52 52
A P(A)€[0,1]
not A P(4) =1-P(4)
P(AUB)=P(A)+ P(B)— P(ANB)
AorB = P(A)+ P(B) if A and B are mutually exclusive
P(AN B) = P(A|B)P(B)
Aand B = P(A)P(B) if A and B are independent
A given B P(A|B) = P(;(;)B)

20



[ Probability Density Function PDF ]

® Probability density function (pdf) is a function that
represents a probability distribution in terms of integrals

b — lGr
a1 o3
f (X) dX Q1-1.5xI0R Q3+1 5xI0R
Wedan
L | | [ | | : | : | | | | | |
Bo Rala} Ao SBoy 2o -lot 0 o 20 130 4o jala) Bo
S E%Eg 0E7450  0B7450 2 ESRo

Tf(x)dx:l &




| Probability Density Function PDF |

® The Summation is used with Discrete Data

O P N W »~ U1 OO N O O O
I 1 1 1 ! ! I 1 1 1

\

; A=
NN

E ‘/\\\E}:gk

Tutorial on EM Algorithm: Ali S. Hadi



[ Conditional & Bayesian Probability ]

® Conditional probability is the probability of some event A, given the
occurrence of some other event B

® Conditional probability is written P(A|B), and is read “the probability
of A, given B”

P(A,B)
P(B)

P(A|B)=

® Bayesian probability, the probability of a hypothesis given the data
(the posterior), is proportional to the product of the likelihood times the
prior probability (often just called the prior)

® The likelihood brings in the effect of the data, while the prior specifies
the belief in the hypothesis before the data was observed

P(A)P(BTA)
P(B)

P(A|B) =




STATISTICS
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[ Statistics ]

® Statistics is a Mathematical Science pertaining to

the collection, analysis, interpretation or

explanation, and presentation of data

25



[ Statistical Terminologies ]

Measures of Central Tendency (Mean,
Median, Mode)

Population Variance measures statistical
dispersion of data points from the expected
value (mean)

Standard Deviation is a measure of the
variability or dispersion of a population;
Low SD indicates very close data points to
the mean; High SD indicates spread out
data points

Covariance measures how much two
variables change together

Correlation (coefficient) indicates the
strength and direction of a linear
relationship between two random variables

X:(l/n)zn:xi

Var(X) = E[(X - E(X))ZJ

= (1/n)i(xi -X)’ =0’

sd(X)=+o?

Cov(X,Y)=E[(X —E(X))(Y —E(Y))]

Cov(X,Y) 0oy
sd(X)*sd(Y) o,0,

Corr(X,Y) =

rav)
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Introduction
to Permutations & Computations
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[ Permutations ]

* Suppose an ordered set of n different objects
* For ordered selection of r objects from a set of n (n2r) ditferent
objects, the number of permutations of r from n, i.e. the number of

different possible ordered selections, is usually denoted by P.."

4 pia gy Jol LA ol e o) QB ) 3D Ll

n! fis 100 B A w1 e a5 <10 B
PN — B gan s 45 1000 b LA M1 o jum
r (n B r)' AU Y 038 (e aaliiin (Say ad ) oS 3yl o )

(... <2130 3120 ¢3210) 3 ¢2 ¢1 :J%a
¢ -Jdall




[ Permutations ]

Example: r g b y

Suppose we have 4 elements and need to select 3 elements in order; there

are 24 different combinations

4 4
Pl=———=—=4%3%2=24
(4-3)! 1
r g b r b | g g r b g b r
b g r b r g r g y r y g
g r y g Y r y r g Y | 8 r
r b y r y b b r y b y r
y | r| b y | b r g | b |y g |y | b
b | g8 |y b |y | 8 y | 8| b y | b| 8




[ Permutations ]

* Suppose a set {A, B, C}, we have 6 (=3!) permutations of {A, B, C} are
ABC, ACB, BAC, BCA, CAB and CBA

* Suppose a set {A, B, C, D}, there are 24 = P%, = (4 % 3 x 2) permutations of
3 letters from {A, B, C, D}

* If the n objects are not all different, and there are n, objects of type 1, n,
objects of type 2, ..., n, objects of type k, where n;+n,+...+n,=n, then the
number of different ordered arrangements is

n!
n!n,!'nl..n,!

14!
3131414




[ Computations ]

The number of ways of picking k unordered outcomes from n possibilities. Also

known as the binomial coefficient or choice number and read “n choose k.,*

AL n!
Ck = =
[kj k!(n—k)!

S Guadll s i Lew S B oS 185 (S 5 o] gan S ED0 Lyl

(jcccjcccc) c(jcjcccccc) d\la
:Jall
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[ Computations ]

For example: suppose we have the set {1, 2, 3, 4}, we need to calculate
the number of combinations of selecting two elements out of the set

4 v
2 21% 21

namely {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}.

