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BASIC  MATHEMATICS
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Basic Concepts
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BASIC  MATHEMATICS
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Introduction to  Set Theory

• A set is a collection of distinct items  (Example: A = {1, 2, 3, 4, 5})

A  B

A BA  B A B

UnionIntersection

B
A A

•c
•z

•x
B  A •e

•d

•y
•x

•a

Sub-set & Super-set x  A;  a A; d  A; … 
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Introduction to  Set Theory

• A = {a, c, e, d, x, y, z}                      B = {b, c, d, y, m, n}               C = {c, d}

A  B = {c, d, y} A  B = {a, b, c, d, e, m, n, x, y, z}

UnionIntersection UnionIntersection

A  B x  A;   x B;   x  CC  B C  A

Sub-set & Super-set Belong Relationship

/ is the empty set        
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Introduction to  Set Theory

• A  (B  C) = (A  B)  C            &          A  (B  C) = (A  B)  C

• A  (B  C) = (A  B)  (A  C)

• (A) = A( )

• (AB) = A B
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Introduction to Propositional  Logic

• It is also called the Zero Order Logic

• A sentence X can be either true or false (1 or 0)

X Y XY X Y XY
X

0

1

Y

0

1

X Y XY

0 0 0

0 1 0

X Y XY

0 0 0

0 1 1
1 1

1 0 0

1 1 1

1 0 1

1 1 1

X Y XY

0 0 1

X Y X XOR Y

0 0 1

X  Y = X  Y

(X  Y) = X  Y

0 1 1

1 0 0

1 1 1

0 1 0

1 0 0

X  X = X      &     X  X = X

X  (Y  Z) = (X  Y)  (X  Z) 

( X)  X1 1 1 1 1 1 (X) = X
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Introduction  to Vectors

Part 1Part 1

Representing DocumentsRepresenting Documents
As Vectors
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Introduction to Vectors

Addi   Adding two vectors
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

Multiplying a vector by a constant and 
adding it to another vector
(x1, y1) + (2.x2,2. y2) = (x1 + 2x2, y1 + 2y2)( 1, y1) ( 2, y2) ( 1 2, y1 y2)

Multiplying a vector by -1
-(x  y ) = (-x  -y )

Multiplying a vector by a constant
2 . (x2, y2) = (2x2, 2y2)

-(x1, y1) = (-x1, -y1)
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Introduction to Vectors

V2
Multiplying two orthogonal vectors equal to 

V2zero.
Examples: 
V1 =(5, 0)     &    V2=(0, 4)
V1  V2 = 0

V1

V1 . V2 = 0

V1 =(5, 4)     &    V2=(-4, 5)
V1 . V2 = 0V1 . V2  0
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Eigen Values & Eigen Vectors

• An eigenvector of a matrix A is a nonzero 

vector x; where A.x is similar to applying 

a linear transformation  to x which, 

may change in length, but not direction 

• A acts to stretch the vector x, not change 

its direction, so x is an eigenvector of A 

0IxAx 
















 xxaa

1211

0 IxAx 
0)(  xIA 

0)( 1  xthenIAinverseanexistthereif 









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



 yyaa


2221

0,)(  xthenIAinverseanexistthereif 

00)det(  xsolutiontrevialtheavoidtoIAneedwe 
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Example on Eigen Values & Eigen Vectors

• Suppose A is 2x2 matrix











21
12

A

 









  xyx 32 xyx 32 

01)2(
21

12
det 2 














 









  yyx 32

y
yx 

  xyx2 xyx 2
31   or 




















y
x

yx
yx

2
2 xyx 2

yx 




























y
x

y
x

for 3
21
12

,3 The eigenvectors are:
 yy



















xx

for 1
12

,1








1
1









1
1

14
















 yy

f
21

,



Representing Documents as Vectors

Term Term

learning0

Term
Count

Term

journal
intelligence

text

3
2
0

Journal of Artificial Intelligence Research

JAIR is a refereed journal  covering all areas of 

agent
internet

webwatcher
P l5

0
1
0
0JAIR is a refereed journal, covering all areas of 

Artificial Intelligence, which is distributed free 
of charge over the internet. Each volume of the 
journal is also published by Morgan Kaufman  

Perl5

:     
:     

0

:
:journal is also published by Morgan Kaufman … :     

:     

volume

:
:

1 volume1
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Documents as Vectors
Suppose we have two documents containing three nouns only

T3
5

Term T1 Term T2 Term T3

Document D1 2 3 5

D1 = 2T1+ 3T2 + 5T3

Document D2 3 7 1

T132
2 3

D1 D2

D2 = 3T1 + 7T2 +  T3

7

3
3
5

7
1

T2

7
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Dimensionality Reduction

Home34

Term
Count Term

TermHome
Garden

Room
Window

34
32
15
14

Room
Wi d

15
14

Term
Count Term

Window
Furniture
Restroom

Floor

14
11
11
6

Window
Furniture
Restroom

Floor

14
11
11
6Floor

Kitchen
Balcony

Chimney

6
5
5
1

Floor
Kitchen
Balcony

6
5
5

Dimensionality Reduction

T C
y

Street
City
Dog

1
1
1

• Term Count
• tfidf

• Chi-Squareg
Lake1 • Information Gain

• Gain Ratio
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PROBABILITY

Part  2Part  2

-Introduction-Introduction
-Terminology 
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What Is Probability?

• A priori probability P(e):  The chance that e happens  

• Conditional probability P(f | e):  The chance of f given e

• Joint probability P(e, f):  The chance of e and f both happening;  If e and 

f are independent, then  P(e, f) = P(e) * P(f); If e and f are dependent 

then  P(e, f) = P(e) * P(f | e) 

For example, if e stands for “the first roll of the die comes up 5” and f 

stands for “the second roll of the die comes up 3,” then P(e,f) = P(e) * p , ( , ) ( )

P(f) = 1/6 * 1/6 = 1/36.  

1)(  eP 1)|(  feP)(
e

1)|(
e

feP
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BASIC  Probabilities
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• For example, when drawing a single card at random from a regular deck of 

cards  the chance of getting a heart or a face card (J Q K) (or one that is both) is

  dependantareBABAPBPAP &),()()(

cards, the chance of getting a heart or a face card (J,Q,K) (or one that is both) is

52
22

52
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52
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13


5555

A

not A

A or BA or B

A and B

A given B
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Probability Density Function PDF

• Probability density function (pdf) is a function that 
represents a probability distribution in terms of integrals represents a probability distribution in terms of integrals 


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
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dxxf )(

0)(&1)( 


xfdxxf )()(
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ff
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Probability Density Function PDF

• The Summation is used with Discrete Data   
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Conditional & Bayesian Probability

• Conditional probability is the probability of some event A, given the 
occurrence of some other event B

• Conditional probability is written P(A|B), and is read “the probability 
of A, given B”

)(
),()|(

BP
BAPBAP 

• Bayesian probability,  the probability of a hypothesis given the data 
(the posterior), is proportional to the product of the likelihood times the 
prior probability (often just called the prior) p p y ( j p )

