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Machine Learning definition



Machine Learning types



Machine Learning types



Machine Learning types
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Feature selection

Performance of Machine Learning model 

depend on

▪Choice of algorithm 

▪Feature selection

▪Feature creation

▪Model selection

 

https://archive.ics.uci.edu/ml/datasets.html
UCI Machine Learning Repository: Data Sets

https://l.facebook.com/l.php?u=https://archive.ics.uci.edu/ml/datasets.html&h=ATOxFHFeM4cTLQf1aHUW5-68rBRnrlU6Shreu1xIXihH1Unj8ObS7I_SSTXU0xrvH-mCUyQJjDP7VRvcs-GzUYIzmgb9VM6qj9oPoCyNqLowT876B34Mnn3HOqEOEKi8Gw6ZrbWlYqLagYJGCSVKT039Kh7WfZHsV_WAN6q7l8C6mE1ugn-vW-G3-FHuauYf1o693xri1nCiCwGsuXUnZHZgVCDuK2SaJixxOq3E7y0O6UDUSjB5LpLDy9QOK5IXjvNJUn4OtNLH


Classification of FS methods

• Filter (single factor analysis)
– Assess the relevance of features only by looking at the essential 

properties of the data.

– Usually, calculate the feature relevance score and remove low-
scoring features.

• Wrapper
– Bundle the search for best model with the FS.

– Generate and evaluate various subsets of features. The 
evaluation is obtained by training and testing a specific ML 
model.

• Embedded
– Embedded methods learn which features best contribute to the 

accuracy of the model while the model is being created. The 
most common type of embedded feature selection methods are 
regularization methods.



Filter methods
•  Filter methods are generally used as a 

preprocessing step. The selection of features is 

independent of any machine learning 

algorithms.

• Two steps (score-and-filter approach)

1. assess each feature individually for its potential 

in discriminating among classes in the data

2. features falling beyond threshold are eliminated



Wrappers

• Search for the best feature subset in 

combination with a fixed classification 

method.

• The goodness of a feature subset is determined 

using cross-validation (k-fold, LOOCV) Leave-one-out 

cross-validation



Embedded

Some of the most popular examples of these methods are LASSO and RIDGE 

regression which have inbuilt penalization functions to reduce over fitting.

Lasso regression performs L1 regularization which adds penalty 

equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty 

equivalent to square of the magnitude of coefficients.



Choosing the best model









➢ Deep learning is a particular kind of machine 
learning that achieves great power and flexibility by 
learning to represent the world as nested hierarchy 
of concepts, with each concept defined in relation to 
simpler concepts, and more abstract representations 
computed in terms of less abstract ones.

➢ Learning deep (many layered) neural networks 

➢ The more layers in a Neural Network, the more 
abstract features can be represented 

        

Deep Learning definition



Deep Learning definition

E.g. Classify a cat: 
 – Bottom Layers: Edge detectors, curves, corners straight lines 
 – Middle Layers: Fur patterns, eyes, ears 
 – Higher Layers: Body, head, legs 
 – Top Layer: Cat or Dog



Machine Learning  VS Deep Learning

1- Data Dependency
    - Deep learning need large amount of data to understand it perfectly

        



Machine Learning  VS Deep Learning

2- Hardware Dependency
    - Deep learning algorithms heavily depend on high-end     

        machines This is because the requirements of deep learning 
        algorithm include GPUs which are an integral part of its working.
      - Machine Learning which can work on low-end machines.

3- Execution time
 - deep learning algorithm takes a long time to train. This is because 

there are so many parameters in a deep learning algorithm that training 
them takes longer than usual.
  



Machine Learning  VS Deep Learning

4- Feature engineering
    - Deep learning algorithms try to learn high-level features from data.

      - Machine Learning which can work on low-end machines.
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Activation Function types

ReLU Softplus

Sigmoid/logistic Tanh

Binary Signum

Softmax



Vanilla 
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Neural Network  training steps

Weight Initialization

Inputs Application

Sum of inputs - Weights product

Activation functions

Weights Adaptations

Back to step 2

1
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3

4

5

6



0  ≤ α ≤  10  ≤  ≤  1Learning Rate 

First method:

Regarding 5th  step: Weights Adaptation



second method: Back propagation

Regarding 5th  step: Weights Adaptation
Feedforward
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Backward

▪ Fowrward VS Backword passes

Fowrward Input 
weights

backward

SOP
Prediction 

Output
Prediction 

Error

Prediction 
Error

Prediction 
Output

SOP
Input 

weights

The Backpropagation algorithm is a sensible 

approach for dividing the contribution of each 

weight.



second method: Back propagation

Regarding 5th  step: Weights Adaptation

▪ Backword pass

What is the change in prediction Error (E) given the change in weight (W) ?
        Get partial derivative of  E  W.R.T W