Suppose we have 4 places and filled only 2 of them. The combination to fill
the other two cells with the other two numbers equal to 1. Muir (1960)
uses the nonstandard notations

= n—k C;:(z]: 2
Sl I 2) 2%

C, =1 C'=n C, =1

0
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{ Popular Distributions

Probability Distribution identifies the probability of each value of an

unidentified random variable
® Uniform Distribution
® Normal (Gaussian) Distribution
® Chi-Square Distribution
® Fxponential Distribution
® Poisson Distribution
® 7 Distribution

® F Distribution




{ The Uniform Distribution ]

® The probability is equal for all outcomes

® Suppose a fair dice is thrown, the probability of getting any of its 6 faces equal
to 1/6

® The area under the line equal to 1

1/6

36



{ The Normal/Gaussian Distribution ]

1.0

L p=0, 0im0.2 ===|_
- u=0, ogiml (= -
=0, 0I=5,0 mm- ]
jime=2, i} f == |

37



The Chi-Square Distribution

1.0 ! 1 | T
0.8 — —— k=1 -
. —— k=2
=3
i e
0.6 — k=5 1
0.4 B -
0.0 ; 1 1 } —— —
0 2 4 6 8
( 1 (k/2)-1—x/2
X e for x>0
f(xk)=<242T(k/2)
0 for x<0

&

38



The Exponential Distribution

—— ]
wnh O Lh

A
A
A

0 1 2 ) 3 - 4
Ae™ for

F(x:4) = e X>0
0 for x<0

39



The Poisson Distribution

Q4T T

Qe

f(k;A)=

40



The T Distribution ]

0,45

0,4
0,35
0,3
0,25
0,2
0,15
0,1

0,05

0 1 2 3 4 2

t-distribution arises in the problem of
estimating the mean of a normally
distributed population when the sample
size is small




The F Distribution

05 10 15 20

0.0

— d1=1, d2=1

— d1=2, d2=1
di1=5, d2=2
d1=100, d2=1

— L\ d1=100, d2=100

42



[ Fitting Chi-Square ]

Vector

JA— 5

14

¢ \\ 11

e 11

O R N W & N OO N 00 O
N
s

n _F\?
max Zz _ Z (ai EEI)
i=1 '

E;, =(15+14+11+11+6+5+5)/7=9.57

7> =(01/9.57)%((15-9.57)° +(14-9.57)> +(11-9.57)* + (11-9.57)" +
(6-9.57)" +(5-9.57)" +(5-9.57)*)=107.71/9.57 =11.26

43



[]MkﬂSUZﬂ%{]EIHP(}HEgOQVCIHTBkHﬁmn]

[P(tkﬁci)P(t—kﬂéi)_ I:)(tkDCTi)I:)(t—kﬂci)]2
P(t )Pt )P(c;)P(T)

Zz(tkaci):

P (t,.c,;) =»probability document x contains term t and belongs to category c.
P (t,.c;) =»probability document x does not contain term t and belongs to category c.
P(t,,Ci) Sprobability document x contains term t and does not belong to category c.

P(t,.C) =» probability document x does not contain term t and does not belong to
category c.

P(t) =»probability of term t
P(c) =» probability of category ¢




{ Testing The Membership ]

Econom Military

[P(tkaci)P(t—k?(Ti)_ P(tkaéi)P(t—kﬂCi)lz
P(t,)P(t,)P(c;)P(C;)

Zz(tkaci):

{1*14_1*8}2
9 16 16 9
2 25,9 .18

* *

27 27 27 27 *

27 (t,, Sports ) =




[ Using Chi-Square for Categorization ]

Another Example:

Frequency per Category

Term Total
Communication | Phone | Business Army
Link 15 6 2 12 35
Wire 10 12 0 8 30
Total 25 18 2 20 65

2 link.. phone ) - [6/65)*(18/65)— (29 /65)* (12 /65)]?

(35/65)*(30/65)*(18/65)* (47 / 65)

46




[ Using Chi-Square for Multiple sets of Terms

Category
Group 2 Total
0 1
Term 5 1 3 4
Term 7 4 6 10
Total 5 9 14

Categor
Group 1 el Total
0 1

Term 1 3 2 b}
Term 2 0 4 4
Term 3 2 3 b}

Total 5 9 14

2
2 Sk (aij B Eij)
=22
=1 j=1 E

77 (Groupl)=(3-1.78)*/1.78 +(2-3.21)* /3.21+(0-1.42)* /1.42

7> (Group 2)=(1-1.42)>/1.42+(3-2.57)*/2.57T+(4-3.57)* /3.57
+(6-6.43)°/6.43 =

e *Ty

+(4-2.57)>/2.57+(2-1.78)* /1.78+(3-3.21)* /3.21=3.62

Mingers, J., (1989a). “An Empirical Comparison of selection Measures for Decision-Tree
Induction”, Machine Learning, Vol. 3, No. 3, (pp. 319-342), Kluwer Academic Publishers.




[ Attribute Selection Criteria: Chi-Square ]
EXélmp]f? TI | T2 | T3 |T4| D
®T2 is quantized into two intervals 21 (T2<21) and (T2>21) |1 .2 10 A -1 .
®13 is quantized into two intervals 15 (T3«15) and (T®15) | 1 : 30 30 @ A @ O

1 35 25 B 0
S SULLULE N R R
Ty |onb | S R W W W0 N
0 1 1 3 2 5 2 22 030 A 1
T ——— 1 |- e
— 1 ———11 - e
T — 1 |- e e
........ e
........ e e
........ e o e
B W [ B P B e T N
3 20 36 B 1
=15 1 4 5 A 3 3 6
>15 4 5 9 B 2 6 8
Total 5 9 14 Total 5 9 14




[A teribute Selection Criteria: C]zj/Square]