• The likelihood brings in the effect of the data, while the prior specifies 
the belief in the hypothesis before the data was observed

)(
)|()()|(

BP
ABPAPBAP 

Tutorial on EM Algorithm: Ali S. Hadi



STATISTICS

Part 3Part 3

Introduction
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Statistics

• Statistics is a Mathematical Science pertaining to • Statistics is a Mathematical Science pertaining to 

the collection, analysis, interpretation or 

explanation, and presentation of  data
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Statistical Terminologies
• Measures of Central Tendency (Mean, 

Median, Mode) 



n

i
ixnx

1
)/1(

• Population Variance measures statistical 
dispersion of data points from the expected 

lu  (m n) 

i 1

 
22
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))(()( 
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n

XEXEXVar
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• Standard Deviation is a measure of the 
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i xxn

2)(Xdvariability or dispersion of a population; 
Low SD indicates very close data points to 
the mean;  High SD indicates spread out 
data points 
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data points 

• Covariance measures  how much two 
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variables change together

• Correlation (coefficient) indicates the 
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STATISTICS

Part 4Part 4

Permutations  &Permutations  &
Computations
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Introduction 
to Permutations & Computations
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Permutations

• Suppose an ordered set of n different objects

• For ordered selection of r objects from a set of n (n≥r) different 

objects, the number of permutations of r from n, i.e. the number of j p

different possible ordered selections, is usually denoted by Pr.n

أأ

!nPn
r 

يتم إختيار أول رقم وضربه.لدينا ثلاثة أرقام ا، ب، ج
، ويتم 100، ويتم ضرب الرقم الثانى فى 10فى 

، ثم يتم جمع الثلاثة 1000ضرف الرقم الثالث فى 
ال قا قاأ الأ ذ ا إ ك ق )!(آ rnr  آم رقم يمكن إستنتاجه من هذه الأرقام.أرقام الجديدة
.الثلاثة

)321031202130(123ثال ...)، 3210،3120،2130(    1،2،3:مثال
؟: الحل

10 nP nPn 1 !nPn
n 
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Permutations

Example: r g b y

Suppose we have 4 elements and need to select 3 elements in order; there 

are 24 different combinations

242*3*4
!1
!4

)!34(
!44

3 


P

r g b r b g g r b g b r

b g r b r g r g y r y g

g r y g y r y r g y g r

r b y r y b b r y b y r

y r b y b r g b y g y by r b y b r g b y g y b

b g y b y g y g b y b g 30



Permutations

• Suppose a set {A, B, C}, we have 6 (=3!) permutations of {A, B, C} are 
ABC  ACB  BAC  BCA  CAB and CBAABC, ACB, BAC, BCA, CAB and CBA

• Suppose a set {A, B, C, D}, there are 24 = P4
3 = (4 × 3 × 2) permutations of 

3 letters from {A, B, C, D}
If h  bj    ll diff  d h   bj  f  1  • If the n objects are not all different, and there are nr objects of type 1, n2

objects of type 2, …, nk objects of type k, where n1+n2+...+nk=n, then the 
number of different ordered arrangements is 

!!...!!
!

321 knnnn
n

a a a b b b c c c c d d d d

!!...!! 321 knnnn

!14
!4!*4!*3!*3
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Computations

The number of ways of picking k unordered outcomes from n possibilities. Also 

!nn
Cn 





known as the binomial coefficient or choice number and read “n choose k,“ 

)!(! knkk
Cn

k 








زرقاء آرتان و حمراء آرات ثلاثة آراتلدينا الخمس ترتيب بها يمكن طريقة آم .آم طريقة يمكن بها ترتيب الخمس آرات. لدينا ثلاثة آرات حمراء و آرتان زرقاء

)ح،ح،ز،ح،ز(، )ح،ح،ح،ز،ز: (مثال
:ل:الحل
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Computations

For example: suppose we have the set {1, 2, 3, 4}, we need to calculate 
th b f bi ti f l ti t l t t f th tthe number of combinations of selecting two elements out of the set

6
!2!*2

!4
2
44

2 







C

namely {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. 

Suppose we have 4 places and filled only 2 of them The combination to fill



Suppose we have 4 places and filled only 2 of them. The combination to fill 
the other two cells with the other two numbers equal to 1.   Muir (1960) 
uses the nonstandard notations 

2








 


k
kn

C n
k

1
!0!*2

!2
2
24

2 







C

10 nC nCn 1 1n
nC
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STATISTICS

Part 5Part 5

Popular Distributions
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Popular Distributions

Probability Distribution identifies the probability of each value of an y p y

unidentified random variable

• Uniform Distribution• Uniform Distribution

• Normal (Gaussian) Distribution

• Chi-Square Distribution

• Exponential Distribution

• Poisson Distribution

• T Distribution• T Distribution

• F Distribution

35



The Uniform Distribution

• The probability is equal for all outcomes

f d h h b b l f f f l• Suppose a fair dice is thrown, the probability of getting any of its 6 faces equal 
to  1/6

• The area under the line equal to 1

1/6

654321
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The Normal/Gaussian Distribution





 2)(1 x








 
 22

)(exp
2

1)(




xxP

37



The Chi-Square Distribution
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The Exponential Distribution

  0xfore x
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The Poisson Distribution

ek  
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);(

k
ekf  
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The T  Distribution

2/)1(2

1
)

2
1(
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








 v

t
v

tf
t-distribution arises in the problem of 

ti ti  th   f  ll  
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estimating the mean of a normally 
distributed population when the sample 
size is small



The F  Distribution
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Fitting Chi-Square

Vector
a
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9.57  5)/756111114(15 ijE

)57.911()57.911()57.914()57.915(()57.9/1( 22222 
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Measuring Term-Category Correlation 

)]()()()([ 2tPtPtPtP
)()()()(

)],(),(),(),([
),(

2
2

iikk

ikikikik
ik cPcPtPtP

ctPctPctPctP
ct


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probability document x contains term t and belongs to category c.),( ik ctP

probability document x does not contain term t and belongs to category c.

probability document x contains term t and does not belong to category c.

 b bili  d   d   i    d d    b l   

),( ik ctP

),( ik ctP

)( ctP probability document x does not contain term t and does not  belong to 
category c.

probability of term t

),( ik ctP

)(tP

probability of category c)(cP
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Testing The Membership

t1      t2 t4      t2 t1      t4
Sports Economy Military

t3         
t9

t11            t20

t8            
t9

t17            t23

t13             
t29

t31            t40

t55
t60         t76

t65
t70         t79

t53
t60         t70

)],(),(),(),([
)(

2
2 ikikikik ctPctPctPctP

t
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)()()()(
)],(),(),(),([

),(2
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Using Chi-Square for Categorization

Another Example:

F C t
Term

Frequency per Category
Total

Communication Phone Business Army

Link 15 6 2 12 35Link 15 6 2 12 35

Wire 10 12 0 8 30

Total 25 18 2 20 65

)]65/12(*)65/29()65/18(*)65/6[ 2

)65/47(*)65/18(*)65/30(*)65/35(
)]65/12(*)65/29()65/18(*)65/6[),(2 

phonelink
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Using Chi-Square for Multiple sets of Terms

Group 1
Category

Total
0 1

Group 2
Category

Total
0 1

Term 1 3 2 5

Term 2 0 4 4

Term 3 2 3 5

Term 5 1 3 4

Term 7 4 6 10

Total 5 9 14Term 3 2 3 5

Total 5 9 14

Total 5 9 14

n m Ea 2)( TT )*(

 




i j ij

ijij

E
Ea

1 1

2 )(
 T

TTE vjci
ij

)(


2222 42.1/)42.10(21.3/)21.32(78.1/)78.13()1( 2222 Group
62.321.3/)21.33(78.1/)78.12(57.2/)57.24( 222 

57.3/)57.34(57.2/)57.23(42.1/)42.11()2( 2222 Group 57.3/)57.34(57.2/)57.23(42.1/)42.11()2( Group
 43.6/)43.66( 2

Mingers, J., (1989a). “An Empirical Comparison of selection Measures for Decision-Tree 
Induction”, Machine Learning, Vol. 3, No. 3, (pp. 319-342), Kluwer Academic Publishers. 47



Attribute Selection Criteria: Chi-Square

T1 T2 T3 T4 D

1 25 10 A 1

Example
•T2 is quantized into two intervals  21 (T2<=21) and (T2>21)

1 30 30 A 0

1 35 25 B 0

1 22 35 B 0

q ( ) ( )
•T3 is quantized into two intervals  15 (T3<=15) and (T3>15)

T1
Decision D

Total
1 19 10 B 1

2 22 30 A 1

2 33 18 B 1

T1 Total
0 1

1 3 2 5

2 0 4 4

T2
Decision D

Total
0 1

<=21 1 3 4 2 33 18 B 1

2 14 5 A 1

2 31 15 B 1

3 21 20 A 0

3 2 3 5

Total 5 9 14

>21 4 6 10

Total 5 9 14

3 21 20 A 0

3 15 10 A 0

3 25 20 B 1
Decision DDecision D

3 18 20 B 1

3 20 36 B 1

T4
Decision D

Total
0 1

A 3 3 6

B 2 6 8

T3
Decision D

Total
0 1

<=15 1 4 5

>15 4 5 9 B 2 6 8

Total 5 9 14

>15 4 5 9

Total 5 9 14
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D1
Decision D5

Total
0 1

Attribute Selection Criteria: Chi-Square

1 3 2 5

2 0 4 4

3 2 3 5

 




n

i

m

j ij

ijij

E
Ea

A
1 1

2
2 )(

)(

Total 5 9 14

D2
Decision D5

Total
0 1

 i j ij1 1

where A is the attribute to be evaluated against the decision attribute, n is the 
number of distinct values of A, m is the number of distinct values of the decision 
attribute, aij is the correlation frequency of value number i from A and value 0 1

<=21 1 3 4

>21 4 6 10

Total 5 9 14

ij q y
number j from the decision attribute; 

T
TTE vjci

ij
)*(



D3
Decision D5

Total
0 1

<=15 1 4 5

Tij

where Tci is the total number of examples belonging to class ci, Tvj is the number 
of examples containing the value vj of the given attribute 

D i i  D5

< 15 1 4 5

>15 4 5 9

Total 5 9 14

42.1/)42.10(21.3/)21.32(78.1/)78.13()1( 2222 X

62.321.3/)21.33(78.1/)78.12(57.2/)57.24( 222 

D4
Decision D5

Total
0 1

A 3 3 6

B 2 6 8

1.5/)1.56(1.2/)1.23(9.3/)9.33()4( 2222 X

1192/)922( 2  B 2 6 8

Total 5 9 14

1.19.2/)9.22(

Mingers, J., (1989a). “An Empirical Comparison of selection Measures for Decision-Tree 
Induction”, Machine Learning, Vol. 3, No. 3, (pp. 319-342), Kluwer Academic Publishers. 49



STATISTICS

Part 6Part 6

Regression

50



Linear Regression

• The linear model states that the dependent variable is directly proportional to 

the value of the independent variable 

• Thus if a theory implies that Y increases in direct proportion to an increase in 

l f h l d l f b h

baxy 

X, it implies a specific mathematical model of behavior

baxy 

)( yy 

In case of two dimensions

)(
)(

12

12

xx
yyslopea




*lb 22 * xslopeyb 
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Linear Regression

(6 8)

baxy 
• (6,8)

(3 4)

baba  34&68
bb  88 • (3,4)bbab


6
8*34&

6
8

33314&0b
333.1

36
48





Slope
333.1

3
&0  ab

03*
3
44 b
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Linear Regression

• (1 6)

baxy 
• (1,6)

baba  32&6

• (3,2)bbab  )6(*32&6

286&8b
2

2
4

31
26








Slope
286&8  ab

83*22 b
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Linear Regression

xy 10
ˆˆˆ 

iû
 yyi 

Y
yyiiŷ

1̂
iy

X XXii

0̂

X ii
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Statistics  and  Testing

Part  7Part  7

Testing Samples &Testing Samples &
Calculating Accuracy
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Training & Testing

D
Training Learning Learned

Data
g

Data

T i

Algorithm Model

Testing
Data

Evaluation

Data Learned Concepts Testing 56



Testing Approaches
• Two-Cross-Fold
Train on 2/3rd

Test on 1/3rd
2/3 Data
TrainingTest on 1/3

•Ten-Cross-Fold
Train on 9/10th

Data

1/3 Data
Testing

Data 1

Data 2

Test on 1/10th

Repeat 10 times Data

D t  10

:
Data - r1

• Hold-One-Out
Train on all data but one

Data 10

Data :

Data – r2

Test on the selected one

L i  E l i   T i

N-records :

Data - rNTraining
D t•Learning Evaluation vs. Testing

Train on Training Data
Evaluate on Evaluation Data
T t  T ti  D t

Data

Data
Evaluation

Data
Test on Testing Data

Testing
Data 57



Accuracy  & Error

Example: Suppose you have a classification model C, and 100 testing records from two 
classes (P & N). Suppose the following are the classification results: ( ) pp g

•Accuracy vs. Error Rate
- Accuracy =   (40+45)/100 = 85%
- Error Rate =   (10+5)/100 = 15%

Actual

P N

•True vs. False Classification

Obtained
P TP FP

N FN TN

- True Positive: = 88.88%
- True Negative: = 81.82%
- False Positive: = 11.12%
- False Negative: = 18.18%

Actual

P N

P 40 10
•Flexible Matching

- Using Nearest Neighbors (e.g., majority of nearest 3 neighbors)
- Using Fuzzy rules (assigning probability for each decision and taking it into consideration when 

l l i  h  )

Obtained
P 40 10

N 5 45

calculating the accuracy)
- Assigning small weights for the false positive and false negative results (not zero)