W
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second method: Back propagation

Regarding 5th  step: Weights Adaptation

▪ Weight derivative
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Chain Rule
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second method: Back propagation

Regarding 5th  step: Weights Adaptation

▪ Weight derivative
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second method: Back propagation

Regarding 5th  step: Weights Adaptation

▪ interpreting derivatives
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second method: Back propagation

Regarding 5th  step: Weights Adaptation

▪ Update the Weights

In order to update the weights , use the Gradient Descent

f(w)

w

+ slop

Wnew= Wold - (+ve)

f(w)

w

- slop

Wnew= Wold - (-ve)



Convolution Neural Network
CNN



➢ Convolutional neural networks (or convnets for short) are used in 
situations where data can be expressed as a "map" wherein the 
proximity between two data points indicates how related they are.
 
 
➢ Convnets contain one or more of each of the following layers:

1. convolution layer
2. ReLU (rectified linear units) layer (element wise threshold)
3. pooling layer
4. fully connected layer
5. loss layer (during the training process)

introduction







1- Convolution layer
a convnet processes an image using a matrix of weights called filters (or 
features) that detect specific attributes such as diagonal edges, vertical 
edges, etc. Moreover, as the image progresses through each layer, the 
filters are able to recognize more complex attributes.



The convolution layer is always the first step in a convnet. Let's say 
we have a 10 x 10 pixel image, here represented by a 10 x 10 x 1 
matrix of numbers:

Convolution layer















stride



•The ReLU (short for rectified linear units) layer commonly follows the 
convolution layer.

• The addition of the ReLU layer allows the neural network to account 
for non-linear relationships, i.e. the ReLU layer allows the convnet to 
account for situations in which the relationship between the pixel value 
inputs and the convnet output is not linear.

• the convolution operation is a linear one. y = w1x1 +w2x2 + w3x3 + ...

• The ReLU function takes a value x and returns 0 if x is negative 
and x if x is positive.  

2- ReLU Layer f(x) = max(0,x)



2- ReLU Layer f(x) = max(0,x)

Other functions such as tanh or the sigmoid function can 
be used to add non-linearity to the network, but ReLU 
generally works better in practice.



3- Pooling layer
• the pooling layer makes the convnet less sensitive to small changes in 
the location of a feature
• Pooling also reduces the size of the feature map, thus simplifying 
computation in later layers.





4- fully connected NN + loss layers 

The fully-connected layer is where the final "decision" is made.







Recurrent Neural Network
RNN

Learning sequences



RNN VS Vanilla
Vanilla 

 

• pass all input in the same time
• inputs are  independent in each other
• fixed input and fixed output 
•using different parameters with different layers in the network



Motivation

Image 
classification

Image 
captioning

Sentiment 
analysis

Machine 
translation

Synced sequence(video 
classification)



RNN architecture
▪ RNNs are called recurrent because 
they perform the same task for every 
element of a sequence, with the 
output being depended on the 
previous computations (memory).

▪ Inputs x(t) outputs y(t) hidden state 
s(t) the memory of the network
A delay unit is introduced to hold 
activation until they are processed at 
the next step.

▪ The decision a recurrent net reached at time step t-1 affects the 
decision it will reach one moment later at time step t. So recurrent 
networks have two sources of input, the present and the recent past, 
which combine to determine how they respond to new data



RNN Architecture

 The recurrent network can be converted into a feed forward 
network by unfolding over time



Vanishing Gradients

long-term dependencies 



Recurrent NN - LSTM

The basic unit in the hidden layer of an LSTM network is a memory 
block, it replaces the hidden unit in a traditional RNN. A memory block 
contains one or more memory cell and a pair of adaptive multiplicative 
gating units which gates input and output to all cells in the block. 
Memory blocks allow cells to share the same gates thus reducing the 
number of parameters. Each cell has in its core a recurrently self 
connected linear unit called the “Constant error carousel” whose 
activation we call the cell state.



Natural Language Processing 
Tasks



1- Automatic Summarization

the process of shortening a text document 
with software, in order to create a summary with 
the major points of the original document.

There are two methods
 
1-extracting sentences or parts thereof from the original text
2- generating abstract summaries.

Tools- The Python library sumy,



2- Co reference resolution

Coreference resolution is the task of finding all 
expressions that refer to the same entity in a text.

Tools- The Apache OpenNLP

tokenization, sentence segmentation, part-of-speech tagging, named entity 
extraction, chunking, parsing, and co reference resolution.