E.,)

X (A)= ZZ

i=l j=1 |J

where A is the attribute to be evaluated against the decision attribute, n is the
number of distinct values of A, m is the number of distinct values of the decision
attribute, a; is the correlation frequency of value number i from A and value
number j from the decision attribute;

e *Ty

where T ; is the total number of examples belonging to class ci, T,; is the number
of examples containing the value vj of the given attribute

77 (X1)=(3-1.78)"/1.78+(2-3.21)* /3.21+(0-1.42)* /1.42
+(4-2.57)"/2.57+(2-1.78)*/1.78+(3-3.21)* /3.21 =3.62

7(X4)=(3-3.9/3.9+(3-2.1)*/2.1+(6-5.1)*/5.1
+(2-2.9)%/2.9=1.1

Decision D5

Mingers, J., (1989a). “An Empirical Comparison of selection Measures for Decision-Tree
Induction”, Machine Learning, Vol. 3, No. 3, (pp. 319-342), Kluwer Academic Publishers.

D1 Total
0 1
1 3 2 5
2 0 4 4
3 2 3 5
Total 5 9 14
Decision D5
D2 Total
0 1
=21 1 3 4
»21 4 6 10
Total 5 9 14
Decision D5
D3 Total
0 1
=15 1 4 5
>15 4 5 9
Total 5 9 14
Decision D5
D4 Total
0 1
A 3 3 6
B 2 6 8
Total 5 0 14
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[ Linear Regression ]

* The linear model states that the dependent variable is directly proportional to
the value of the independent variable
* Thus if a theory implies that Y increases in direct proportion to an increase in

X, it implies a specific mathematical model of behavior

ED' I ! I I I

y=ax+Db

In case of two dimensions

(yz_y1)
(Xz_x1)
b=y, —slope*x,

a =slope =

—Z0 ] 20 d 0 a0 a0



[ Linear Regression

y=ax+Db 4
§=6a+b & 4=3a+b (55)
8D 4 & 4=3+32P.y (3.4)
6 6
4
b=0 & a=—=1333 —
3 Slope =~ =133
4
b=4—2%3=0

3



[ Linear Regression

y=ax+Db

(L,6)
6=a+b & 2=3a+b

6—b:a & 2:3*(6—b)+b (3’2)




Linear Regression

54



Statistics and Testing
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Iraining & Testing

Data

Y
—

Training

Data
N—

Y
—

Testing

Data

Learning
> ()
%

Learned Concepts

[ earned
Model

Testing
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[ Testing Approaches

]

® 7wo-Cross-Fold

Train on 2/3™ \
Test on 1/3t ——

® 7en-Cross-Fold

Train on 9/10th <

Test on 1/10th .

Repeat 10 times Data '
A

® Hold-One-Out
Train on all databutone o
Test on the selected one

—
(—

Training

® [ earning Evaluation vs. Testing Dara

N~
Train on Training Data C D)
Sl Evaluation D Evaluation
valuate on Evaluation Data Data Data
Test on Testing Data —

Mee—
Testing

Data

Data

Data
N-records

N
(e

2/3 Data
Training
~—

N
(e

1/3 Data

Testing
N~

Data - ry




{ Accuracy & Error ]

Example: Suppose you have a classification model C, and 100 testing records from two
classes (P & N). Suppose the following are the classification results:

® Accuracy vs. Error Rate Actual
- Accuracy = (40+45)/100 = 85% P N
- Error Rate - (10+5)/100 = 15%
P TP FP
Obtained EN N
® Truc vs. False Classification
- True Positive: = 88.88%
Actual

- True Negative: = 81.82%

- False Positive: =11.12% P N

- False Negative: -18.189
alse Negative Jo P 40 10

® Flexible Matching Obtained [~ 5 45

- Using Nearest Neighbors (e.g., majority of nearest 3 neighbors)
- Using Fuzzy rules (assigning probability for each decision and taking it into consideration when
calculating the accuracy)

- Assigning small weights for the false positive and false negative results (not zero)

® Testing for Multiple Classes 2222

58




[ Precision, Recall, and F-Measure ]

Accuracy:is the percentage of correct results
FError:is the percentage of wrong results

Accuracy only reacts to real errors, and doesn’t show how many correct results
have been found as such

Precision:

Precision shows the percentage of correct results within an answer:

Precision=(tp) / (tp + fp)

Recall:

Recall is the percentage of the correct system results over all correct results:

Recall = (tp) / (tp + fn)

Makhoul, John; Francis Kubala; Richard Schwartz; Ralph Weischedel: Performance measures for
information extraction. In: Proceedings of DARPA Broadcast News
Workshop, Herndon, VA, February 1999

59



{ Precision, Recall, and F-Measure ]

Precision and Recall can be defined ditferently for ditferent tasks
For example: In Information Retrieval,
® Recall = |{relevant documents} N {documents retrieved}| /

/ |{relevant documents}

® Precision = |{relevant documents} N {documents retrieved}| /

/ |{documents retrieved}|

Christopher D. Manning and Hinrich Sch™utze, Foundations of Statistical Natural Language Processing,
MIT Press, 1999.