•Testing for Multiple Classes ????
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Precision, Recall, and F-Measure

Accuracy: is the percentage of correct results 

Error: is the percentage of wrong results

Accuracy only reacts to real errors, and doesn’t show how many correct results 
have been found as such

Precision:

Precision shows the percentage of correct results within an answer:

( ) / ( f )Precision = (tp) / (tp + fp)

Recall:
R ll i h f h l ll lRecall is the percentage of the correct system results over all correct results: 

Recall = (tp) / (tp + fn)

Makhoul, John; Francis Kubala; Richard Schwartz; Ralph Weischedel: Performance measures for 
information extraction. In: Proceedings of DARPA Broadcast News 
Workshop, Herndon, VA, February 1999
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Precision, Recall, and F-Measure

Precision and Recall can be defined differently for different tasks

For example: In Information Retrieval,

• Recall = |{relevant documents} ∩ {documents retrieved}|  / 

/ |{relevant documents}|

• Precision  |{relevant documents} ∩ {documents retrieved}|  / • Precision = |{relevant documents} ∩ {documents retrieved}|  / 

/ |{documents retrieved}|

Christopher D. Manning and Hinrich Sch¨utze, Foundations of Statistical Natural Language Processing, 
MIT Press, 1999.
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Precision, Recall, and F-Measure

F-Measure (harmonic mean):

Fβ “measures the effectiveness of β times as much importance to recall as 

precision”. The general form of F-Measure:

Fβ = (1+ β2) * (precision * recall) / (β2 * precision + recall)

when β=1when β 1,

F1 = 2 * (precision * recall) / (precision + recall)
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STATISTICS

Part  8Part  8

Test of Significance
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Test of Significance (1/5)

• The probability that a result is not due to chance; or  Is the observed p y ;

value differs enough from a hypothesized value? 

• The hypothesized value is called the null hypothesis • The hypothesized value is called the null hypothesis 

• If this probability is sufficiently low, then the difference between the 

parameter and the statistic is said to be "statistically significant" parameter and the statistic is said to be statistically significant  

• Just how low is sufficiently low? The choice of 0.05 and 0.01 are most 

l  d commonly used 

S l h d d f d h• Suppose your algorithm produced error rate of  1.5 and another 
algorithm produced an error of  2.1 on the same data set; are the two 
algorithms similar?
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Test of Significance (2/5)

• The top ends of the bars indicate observation means
• The red line segments represent the confidence intervals surrounding 

themthem
• The difference between the two populations on the left is significant
• However, it is a common misconception to suppose that two 

parameters whose 95% confidence intervals fail to overlap are parameters whose 95% confidence intervals fail to overlap are 
significantly different at the 5% level
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Test of Significance (3/5)

• The system you are comparing against reported  results of 250; the 

l  d i  id d   d  i bl  X  h  di ib i  f value reported is considered as a random variable X; the distribution of 

X is assumed as normal distribution with unknown mean and standard 

deviation =2 5; You ran your system 25 times; it reported values (x1  deviation  2.5; You ran your system 25 times; it reported values (x1, 

x2, … , x25); the average of these values is 250.2.  

1 25
Sample Mean2.2501ˆ

25

1

 
i

ix
n

X

5025/52/ESt d d h l5.025/5.2/ErrorStandard  n

Z  





XX

n is the sample size

μ is not known5.0/ n μ is not known
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Test of Significance (4/5)

95.01)(P  zZz

975.0
2

1)(P(z) 
zZ From Tables

96.1(0.975)))((z 11   z

)961961()(10 95 



XPzZzP  )96.1

/
96.1()(10.95 

n
PzZzP



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Test of Significance (5/5)

 )96.196.1()(
n

X
n

XPzZzP 


)5.0*96.15.0*96.1()(  XXPzZzP 

)98.098.0()(  XXPzZzP 

)98.02.250;98.02.250( IntervalOur

)0.251;22.249(IntervalOur )0.251;22.249(IntervalOur

• Any value within this interval is not significant
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The Information Theory

Part  9Part  9

IntroductionIntroduction
Entropy
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The Information Theory

Th  i f i  d b   The information conveyed by a 

b d b bmessage can be measured in bits by 

its probability
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The Information Theory: Given Data

D1 D2 D3 D4 D5Attributes: A bD1 D2 D3 D4 D5

1 2 1 A 1

1 2 2 A 0

1 2 2 B 0

Attributes:
D1, D2, D3, D4 Decision Attributes: D5

Domain(D5)={0,1}
1 2 2 B 0

1 2 2 B 0

1 1 1 B 1

Domain(D1)={1,2,3}

T  D i i   0  12 2 2 A 1

2 2 2 B 1

2 1 1 A 1

Domain(D2)={1,2}
Two Decisions:  0, 1

2 2 1 B 1

3 1 2 A 0

3 1 1 A 0

Domain(D3)={1,2}

3 2 2 B 1

3 1 2 B 1

3 1 2 B 1

Domain(D4)={A,B}

3 1 2 B 1
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The Information Theory: Given Data

D1 D2 D3 D4 D5

1 2 1 A 11 2 1 A 1

1 2 2 A 0

1 2 1 B 0
D1 1 2 3

1 2 2 B 0

1 1 1 B 1

2 2 2 A 1

D1 1 2 3

D4 D3\D2 1 2 1 2 1 2

A
1 1 1 0

2 2 2 B 1

2 1 1 A 1

2 2 1 B 1

A
2 0 1 0

B
1 1 1 1 1

3 1 2 A 0

3 1 1 A 0

3 2 2 B 1

B
2 0 1 1 1

3 2 2 B 1

3 1 1 B 1

3 1 2 B 1
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The Information Theory:  Entropy
THE INFORMATION THEORY: information conveyed by a message depends on 
its probability and can be measured in bits as minus the logarithm (base 2) of that 
probability  probability  

suppose D1, ..., Dm are m attributes and C1, ..., Cn are n decision classes in a given 
data. Suppose S is any set of cases, and T is the initial set of training cases S  T. 

ii CtobelongingSinexamplesofNumberSCfreq ),(

pp y g
The frequency of class Ci in the set S is: 

If |S| is the total number of examples in S, the probability that an 
example selected at random from S belongs to class Ci is 

||/),( SSCfreq i

The information conveyed by the message that “a selected example belongs to a 

bitsSSCfreq |)|/)((log

y y g p g
given decision class, Ci”, is determined by 

bitsSSCfreq i |)|/),((log2
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The Information Theory:  Entropy

The information conveyed by the message “a selected example belongs to a given 
decision class, Ci” 

bitsSSCfreq i |)|/),((log2

The Entropy: The expected information from a message stating class 
membership is given by p g y

bitsSSCfreqSSCfreqSInfo
k

ii 2 |)|/),((log*|)|/),(()(
i

ii
1

2

info(S) is known as the entropy of the set S. When S is the initial set of ( ) py
training examples, info(S) determines the average amount of information needed to 
identify the class of an example in S. 