3- Named Entity Recognition

Named-entity recognition (NER) (also known as entity 
identification, entity chunking and entity extraction) is a subtask 
of information extraction that seeks to locate and classify named 
entities in text into pre-defined categories such as

Tools- The Apache OpenNLP

• number
•Device
•Jop
•Car
•Cell Phone

•person names
• company/organization names 
• locations 
• dates & time
• percentages
• monetary amounts (Currency)



4- Sentiment analysis

The task of finding the opinions of authors about specific entities.

Sentiment Analysis Problem

An opinion is a quintuple
  (      ,    ,         ,       ,    ) O F S_P OH T

Object

Feature

Subjectivity or Polarity classification

Opinion Holder

Time



https://github.com/Kyubyong
/nlp_tasks#coreference-

resolution





Concepts

Unit (Neurons)

A unit often refers to the activation 
function in a layer by which the 
inputs are transformed via a 
nonlinear activation function (for 
example by the logistic sigmoid 
function). Usually, a unit has 
several incoming connections and 
several outgoing connections.

Input Layer Comprised of multiple Real-Valued inputs. Each input 
must be linearly independent from each other.

Hidden Layers

Layers other than the input and 
output layers. A layer is the 
highest-level building block in 
deep learning. A layer is a 
container that usually receives 
weighted input, transforms it with 
a set of mostly non-linear 
functions and then passes these 
values as output to the next 
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in 
several ways. First, the gradient of the loss over a mini-batch is an estimate of the 
gradient over the training set, whose quality improves as the batch size increases. 
Second, computation over a batch can be much more efficient than m computations for 
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and 
at each step we consider a mini- batch x1...m 
of size m. The mini-batch is used to approx- 
imate the gradient of the loss function with 
respect to the parameters.

Cost/Loss(Min) 
Objective(Max) 
Functions

Maximum 
Likelihood 
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares 
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ, 
given outcomes x, is equal to the probability (density) assumed for those 
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the 
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same 
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood 
estimation and related techniques.

In general, for a fixed set of data and underlying 
statistical model, the method of maximum likelihood 
selects the set of values of the model parameters that 
maximizes the likelihood function. Intuitively, this 
maximizes the "agreement" of the selected model with 
the observed data, and for discrete random variables it 
indeed maximizes the probability of the observed data 
under the resulting distribution. Maximum-likelihood 
estimation gives a unified approach to estimation, 
which is well-defined in the case of the normal 
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss 
function in machine learning and optimization. 
The true probability pi is the true label, and 
the given distribution qi  is the predicted value 
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when 
using least squares techniques. It is often more mathematically 
tractable than other loss functions because of the properties of 
variances, as well as being symmetric: an error above the target 
causes the same loss as the same magnitude of error below the target. 
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently 
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for 
training classifiers. For an intended output t = 
±1 and a classifier score y, the hinge loss of 
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between 
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of 
measure theory, let P and Q denote two 
probability measures that are absolutely 

continuous with respect to a third probability 
measure λ. The square of the Hellinger 

distance between P and Q is defined as the 
quantity

Kullback-Leibler Divengence

Is a measure of how one probability 
distribution diverges from a second expected 
probability distribution. Applications include 
characterizing the relative (Shannon) entropy 
in information systems, randomness in 
continuous time-series, and information gain 
when comparing statistical models of 
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an 
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a 
perceptual measure, it is intended to reflect 
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Regularization

L1 norm Manhattan Distance

L1-norm is also known as least absolute 
deviations (LAD), least absolute errors (LAE). It 
is basically minimizing the sum of the 
absolute differences (S) between the target 
value and the estimated values.

L2 norm Euclidean Distance
L2-norm is also known as least squares. It is 
basically minimizing the sum of the square of 
the differences (S) between the target value 
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be 
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing 
complex co-adaptations on training data. It is a very efficient way of performing model 
averaging with neural networks. The term "dropout" refers to dropping out units (both 
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each 
column and an L1 norm over all columns. It 
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to 
the overall average of the functions across all tasks. This is useful for 
expressing prior information that each task is expected to share similarities 
with each other task. An example is predicting blood iron levels measured at 
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces 
similarity between tasks within the same 
cluster. This can capture more complex prior 
information. This technique has been used to 
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between 
tasks can be defined by a function. The 
regularizer encourages the model to learn 
similar functions for similar tasks.

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data 
normalization it is reasonable to assume that 
approximately half of the weights will be 
positive and half of them will be negative. A 
reasonable-sounding idea then might be to 
set all the initial weights to zero, which you 
expect to be the “best guess” in expectation. 

But, this turns out to be a mistake, because if 
every neuron in the network computes the 
same output, then they will also all compute 
the same gradients during back-propagation 
and undergo the exact same parameter 
updates. In other words, there is no source of 
asymmetry between neurons if their weights 
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very 
close to zero, but not identically zero. In this 
way, you can random these neurons to small 
numbers which are very close to zero, and it is 
treated as symmetry breaking. The idea is that 
the neurons are all random and unique in the 
beginning, so they will compute distinct 
updates and integrate themselves as diverse 
parts of the full network.