60



{ Precision, Recall, and F-Measure ]

F-Measure (harmonic mean):

Fg “measures the effectiveness of B times as much importance to recall as

precision”. The general form of F-Measure:
Fg = (1+ B2) * (precision * recall) / (B* * precision + recall)
when B-1,

F, =2 * (precision * recall) / (precision + recall)

61
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[ Test of Signiticance (1/5) ]

® The probability that a result is not due to chance; or Is the observed
value differs enough from a hypothesized value?

® The hypothesized value is called the null hypothesis

® If this probability is sufficiently low, then the ditference between the
parameter and the statistic is said to be "statistically significant’

® Just how low is sufficiently low? The choice of 0.05 and 0.01 are most

commonly used

® Suppose your algorithm produced error rate of 1.5 and another
algorithm produced an error of 2.1 on the same data set; are the two
algorithms similar?




[ Test of Signiticance (2/5) ]

HA

B

® The top ends of the bars indicate observation means

® The red line segments represent the confidence intervals surrounding
them

® The difference between the two populations on the left is significant

® However, it is a common misconception to suppose that two
parameters whose 95% confidence intervals fail to overlap are
significantly ditferent at the 5% level




[ Test of Signiticance (3/5) ]

® The system you are comparing against reported results of 250; the
value reported is considered as a random variable X; the distribution of
X is assumed as normal distribution with unknown mean and standard
deviation 6=2.5; You ran your system 25 times; it reported values (x1,

X2, ..., x25); the average of these values is 250.2.

25

Z — 2502 Sample Mean

il
N5

Standard Error = o/+/n =2.5/+/25 =0.5 n is the sample size

X—,u_)?—,u

Z:G/\/ﬁ_ 05 1 is not known




[ Test of Signiticance (4/5) ]

+
o
o
o
™
=]
!
o
o
o

P(-2<Z2<2)=1-a=0.95

From Tables

—

X —u

0'/«/ﬁ

®(z) = P(Z < 2) =1—% ~0.975
7 =0 (D(2)) =D (0.975)=1.96

0.95=1-a=P(-2<Z <7)=P(-1.96<

<1.96)

66



[ Test of Signiticance (5/5)

P(-2<Z<7)=P(X -1.96-2< 1< X +1.96-2)

Jn Vn
P(-2<Z<2)=P(X -1.96%0.5< < X +1.96*0.5)
P(-2<Z<7)=P(X -0.98< 1< X +0.98)

Our Interval =(250.2-0.98;250.2+0.98)

Our Interval =(249.22;251.0)

® Any value within this interval is not significant




The Information Theory
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[ The Information Theory ]

The information conveyed by a
message can be measured in bits by

its probability




[ The Information Theory: Given Data ]

Artributes: DI | D2 | D3 | D4 | D5 . . _
DI, D2, D3, D4 | S R M M Dectsion Attributes: >
........ i j 2;\ g Domain(D5)-{0,1}
Domajn(D]) er]’z,_;} ........ 1 .............. 2 2 ............... B ...... 0
ERENENEN S
2 12 P2 APl ITwo Decisions: 0, 1
Domajn(DZ) er]’Z} ....... 2 .............. 2 2 ............... B ...... 1
ERENENEN S
> 12 1 B il
Domajn(D_;):[l’Z} 3 1 2 .............. A ..... 0
ERENEE RS
30212 B il
Domajn(D4) :{A’B} 3 1 2 ............... B ...... 1
e




The Information Theory: Given Data

D5

D4

D3

D2

Dl

1

D1

D3\D2

D4




{ The Information Theory: Entropy ]

THE INFORMATION THEORY: information conveyed by a message depends on
its probability and can be measured in bits as minus the logarithm (base 2) of that
probability

suppose Dy, ..., D, are m attributes and C,, ..., C_ are n decision classes in a given
data. Suppose S is any set of cases, and T is the initial set of training cases S — T.
The frequency of class C. in the set S is:

freq(C.,S) = Number of examplesin S belonging to C.

It |S| is the total number of examples in S, the probability that an
example selected at random from S belongs to class C;is

freq(C,,S) /S|

The information conveyed by the message that “a selected example belongs to a
given decision class, C.”, is determined by

—log, (freq(C,,S)/|S|) bits
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[ The Information Theory: Entropy ]

The information conveyed by the message “a selected example belongs to a given
decision class, C”

—log, (freq(C.,S)/|S|) bits

The Entropy: The expected information from a message stating class
membership is given by

k
Info(S) =" (freq(C,,S)/| S |) *log,( freq(C,,S)/|S|) bits
=1

info(S) is known as the entropyof the set S. When S is the initial set of
training examples, info(S) determines the average amount of information needed to
identify the class of an example in S.