S
The Information Theory: The Gain Ratio

D1 D2 D3 D4 D5

1 2 1 A 1

Example

5)0( Sfreq 9)1( Sfreq

S

1 2 1 A 1

1 2 2 A 0

1 2 2 B 0

1 2 2 B 0

5),0( Sfreq 9),1( Sfreq
14/5||/),0( SSfreq 14/9||/),1( SSfreq

1 2 2 B 0

1 1 1 B 1

2 2 2 A 1

The Entropy: the average amount of information needed to identify 
the class of an example in S

2 2 2 B 1

2 1 1 A 1

2 2 1 B 1

bitsSInfo 94.0)14/5(log*14/5)14/9(log*14/9)( 22 

Using D1 to Split the data provide 3 subsets of data
3 1 2 A 0

3 1 1 A 0

3 2 2 B 1
94.0)5/2(log*5/2)5/3(log*5/3)( 2211

SInfoD

3 1 2 B 1

3 1 2 B 1

94.0)4/4(log*4/4)( 221
SInfoD

94.0)5/3(log*5/3)5/2(log*5/2)( 2231
SInfoD

694.0)(*)14
5()(*)14

4()(*)14
5()( 321 1111

 SInfoSInfoSInfoSInfo DDDD
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The Information Theory:  The Gain Ratio 

Suppose attribute Di is selected to be the root and it has k possible values. 
The expected information of selecting D to partition the training set 
S f (S) b l l d f llS, infoDi(S), can be calculated as follows:

)(*)||
||()( i

k
i

D SInfoS
SSInfo  )()||()(

1
i

i
D fSf

i 


Si is the subset number i of the data; k is the number of values of Di

The information gained by partitioning the training examples S into subset using the 
attribute D1 is given by 

)()()( SInfoSInfoXGain
iDi 
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The Information Theory: The Gain Ratio

The attribute to be selected is the attribute with maximum gain value. Quinlan 
found out that a key attribute will have the maximum gain. This is not good! y g g

|)|/|(|log*|)|/|(|)(_ 2
1

SSSSSInfoSplit i

k

i
i

1i
The gain ratio is given by:

)(_/)()(_ iii DInfoSplitDGainDRatioGain 

Quinlan, J.R., (1993). “C4.5: Programs for Machine Learning”, Morgan Kaufmann, Los Altos, California.
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The Information Theory: The Gain Ratio

D1 D2 D3 D4 D5Example Cont. 
S

1 2 1 A 1

1 2 2 A 0

1 2 2 B 05

)(*)14
4()(*)14

5()( 21 111
 SInfoSInfoSInfo DDD

1 2 2 B 0

1 2 2 B 0

1 1 1 B 1

2 2 2 A 1

694.0)(*)14
5( 31

 SInfoD

2 2 2 A 1

2 2 2 B 1

2 1 1 A 1

2 2 1 B 1

246.0694.094.0)( 1 DGain

SInfoSplit )14/4(log*14/4)14/5(log*14/5)(  2 2 1 B 1

3 1 2 A 0

3 1 1 A 0

bits
SInfoSplit

577.1)14/5(log14/5
)14/4(log14/4)14/5(log14/5)(_

2

22




3 2 2 B 1

3 1 2 B 1

3 1 2 B 1
156.0577.1/246.0)(_ 1 DRatioGain
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Information Gain:  Term vs. Category

It measures the classification power of a term 

),(log),(),( 2
ctPctPctIG ik  

)()(
log),(),( 2

},{ },{ cPtP
ctPctIG

ii kkccc ttt
ik  

 

probability document x contains term t and belongs to category c.

probability document x does not contain term t and belongs to category c.

),( ik ctP

),( ik ctP

probability document x contains term t and does not belong to category c.

probability document x does not contain term t and does not  belong to 
category c.

),( ik ctP

),( ik ctP
g y

probability of term t.

probability of category c.

)(tP

)(cP
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Testing The Membership

t1      t2
t3

t4      t2
t8

t1      t4
t13

Sports Economy Military

t3         
t9

t11            t20

t8            
t9

t17            t23

t13             
t29

t31            t40

t55
t60         t76

t65
t70         t79

t53
t60         t70

)()(
),(log),(),( 2 PP

ctPctPctIG ik  
)()(2

},{ },{ cPtP
ii kkccc ttt

ik  
 

9/8l*89/1l*1)(IG

27/17l*1718/1l*1
)27/9(*)27/25(

9/8log*
9
8

)27/9(*)27/2(
9/1log*

9
1),( 221



sporttIG

79

)27/18(*)27/25(
log*

27)27/18(*)27/2(
log*

18 22 



The Gain Ratio

  )( ctP


 

 
2

},{ },{

)(log)(
)()(

),(log),(
),( ii kkccc ttt

ik cPcP
cPtP

ctPctP
ctGR





},{

2 )(log)(
ii ccc

cPcP

probability document x contains term t and belongs to category c)( ctP probability document x contains term t and belongs to category c.

probability document x does not contain term t and belongs to category c.

probability document x contains term t and does not belong to category c

),( ik ctP
),( ik ctP
),( ik ctP probability document x contains term t and does not belong to category c.

probability document x does not contain term t and does not  belong to 
category c.

),( ik

),( ik ctP

probability of term t.

probability of category c.

)(tP

)(cP
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Basics for Language Engineers

Part  10Part  10

Evaluating Documents
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Term Frequency & Inverse Document Frequency

Usually a combination of the term frequency and the inverse document frequency

ikikik idftfwTFIDF 

0log)(log1 2  whenzeroandtrtf ikik

N 0log)(log 2  whenzeroand
n
Nidf

ik
ik

tfik is the term frequency of term i in document k, trik is the count of term i in document k, idfik
is the inverse document frequency of term i in document k, N is the total number of 
documents in the collection, nik is the number of occurrence of term i in document k, wik is d u , ik u b u d u k, wik
the weight of term i in document k. Logarithm has been used to reduces the difference 
between the weight of high and low frequency terms. Logarithm of base 2 is used when 
vectors are full of binary TFIDF weights 0 and 1. Logarithm of base 10 is used when vectors 

 f ll f TFIDF i h   bi   TFIDF i h  l    li d  are full of TFIDF weights except binary ones. TFIDF weights values are not normalized. 
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The Magical Recipe

0log)(log1 2  whenzeroandtrtf ikik

0log)(log 2  whenzeroand
n
Nidf

ik
ik

2log/loglog 10102 xx 
Term Count Term frequency

2 3

D1 D2

2 2.6

D1 D2

3
5

7
1

2.6
3.3

3.8
1
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STATISTICAL  ASSOCIATIONS

Part  11Part  11

Association Rules
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Learning Term-Association