[ The Information Theory: The Gain Ratio ]

EXgmp 16 | DI | D2 | D3 | D4 | D5
freq(0,S) =5 -~ freq(,$)=9 | 1321114 88

1 022 A0

freq(0,S)/[S|=5/14 | freq(l,S)/[S|=9/14 |15 5% o
Tbe _Enl‘ropj/: th@ averdge amount Ofinformation n@@d@d to ldentlfy ........ 1 .............. 2 2 ............... B ...... ¢
the class of an exampleinS L. bty Bl
....... 0 T N B I

Info(S) =-9/14*log,(9/14)=5/14*log,(5/14)=0.94bits | 2 2 2 ' B 1
....... 0 T TN N B

Using D, to Split the data provide 3 subsets of data | | 22k B ]
A W W N W

Info, (S,)=-3/5*log,(3/5)—2/5*log,(2/5)=0.94 A0 T W W W
1 302121 B i1
InfoDl (SZ) _ _4/4*10g2 (4/4) _ 0‘94 3 1 2 ............... B ...... :
3 1 2 ............... B ...... :

Info,, (S,) =~2/5*log,(2/5)~3/5*log,(3/5) = 0.94

Infog, (S) = (34 ,)* Infog, (S,)+ (%] ) * Infog, (S,)+ (3 1) * Infoy, (S) = 0.694




[ The Information Theory: The Gain Ratio ]

Suppose attribute D; is selected to be the root and it has k possible values.
The expected information of selecting D to partition the training set
S, info,(S), can be calculated as follows:

Infog, (S) = Z(' S%S )* Info(S,)

S, is the subset number i of the data; k is the number of values of D,

The information gained by partitioning the training examples S into subset using the
attribute D, is given by

Gain(X;) = Info(S) — Info,, (S)



[ The Information Theory: The Gain Ratio ]

The attribute to be selected is the attribute with maximum gain value. Quinlan
found out that a key attribute will have the maximum gain. This is not good!

Split _Info(S)=-3"(/5, /]S ) *logs (IS, |/] S

The gain ratio is given by:

Gain _Ratio(D,) =Gain(D,)/ Split _ Info(D;,)

Quinlan, J.R., (1993). “C4.5: Programs for Machine Learning”, Morgan Kaufmann, Los Altos, California.
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[ The Information Theory: The Gain Ratio ]

Example Cont.

Info,, (S) = (% ) ¥ Infog, (S)) + (% 2) ¥ Infog, (S,)
+ (% o) * Infog, (S;) =0.694

Gain(D,) = 0.94—0.694 = 0.246

Split_Info(S)=-5/14*log,(5/14)—4/14*log,(4/14)
—5/14log,(5/14) =1.577 bits

Gain _Ratio(D,)=0.246/1.577 = 0.156

S

Dl | D2 | D3 | D4 | D5

1 2 1 A 1
........ 1 2 2 A ;
........ 1 2 2 B ;
........ 1 2 2 B ;
........ 1 1 1 B :
....... 2 2 2 A :
....... 2 2 2 B :
....... 2 1 1 A :
....... 2 2 1 B :
3 1 2 .............. A ..... ;
3 1 ................ 1 .............. A ..... ;
3 .............. 2 2 ............... B ...... :
3 1 2 ............... B ...... :
3 1 2 ............... B ...... :




[Jhmﬁujnathmn<3ﬁﬁn:fTénn1vs;C}uz%ﬂmgy]

It measures the classification power of a term

P(t,c)
G (t,.c,) = P(t,c)log
‘ Ce{zcil,ci} te{tzk;tk} : P(t) P(C)

P(t,,c;) =>probability document x contains term t and belongs to category c.
P(t,,c,) =2probability document x does not contain term t and belongs to category c.
P(t,,C;) =>probability document x contains term t and does not belong to category c.

P (t_k ,C;) =>probability document x does not contain term t and does not belong to
category c.

P(t) =>probability of term t.
P(c) =>probability of category c.




{ Testing The Membership

Econom Military

P(t,c)
IG(t,,c;)= > > P(t,c)log, — ==
CE{Ci,Ei} tE{tk ,t_k} I_)(t) I_)(C)
1 1/9 8 8/9
G (t,,sport ) = —*1 —*]
(L.sport) = g logs o w9727y T o °82 25727y % (9 27)
1, 1/18 17 17 /27
—*log, + log ,
18 (2/27)*(18/27) 27 (25/27)*(18 /27)
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[ The Gain Ratio ]

Z Z P(t,c)log , P(t,¢)
ce{c;,C;} te{t, ,{,} P(t)P(C)

GR (t,,¢;) = - > P(c)log , P(c)

CE{Ci,C_i}

P(t,,C,)=@probability document x contains term t and belongs to category c.

P(t, ,C,) = probability document x does not contain term t and belongs to category c.

P(t,.C) =>» probability document x does not contain term t and does not belon
category c.

je
—t
@)

P(1) =»probability of term t.
P(C)  =»probability of category c.




[ Basics for Language Engineers ]

|

Part 10

]

-

Evaluating Documents

~
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{ lerm Frequency & Inverse Document Frequency ]

Usually a combination of the term frequency and the inverse document frequency

TEIDF=w, =tf, xidf,

tf. =1+1log,(tr,) and zerowhenlog =0
: N
idf ., = log 2(n—) and zero when log =0
ik

tf,. is the term frequency of term i in document k, tr;, is the count of term i in document k, idf,,
is the inverse document frequency of term i in document k, N is the total number of
documents in the collection, n;, is the number of occurrence of term i in document k, wy, is
the weight of term i in document k. Logarithm has been used to reduces the difference
between the weight of high and low frequency terms. Logarithm of base 2 is used when
vectors are full of binary TFIDF weights 0 and 1. Logarithm of base 10 is used when vectors
are full of TFIDF weights except binary ones. TFIDF weights values are not normalized.
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{ The Magical Recipe
tf, =1+1log,(tr,) and zero when log = 0
: N
idf ., = log ,(—) and zero when log =0
n.