D1 D2 D3 D4 D5 D6 D7

1 1 1 1 1 1 1 T1

T1 T2 T3 T4 T5 T6 T7

1 1 1 1 1 1 1 D1 1 1 1 1 1 1 1 T1

2 1 2 1 1 1 2 T2

1 2 3 1 1 1 3 T3

2 2 1 2 1 2 4 T4

1 1 1 1 1 1 1 D1

2 1 2 1 1 1 2 D2

1 2 3 1 1 1 3 D3

2 2 1 2 1 2 4 D4

1 1 2 2 1 1 5 T5

2 1 3 2 1 2 6 T6

1 2 1 3 2 2 7 T7

1 1 2 2 1 1 5 D5

2 1 3 2 1 2 6 D6

1 2 1 3 2 2 7 D7

2 2 2 3 2 2 8 T8

1 1 3 3 2 2 9 T9

2 1 1 1 2 1 1 T10

1 2 2 1 2 2 2 T11

2 2 2 3 2 2 8 D8

1 1 3 3 2 2 9 D9

2 1 1 1 2 1 1 D10

1 2 2 1 2 2 2 D11 1 2 2 1 2 2 2 T11

2 2 3 1 2 1 3 T12

1 1 1 2 3 1 4 T13

2 1 2 2 3 1 5 T14

1 2 2 1 2 2 2 D11

2 2 3 1 2 1 3 D12

1 1 1 2 3 1 4 D13

2 1 2 2 3 1 5 D14

1 2 3 2 3 1 6 T15

2 2 1 3 3 1 7 T16

1 1 2 3 3 2 8 T17

1 2 3 2 3 1 6 D15

2 2 1 3 3 1 7 D16

1 1 2 3 3 2 8 D17

2 1 3 3 3 1 9 T182 1 3 3 3 1 9 D18
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Learning Term-Association
AR  Syntax: 

(condition 1) (condition 2) … (condition n) strength of association

T1 T2 T3 T4 T5 T6 T7 T8T1 T2 T3 T4 T5 T6 T7 T8

1 1 1 1 1 1 1 1

2 1 2 1 1 1 2 2

1 2 3 1 1 1 3 3
Suppose we quantized the term weights

2 2 1 2 1 2 4 4

1 1 2 2 1 1 5 5

2 1 3 2 1 2 6 6
Drive two association rules with two

1 2 1 3 2 2 7 1

2 2 2 3 2 2 8 2

1 1 3 3 2 2 9 3
(T1 = 1) (T6 = 1) 5/18

Drive two association rules with two
Conditions and frequency greater than 0.25.

2 1 1 1 2 1 1 4

1 2 2 1 2 2 2 5

2 2 3 1 2 1 3 6

1 1 1 2 3 1 4 1

( ) ( )
(T1 = 2) (T2 = 1) 5/18

Question:
1 1 1 2 3 1 4 1

2 1 2 2 3 1 5 2

1 2 3 2 3 1 6 3

2 2 1 3 3 1 7 4

Drive association rules with two conditions 
and frequency greater than 0.38.

1 1 2 3 3 2 8 5

2 1 3 3 3 1 9 6
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Learning Term-Association
The strength of an association rule can be 

measure by:
• Leverage

T1 T2 T3 T4 T5

1 1 1 1 1

2 1 2 1 1• Leverage
• Coverage
• Support
• Strength

2 1 2 1 1

1 2 3 1 1

2 2 1 2 1g
• Lift 1 1 2 2 1

2 1 3 2 1

1 2 1 3 2
1. Calculating  LEVERAGE  for the rule:

1 2 1 3 2

2 2 2 3 2

1 1 3 3 2

(T1 = 2) (T2 = 1) 

• Number of records = 16
• Records having (T1  2)  8

2 1 1 1 2

1 2 2 1 2

2 2 3 1 2

• Records having (T1 = 2) = 8
• Records having (T2 = 1) = 9
• Records having (T1 = 2) (T2 = 1) = 4
• % of the cover (T1 = 2) (T2 = 1) = 4/16 2 2 3 1 2

1 1 1 2 3

2 1 2 2 3

% ( ) ( )
• Records expected to be covered by (T1 = 2) 

(T2 = 1) if they were independent                  = 
(8 * 9) / 16 = 4.5
L C 4 5 4 0 5 1 2 3 2 3

2 1 1 3 3

• Leverage Count = 4.5 – 4 = 0.5
• Leverage Proportion = 0.5 / 16 = 1/32
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Learning Term-Association

(T1 = 2) (T2 = 1)

2. Calculating  COVERAGE  for the rule: T1 T2 T3 T4 T5

1 1 1 1 1

2 1 2 1 1
( ) ( )

• The coverage count for all conditions but 
the last one (T2=1) = 8

• The coverage proportional = 8/16 = 1/2

2 1 2 1 1

1 2 3 1 1

2 2 1 2 1g p p

(T1 = 2) (T2 = 1)

3. Calculating  SUPPORT  for the rule: 1 1 2 2 1

2 1 3 2 1

1 2 1 3 2

• The support count for all conditions = 4
• The support proportional = 4/16 = 1/4

1 2 1 3 2

2 2 2 3 2

1 1 3 3 2

(T1 = 2) (T2 = 1)

4. Calculating  STRENGTH  for the rule:
2 1 1 1 2

1 2 2 1 2

2 2 3 1 2(T1  2) (T2  1)

• The strength count for all conditions but 
the last one (T2=1) = 8

2 2 3 1 2

1 1 1 2 3

2 1 2 2 3
( )

• The last condition covers 4 out of those 8
• The strength proportional = 4/8 = 1/2 

1 2 3 2 3

2 1 1 3 3 88



Learning Term-Association

(T1 = 2) (T2 = 1)

5. Calculating  LIFT  for the rule:
T1 T2 T3 T4 T5

1 1 1 1 1

2 1 2 1 1(T1  2) (T2  1)

• Total number of examples = 16
• Records covered by all conditions but the 

2 1 2 1 1

1 2 3 1 1

2 2 1 2 1y
last condition (T2=1) = 8

• Records covered by the last condition = 8
• Records covered by all conditions = 4
• Strength  4 / 8  1/2 

1 1 2 2 1

2 1 3 2 1

1 2 1 3 2• Strength = 4 / 8 = 1/2 
• Cover proportion of all conditions but the 

last one (T2=1) = 8 / 16 = 1/2
• LIFT = strength / (cover proportion of all 

1 2 1 3 2

2 2 2 3 2

1 1 3 3 2g ( p p
condition but the last) = (1/2) / (1/2) = 1 2 1 1 1 2

1 2 2 1 2

2 2 3 1 22 2 3 1 2

1 1 1 2 3

2 1 2 2 3

1 2 3 2 3
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The Magnum Opus System

Attributes and their 
values for the Tutorial 

database

• Profitability99: numeric 3 
• Profitability98: numeric 3 
• Spend99: numeric 3 
• S d98  i  3 • Spend98: numeric 3 
• NoVisits99: numeric 3 
• NoVisits98: numeric 3 
• Dairy: numeric 3 
• D li  i  3 • Deli: numeric 3 
• Bakery: numeric 3 
• Grocery: numeric 3 
• SocioEconomicGroup: 

t ri l categorical 
• Promotion1: t, f 
• Promotion2: t, f 
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Statistical Association

Magnum OpusMagnum Opus

DEMODEMO
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DECISION  TREES

Part  12Part  12

Using  Statistical  &Using  Statistical  &
Information Theory
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Learning Decision Trees

•A Tree is a Directed Acyclic Nodesy
Graph  (DAG) + each node 
has one parent at most Edges / 

Vertices
•A Decision Tree is a tree 

where nodes associated 
with attributes  edges 

Vertices

with attributes, edges 
associated with attribute 
values, and leaves 

Leaves

associated with decisions
High Blood Pressure?