ik

log, x=1og,, x/log,, 2

Term Count Term frequency
e PR
1
D, | D, | ' D | D,
) N Y Y
1
2 3| ] 2 2.6
I
3 | > 126 3.8
5 1| 3.3 1
./ / rv J /
' I
; I
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[ STATISTICAL ASSOCIATIONS ]

[ Part 1] ]

Association Rules

84
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Learning Term-Asso

Tl

T2

T3
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T9

TI10
T

T12

T13
T4
TI5
TI16
T17
TI8

D7

D6

D5
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D3

D2

D1

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10
D11

D12
D13
Di14
D15
Dl6
D17
D18

T7

T6

T5

T4

T3

T2

Tl
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{ Learning 1erm-Association

AR Syntax:
(condition 1) (condition 2) ... (condition n) strength of association
Tm | 2| 3| 1| 15| 16 | T7 | T8
1 1 1 1 1 1 1 1
Suppose we quantized the term weights 2 ! 2 ! ! ! 2 2
1 2 3 1 1 1 3 3
2 2 1 2 1 2 4 4
1 1 2 2 1 1 5 5
. . . . 2 1 3 2 1 2 6 6
Drive two association rules with two
o 1 2 1 3 2 2 7 1
Conditions and frequency greater than 0.25.
2 2 2 3 2 2 8 2
1 1 3 3 2 2 9 3
(T1-1) (T6-1) 5/18 e B B e
(T1-2) (T2-1) 5/18
1 2 2 1 2 2 2 5
- 2 2 3 1 2 1 3 6
Question:

: o , . 1 1 1 2 3 1 4 1
Drive association rules with two conditions - ; 2 N ; ; ; 5
and frequency greater than 0.38. : 5 ; S ; ; : ;

2 2 1 3 3 1 7 4
1 1 2 3 3 2 8 5
2 1 3 3 3 1 o 6

an




[ Learning 1erm-Association

The strength of an association rule can be
measure by:

® [ everage

® Coverage

® Support

® Strength

o Lift

1L Calculating I EVERAGE for the rule
(T1=2) (T2=1)

® Number of records = 16

® Records having (T1=2) =8

® Records having (T2=1)=9

® Records having (T1-2) (T2-1)-4

® % of the cover (T1-2) (T2-1)=4/16

® Records expected to be covered by (T1=2)
(T2 =1) if they were independent -
(8%9)/16-4.5

® [everage Count=4.5-4-=0.5

® [ everage Proportion =0.5/16=1/32

T1 [ T2 | T3 | T4 | TS5
1 1 1 1 1
2 1 2 1 1
1 2 3 1 1
2 2 1 2 1
1 1 2 2 1
2 1 3 2 1
1 2 1 3 2
2 2 2 3 2
1 1 3 3 2
2 1 1 1 2
1 2 2 1 2
2 2 3 1 2
1 1 1 2 3
2 1 2 2 3
1 2 3 2 3
2 1 1 3 3




{ Learning 1erm-Association

2 Calculating COVERAGE for the rule

(T1=2) (T2=1)

® The coverage count for all conditions but
the last one (T2-1) = 8
® The coverage proportional = 8/16 = 1/2

3. Calculating SUPPORT for the rule
(T1=2) (T2=1)

® The support count for all conditions = 4
® The support proportional = 4/16 = 1/4

4. Calculating STRENGTH for the rule
(T1=2) (T2=1)

® The strength count for all conditions but
the last one (T2-1) = 8

® The last condition covers 4 out of those 8

® The strength proportional = 4/8 =1/2

T1 [ T2 | T3 | T4 | TS5
1 1 1 1 1
2 1 2 1 1
1 2 3 1 1
2 2 1 2 1
1 1 2 2 1
2 1 3 2 1
1 2 1 3 2
2 2 2 3 2
1 1 3 3 2
2 1 1 1 2
1 2 2 1 2
2 2 3 1 2
1 1 1 2 3
2 1 2 2 3
1 2 3 2 3
2 1 1 3 3
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{ Learning 1erm-Association

5. Calculating LIFT for the rule
(T1=2) (T2=1)

® Total number of examples = 16

® Records covered by all conditions but the
last condition (T2-1) = 8

® Records covered by the last condition = 8

® Records covered by all conditions = 4

® Strength=4/8-1/2

® Cover proportion of all conditions but the
last one (T2-1)=8/16=1/2

® LIFT = strength / (cover proportion of all
condition but the last) = (1/2) / (1/2) =1

T1 [ T2 | T3 | T4 | TS5
1 1 1 1 1
2 1 2 1 1
1 2 3 1 1
2 2 1 2 1
1 1 2 2 1
2 1 3 2 1
1 2 1 3 2
2 2 2 3 2
1 1 3 3 2
2 1 1 1 2
1 2 2 1 2
2 2 3 1 2
1 1 1 2 3
2 1 2 2 3
1 2 3 2 3
2 1 1 3 3
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The Magnum Opus System

M Magnum Opus - Tutorial.data

File Edit Modes Action Preferences Wiew Help

D|@| ril 1 =|e| |2

: Attributes and their
Tutorial.data: 500 cases 4 500 holdout cases & 39 walues 1 f e T ial
values 1or the lutoria
Search for: b airniuin no; i'l a0 b airnm size: 34 d
atabase
Search I:n_l,l:i LEVERAGE _:_J Proportion Count
. M irirnLam Ieverage:i-lﬂ ]-21 47483647 Minirmumm strength: jl:l_l:l ® Profitability99: 3
Filker DUt:jINSIGMFlmNT _:.j Minimum coverage:; iEI.I:I !'I ke irvirnwirn Lift: ]EI.I:I o 1 a 11 Y .numer}c
v ® Profitability98: numeric 3
Minirum support: iEI.I:I ]EI I~ llse m-estimate

® Spend99: numeric 3

® Spend98: numeric 3

® NoVisits99: numeric 3

® NoVisits98: numeric 3

® Dairy: numeric 3

® Deli: numeric 3

® Bakery: numeric 3

5 ® Grocery: numeric 3

® SocioEconomicGroup:
categorical

® Promotionl: t, f

® Promotion2: ¢, f

Walues allowed on BHS:
Erofitabl

[ >

(£
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Statistical Association

Magnum Opus

DEMO
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DECISION TREES

Part 12

Information Theory
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{ Learning Decision Irees ]

®A Tree is a Directed Acyclic Nodes
Graph (DAG) + each node
has one parent at most Edges/
Vertices
® A Decision Tree is a tree \ \
where nodes associated
with attributes, edges Q Q
associated with attribute Leaves P
values, and leaves
associated with decisions Example:

High Blood Pressure?

High Cholesterol?/ \ Cough?

Heart Problem Stress Cold Normal
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{ Learning Decision [rees ]

.

Attribute Selection Criteria

Logical Based

Information Based

-

Statistical Based
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{ Information Theory

Example

®12 is quantized into two intervals at 21 (T2¢21) and (T2>21)
@13 is quantized into two intervals at 15 (T3¢15) and (T3>15)

1 | T2 | T3 | T4 | D
1 25 10 A 1
1 30 30 A 0
1 35 25 B 0
1 22 35 B 0
1 19 10 B 1
2 22 30 A 1
2 33 18 B 1
2 14 5 A 1
2 31 15 B 1
3 21 20 A 0
3 15 10 A 0
3 25 20 B 1
3 18 20 B 1
3 20 36 B 1
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Decision Trees

CS5

DEMO




NEURAL NETWORKS

—

Part I3

How It Works?
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Learning Neural Networks ]

//\

Supervised

/\

Unsupervised

/\

In terms of As Learning In terms of As Learning
Design Algorithm Design Algorithm
The user defines the The data is labeled No. of nodes and levels The data is not labeled.
number of nodes and and both input and in the hidden layer are Only the input records
levels in the hidden output are given to the defined automatically are given to the neural
layer neural network by the algorithm network
Threshold = 0.0
Test Data

A i B i C  Decision

0:0:0

0:0i1

0:1:0

0:1:1 1

1010

1:0:1

1:1:0

Ii1i1
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{ Learning Neural Networks ]

The Sigmoid Function
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{ Learning Neural Networks ]

Threshold = 0.0

Test Data
B I C Decision
0:{0

0 i1

1 i 0

1 1
00

0 i1

1 {0

1 1

i ! ‘ﬁ
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[ MACHINE TRANSIATION ]

[ Parc 14 ]

4 N

Statistical Machine Translation

S %
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{ Statistical Machine Translation ]

® For cach English sentence “e”, we need the Arabic sentence “a” which
maximize P(a|e)

P(ale)-P(a)*P(e|a)/P(e)

English > Arabic
Document Document
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[ [Language Model ]

® A statistical language model assigns a probability to a sequence of m
words by means of a probability distribution

® Record every sentence that anyone ever says in Arabic; Suppose you
record a database of one billion utterances; If the sentence “fellla CaxX”
appears 76,413 times in that database, then we say P(fllla cas) -
76,413/1,000,000,000 = 0.000076413

® One big problem is that many perfectly good sentences will be assigned

a P(e) of zero

Arabic Sentence Probability
Al as 0.000076413
S A 0.000066392




[ N-Grams ]

® Ann-word substring is called an n-gram
® If n-2, we say bigram. If n=3, we say trigram
® Let P(y | x) be the probability that word y follows word x
P(y | x) = number-of-occurrences(“xy”) / number-of-occurrences(“x”)
P(z | x y) = number-of-occurrences(“xyz") / number-of-
occurrences(“xy”)
> P (4 yall (A alsll cad) = Pl | start-of-sentence) *
P2l | cad) * P(N | aloll) * Pasaall | ) *
P(end-of-sentence | 4w _ll)
> P(d2all ) A6l ad) = P(ad | start-of-sentence) *
P(as | start-of-sentence ,c23) * P(J | sl ad) *
P(Auadl | a4l * P(end-of-sentence | 4w xall ¢ ) *
P(end-of-sentence | end-of-sentence i 2l




{ N-Grams Language Model ]

P(W,,..,W, )= H P(W, | W,,...,W._,) zH PW, [ Wi_(pyseees Wiy
i=1 i=1

count(w. . ..., W.
P(WI |Wi—(n—1)9"°)Wi_1) = ( I (n 1) I)
COUNT(Wi__pyseees Wiy )

Example:

Inabigram (n=2) language model, the approximation looks like

P(l,saw,the,red, house) ~ P(1)P(saw| | )P(the | saw)P(red | the)P(house| red)