Y

Example:

Y N

Y N Y N

Cough?High Cholesterol?

Heart Problem Stress Cold Normal
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Learning  Decision  Trees

Attribute Selection Criteria

Logical Based Information Based Statistical Based
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Information Theory

T1 T2 T3 T4 D

1 25 10 A 1Example
1 30 30 A 0

1 35 25 B 0

1 22 35 B 0

Example
•T2 is quantized into two intervals at 21 (T2<=21) and (T2>21)
•T3 is quantized into two intervals at 15 (T3<=15) and (T3>15)

1 19 10 B 1

2 22 30 A 1

2 33 18 B 1

q ( ) ( )

2 33 18 B 1

2 14 5 A 1

2 31 15 B 1

3 21 20 A 0

T1

21 3
3 21 20 A 0

3 15 10 A 0

3 25 20 B 1

T5=1 T4T3

<=15 >15 BA
3 18 20 B 1

3 20 36 B 1D=0 D=1D=1 D=0
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Decision  Trees

C5C5

DEMODEMO
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NEURAL  NETWORKS

Part  13Part  13

How It Works?
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Learning  Neural  Networks

Supervised Unsupervised 

The user defines the The data is not labeled  

In terms of 
Design

As Learning
Algorithm

In terms of 
Design

As Learning
Algorithm

No  of nodes and levels The data is labeled The user defines the 
number of nodes and 
levels in the hidden 
layer

The data is not labeled. 
Only the input records 
are given to the neural 

network

No. of nodes and levels 
in the hidden layer are 
defined automatically 

by the algorithm

The data is labeled 
and both input and 

output are given to the 
neural network

A B C Decision

Test Data

4
0 3 0 5

Threshold = 0.0

0 0 0

0 0 1

0 1 0

0

1

8

5

w17=-0.2
w14=0.3 w15=0.5
w16=-0.1

w24=-0.7

w48=0.2

0 3 0 1 1 1

1 0 0

1 0 1

1 1 0

8

7

6
2

w27=0.7

w25=0.6
w26=0.2

3

w58=-0.3

w68=-0.3

w78=0.5
1 1 0

1 1 1
7

w37=-0.4
w34=0.2 w35=-0.9
w36=-0.4
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Learning  Neural  Networks

1

1
0.3

0 4 The Sigmoid Function


1

1

0

-0.4
-0.2
-0.1

1
The Sigmoid Function

0

1
0.6

=1*0.3 – 1*0.4 – 1*0.2 – 0*0.1 + 1*0.6 = 0.3 > 0.0

4x

1
To avoid setting the threshold:

1

8

6

5

2

7

6
3
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Learning  Neural  Networks

Test Data

Threshold = 0.0

A B C Decision

0 0 0

0 0 1

Test Data

1

4

5

w17=-0.2
w14=0.3 w15=0.5
w16=-0.1 w48=0.2

0 0 1

0 1 0

0 1 1

8

6
2

w27=0.7

w24=-0.7
w25=0.6
w26=0.2

3

w58=-0.3

w68=-0.3

1 0 0

1 0 1

1 1 0

7

27 3

w37=-0.4
w34=0.2 w35=-0.9
w36=-0.4

w78=0.5

1 1 1
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MACHINE TRANSLATION

Part  14Part  14

S i i l M hi  T l iStatistical Machine Translation
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Statistical Machine Translation

• For each English sentence “e”, we need the Arabic sentence “a” which 

maximize  P(a|e)

P(a|e)=P(a)*P(e|a)/P(e)

English 
Document

Arabic 
Document
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Language Model

• A statistical language model assigns a probability to a sequence of m

d  b   f  b bili  di ib i  words by means of a probability distribution 

• Record every sentence that anyone ever says in Arabic;  Suppose you 

record a database of one billion utterances;  If the sentence “حالك؟ آيف حالك؟ record a database of one billion utterances;  If the sentence ”آيف  

appears 76,413 times in that database, then we say P(آيف حالك؟) = 

76,413/1,000,000,000 = 0.000076413

• One big problem is that many perfectly good sentences will be assigned 

a P(e) of zero

ProbabilityArabic Sentence

حالك0.000076413 آيف ي 0.000076413
الولد سعيد0.000066392
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N-Grams

• An n-word substring is called an n-gram

If 2    bi   If 3    i• If n=2, we say bigram.  If n=3, we say trigram

• Let P(y | x) be the probability that word y follows word x 

P(y | x) = number-of-occurrences(“xy”) / number-of-occurrences(“x”)P(y | x)  number of occurrences( xy ) / number of occurrences( x )

P(z | x y) = number-of-occurrences(“xyz”) / number-of-

occurrences(“xy”)( y )
 P(ذهب الولد إلى المدرسة) =  P(ذهب | start-of-sentence)  *  

P(الولد إلى)P  * (ذهب | المدرسة)P  * (الولد | * (إلى |
P(end-of-sentence | المدرسة)P(end of sentence | المدرسة)

 P(ذهب الولد إلى المدرسة) =  P(ذهب | start-of-sentence) *
P(الولد | start-of-sentence ذهب, ) *  P(إلى الولد, ذهب | ) *  
P(المدرسة إلالولد | ) *  P(end of sentence | المدرسة ، المدرسة)P* (إل إلى,الولد | ) *  P(end-of-sentence | إلى، المدرسة) *
P(end-of-sentence | end-of-sentence المدرسة , )
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N-Grams  Language  Model

 
mm

wwwPwwwPwwP )|()|()( 





 
i

inii
i

iim wwwPwwwPwwP
1

1)1(
1

111 ),...,|(),...,|(),...,(

),...,( )1( ii wwcount
),...,(

),...,(
),...,|(

1)1(

)1(
1)1(




 

ini

ini
inii wwcount

wwcount
wwwP

Example:
In a bigram (n=2) language model, the approximation looks like

)|()|()|()|()(),,,,( redhousePtheredPsawthePIsawPIPhouseredthesawIP 

In a trigram (n=3) language model, the approximation looks like

),|(),|(),|()|()(),,,,( redthehousePthesawredPsawIthePIsawPIPhouseredthesawIP 
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Translation  Model

• P(a | e), the probability of an Arabic string “a” given an English string 

“ ”  Thi  i  ll d  l i  d l“e”. This is called a translation model

• P(a | e) will be a module in overall English-to-Arabic machine 

translation system;  When we see an actual English string e  we want translation system;  When we see an actual English string e, we want 

to reason backwards ... What Arabic string a is (1) likely to be uttered, 

and (2) likely to subsequently translate to e?  We're looking for the a ( ) y q y g

that maximizes P(a) * P(e | a)

P(a|e)English SentenceArabic Sentence P(a|e)English SentenceArabic Sentence

0.0034The boy went to Schoolذهب الولد إلى المدرسة
0.00021Today, the stock market البورصة اليومإنخفاض y,

went down
مإ ر

::
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Translation  Model

• For each word ai in an Arabic sentence (i = 1 ... l), we choose a fertility i. The 

choice of fertility depends on the Arabic word in question   It is not dependent choice of fertility depends on the Arabic word in question.  It is not dependent 

on the other Arabic words in the Arabic sentence, or on their fertilities 

• For each word ai, we generate i English words.  The choice of English word i, g i g g

depends on the Arabic word that generates it.  It is not dependent on the 

Arabic context around the Arabic word.  It is not dependent on other English 

words that have been generated from this or any other Arabic word

• All those English words are permuted.  Each English word is assigned an 

b l l l d b dabsolute target “position slot.”  For example, one word may be assigned 

position 3, and another word may be assigned position 2 -- the latter word 

would then precede the former in the final English sentence   The choice of would then precede the former in the final English sentence.  The choice of 

position for a English word is dependent solely on the absolute position of the 

Arabic word that generates itg
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STATISTICS

Part  15Part  15

Analysis of VarianceAnalysis of Variance
ANOVA
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Analysis of Variance ANOVA

Analysis of Variance (ANOVA)

One-Way Randomized Two-factor One Way 
ANOVA

Randomized 
Complete 

Block ANOVA

Two-factor 
ANOVA 

with replication
F-test

F-test
k

p

Tukey-
Kramer 

test
Fisher’s Least 

Si ifitest Significant
Difference test
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ONE  WAY  ANOVA

• Evaluate the difference among the means of three or more populations

• AssumptionsAssumptions
Populations are normally distributed
Populations have equal variances
Samples are randomly and independently drawnSamples are randomly and independently drawn

H k3210 μμμμ:H  

sametheareμallNot:H iA μiA

All Means are the same:
The Null Hypothesis is True μμμ  321 μμμ 
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ONE  WAY  ANOVA

μμμμ:H k3210 μμμμ:H  

same the are μ all Not:H iA

At least one mean is different:
The Null Hypothesis is NOT true

iA

The Null Hypothesis is NOT true 
(Treatment Effect is present)

or

321 μμμ  321 μμμ 
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Partitioning the Variations

SST = SSB + SSW

SST = Total Sum of Squares
SSB = Sum of Squares Between
SSW = Sum of Squares Within

Total Variation = the aggregate dispersion of the individual 
data values across the various factor levels (SST)data values across the various factor levels (SST)

Between-Sample Variation = dispersion among the factor 

Within Sample Variation = dispersion that exists among

sample means (SSB)

Within-Sample Variation = dispersion that exists among 
the data values within a particular factor level (SSW)
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Partition of Total VariationPartition of Total Variation

Total Variation (SST)

Variation Due to Variation Due to Random +Factor (SSB) Sampling (SSW)

Commonly referred to as:Commonly referred to as:

= +
Commonly referred to as:

 Sum of Squares Within
 Sum of Squares Error

Commonly referred to as:
 Sum of Squares Between 
 Sum of Squares Among

 Sum of Squares Unexplained
 Within Groups Variation

q g
 Sum of Squares Explained
 Among Groups Variation
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Total Sum of SquaresTotal Sum of Squares

k n

SST = SSB + SSW


 


k

i

n

j
ij

i

)xx(SST
1 1

2

 i j1 1Where:

SST = Total sum of squares

k = number of populations (levels or treatments)

ni = sample size from population ii p p p

xij = jth measurement from population i

d ( f ll d t l )x = grand mean (mean of all data values)
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Total VariationTotal Variation
(continued)

22
12

2
11 )xx(...)xx()xx(SST kn 

Response, X

1211 )xx(...)xx()xx(SST
kkn

Response, X

XX

Group 1 Group 2 Group 3Group 1 Group 2 Group 3
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Sum of Squares BetweenSum of Squares Between

k

SST = SSB + SSW

2

1
)xx(nSSB i

k

i
i  


Where:

SSB = Sum of squares between

1i

k = number of populations

ni = sample size from population ii p p p

xi = sample mean from population i

d ( f ll d t l )x = grand mean (mean of all data values)
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Between Group VariationBetween‐Group Variation

2)xx(nSSB i

k

i  
Variation Due to

1i



SSBMSBVariation Due to 
Differences Among Groups 1


k

MSB

Mean Square Between = 
SSB/degrees of freedom

i ji j
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Between Group VariationBetween‐Group Variation
(continued)

22
22

2
11 )xx(n)xx(n)xx(nSSB kk 

Response X

2211 )xx(n...)xx(n)xx(nSSB kk

Response, X

3X
X

1X 2X
3X

1X

Group 1 Group 2 Group 3
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Sum of Squares WithinSum of Squares Within

nk j

SST = SSB + SSW

2

11
)xx(SSW iij

j

k

i

j

 


Where:

SSW = Sum of squares within

11 ji 

q

k = number of populations

n = sample size from population ini = sample size from population i

xi = sample mean from population i

xij = jth measurement from population i
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Within Group VariationWithin‐Group Variation

2)xx(SSW iij

nk j

 
Summing the variation within SSWMSW

11
)( iij

ji



Summing the variation within 
each group and then adding 
over all groups kN

MSW




Mean Square Within = 
SSW/degrees of freedom

i
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Within Group VariationWithin‐Group Variation
(continued)

22
212

2
111 )xx(...)xx()xx(SSW kkn 

Response X

212111 )xx(...)xx()xx(SSW kknk


Response, X

X

X 2X
3X

1X

Group 1 Group 2 Group 3
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One-Way ANOVA TableOne Way ANOVA Table

Source of 
Variation

dfSS MS F ratio

Between 
Samples SSB MSB =k - 1 MSB

MSW
SSB
k 1 F =Samples

Within 
Samples N - kSSW MSW =

MSWk - 1
SSW
N kSamples

Total N - 1SST =
SSB+SSW

N - k

SSB+SSW

k = number of populations
N = sum of the sample sizes from all populationsN = sum of the sample sizes from all populations
df = degrees of freedom
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Tukey Kramer in PHStatTukey‐Kramer in PHStat

Chap 11‐123



Probability

Part 16Part 16

Bayesian Networks
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Bayesian Networks (Watch Me!)
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Conclusion

1- Basic Concepts

2- Introduction to Vectors

3- Probability

4- Statistics

5- Regression

6- Statistics & Testing 6 Statistics & Testing 

7- Test of Significance 

8- Information Theory 8- Information Theory 

9- Basics for Language Engineers

10 St ti ti l A i ti10- Statistical Association

11- Statistical Machine Translation

l f
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12- Analysis of Variance

13- Bayesian Networks
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