Inatrigram (n=3) language model, the approximation looks like

P(l,saw,the,red, house) ~ P(1)P(saw| I )P(the| I,saw)P(red | saw,the)P(house | the, red)




[ Translation Model ]

® P(a | e), the probability of an Arabic string “a” given an English string

“e”. This is called a translation model

® P(a|e) will be amodule in overall English-to-Arabic machine
translation system; When we see an actual English string e, we want
to reason backwards ... What Arabic string a is (1) likely to be uttered,
and (2) likely to subsequently translate to 2 We're looking for the a

that maximizes P(a) * P(e | a)

Arabic Sentence English Sentence P(ale)
A aall ) algll cad The boy went to School 0.0034
a5l Aa  sall (lads) Today, the stock market 0.00021

went down




[ Translation Model ]

® For each word a, in an Arabic sentence (i=1...1), we choose a fertility ¢,. The
choice of fertility depends on the Arabic word in question. It is not dependent
on the other Arabic words in the Arabic sentence, or on their fertilities

® For cach word a,, we generate ¢, English words. The choice of English word
depends on the Arabic word that generates it. It is not dependent on the
Arabic context around the Arabic word. It is not dependent on other English
words that have been generated from this or any other Arabic word

® All those English words are permuted. Each English word is assigned an
absolute target “position slot.” For example, one word may be assigned
position 3, and another word may be assigned position 2 -- the latter word
would then precede the former in the final English sentence. The choice of
position for a English word is dependent solely on the absolute position of the

Arabic word that generates it




STATISTICS

Part 15

108



[ Analysis of Variance ANOVA ]

Analysis of Variance (ANOVA)

One-Way Randomized Two-factor
ANOVA Complete ANOVA
Block ANOVA with replication
F-test
F-test
Tukey-
Kramer Fisher’s Least
test Significant
Difference test




[ ONE WAY ANOVA ]

® FEvaluate the difference among the means of three or more populations

® Assumptions
Populations are normally distributed
Populations have equal variances
Samples are randomly and independently drawn

Hy tMy =M, =Hg = =Wy
H, :Not all y. are the same

All Means are the same:
The Null Hypothesis is True

— e - - = - — —

Mi =H, = Hj
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[ ONE WAY ANOVA ]

Ho Ty = Hp =Hy = =1
H, :Not all y, are the same

At least one mean is different:
The Null Hypothesis is NOT true
(Treatment Effect is present)

VAGNFIVAN

=My = M3 My = My # Mg
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[ Partitioning the Variations ]

SST = SSB + SSW

SST = Total Sum of Squares
SSB = Sum of Squares Between
SSW = Sum of Squares Within

Total Variation = the aggregate dispersion of the individual
data values across the various factor levels (SST)

Between-Sample Variation = dispersion among the factor
sample means (SSB)

Within-Sample Variation = dispersion that exists among
the data values within a particular factor level (SSW)



Partition of Total Variation

Total Variation (SST)

T~

Variation Due to Variation Due to Random
= + -
Factor (SSB) Sampling (SSW)
Commonly referred to as: Commonly referred to as:

Sum of Squares Within

Sum of Squares Error

Sum of Squares Unexplained
Within Groups Variation

Sum of Squares Between
Sum of Squares Among
Sum of Squares Explained
Among Groups Variation
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Where:

SST = Zk:i(xij ~X)?

i=1 j=1

SST = Total sum of squares

K = number of populations (levels or treatments)
n, = sample size from population i

X = j" measurement from population i

X = grand mean (mean of all data values)



(continued)

SST = (X, = X)* + (X}, =X)* +...+ (X, —X)’

L
L
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1 1 v\

C ~
SJUILIT U

fFCAARiiravrac DAatwarann
| Jbl dlTo DCLVWCCTII

SST =|SSB + SSW

k —
SSB =) ni(X; - X)’
i=1

Where:

SSB = Sum of squares between

K = number of populations

n, = sample size from population i
= sample mean from population i

X
X = grand mean (mean of all data values)



O

)
Q)
=5
O

Kk
SSB =) ni(X; - X)’
i=1

Variation Due to
Differences Among Groups

ariation
MSB — SSB
k-1

Mean Square Between =
SSB/degrees of freedom




(continued)

S
3
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SST = SSB + SSW
k n;
SSW=> » (x;-
=l j=I

SSW = Sum of squares within

Where:

K = number of populations
n, = sample size from population i

X, = sample mean from population i

X; = jt" measurement from population i



\Ai+hhim A1
VVILHHm—aliovupy
K n;
. \ A\ —_— 2
=1  j=I1
Summing the variation within

each group and then adding
over all groups

H;

)
o

SSW

MSW =

Mean Square Within =
SSW/degrees of freedom




)
)
=3

(continued)

SSW = (X11 _i1)2 —I—(X12 _iz)z +...-|-(xknk _ik )2

il
—i— X_
il !
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Source of SS df MS F ratio
Variation
SSB

Between SSR k-1 MSB =——— _ M_SB
Samples K - MSW

. SSW
el SSW N-k  |MSW =
Samples N - Kk

SST =
Total N-1
otal lssp+ssw

k = number of populations
N = sum of the sample sizes from all populations

df = degrees of freedom
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Probability

—

Parr 16

Bayesian Networks
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{ Bayesian Networks (Watch Me!) ]
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Conclusion
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