The implementation for weights might simply 
drawing values from a normal distribution with 
zero mean, and unit standard deviation. It is 
also possible to use small numbers drawn 
from a uniform distribution, but this seems to 
have relatively little impact on the final 
performance in practice.

Calibrating the Variances

One problem with the above suggestion is 
that the distribution of the outputs from a 
randomly initialized neuron has a variance that 
grows with the number of inputs. It turns out 
that you can normalize the variance of each 
neuron's output to 1 by scaling its weight 
vector by the square root of its fan-in (i.e., its 
number of inputs)

This ensures that all neurons in the network 
initially have approximately the same output 
distribution and empirically improves the rate 
of convergence. The detailed derivations can 
be found from Page. 18 to 23 of the slides. 
Please note that, in the derivations, it does 
not consider the influence of ReLU neurons.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

AdagradAdaptive learning rates for each parameter

Learning Rate

Neural networks are often trained by gradient 
descent on the weights. This means at each 
iteration we use backpropagation to calculate 
the derivative of the loss function with respect 
to each weight and subtract it from that 
weight. 

However, if you actually try that, the weights 
will change far too much each iteration, which 
will make them “overcorrect” and the loss will 
actually increase/diverge. So in practice, 
people usually multiply each derivative by a 
small value called the “learning rate” before 
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the 
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical 
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration 
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Backpropagation

Is a method used in artificial neural networks to 
calculate the error contribution of each neuron 
after a batch of data. It calculates the gradient 
of the loss function. It is commonly used in the 
gradient descent optimization algorithm. It is 
also called backward propagation of errors, 
because the error is calculated at the output 
and distributed back through the network 
layers.Neural Network taking 4 dimension vector 

representation of words.

In this method, we reuse partial derivatives 
computed for higher layers in lower layers, for 
efficiency. 

Intuition for backpropagation

Simple Example (Circuits)Another Example (Circuits)

Simple Example (Flowgraphs)

Activation Functions

Defines the output of that node given an input 
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity


Architectures Strategy

1. Select Network Structure appropriate for 
problem

Structure: Single words, fixed windows, 
sentence based, document level; bag of 
words, recursive vs. recurrent, CNN

Nonlinearity (Activation Functions)

2. Check for implementation bugs with 
gradient checks

1. Implement your gradient

2. Implement a finite difference computation 
by looping through the parameters of your 
network, adding and subtracting a small 
epsilon ( 10-4) and estimate derivatives

3. Compare the two and make sure they are 
almost the same

Using Gradient Checks

If you gradient fails and you don’t know why?
Simplify your model until you have no bug!

What now? Create a very tiny synthetic model 
and dataset

Example: Start from simplest model then go 
to what you want:

Only softmax on fixed input

Backprop into word vectors and softmax

Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add multiple 
units, bias • Add one softmax on top, then 
two softmax layers

Add bias

3. Parameter initialization

Initialize hidden layer biases to 0 and output 
(or reconstruction) biases to optimal value if 
weights were 0 (e.g., mean target or inverse 
sigmoid of mean target).

Initialize weights  Uniform(−r, r), r inversely 
proportional to fan-in (previous layer size) and 
fan-out (next layer size):

4. Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Ordinary gradient descent as a batch method 
is very slow, should never be used. Use 2nd 
order batch method such as L-BFGS.

On large datasets, SGD usually wins over all 
batch methods. On smaller datasets L-BFGS 
or Conjugate Gradients win. Large-batch L-
BFGS extends the reach of L-BFGS [Le et al. 
ICML 2011].

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Most commonly used now, Size of each mini 
batch B: 20 to 1000

Helps parallelizing any model by computing 
gradients for multiple elements of the batch in 
parallel

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

Reduce global learning rate when using a lot 
of momentum

Update Rule
v is initialized at 0

Momentum often increased after some 
epochs (0.5 à 0.99)

Adagrad

Adaptive learning rates for each parameter!

Learning rate is adapting differently for each 
parameter and rare parameters get larger 
updates than frequently occurring parameters. 
Word vectors!

5. Check if the model is powerful enough to 
overfit

If not, change model structure or make model “larger”

If you can overfit: Regularize to prevent 
overfitting:

Simple first step: Reduce model size by 
lowering number of units and layers and other 
parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave 
best validation error

Sparsity constraints on hidden activations, 
e.g., add to cost:

Dropout

Training time: at each instance of evaluation 
(in online SGD-training), randomly set 50% of 
the inputs to each neuron to 0

Test time: halve the model weights (now twice 
as many) This prevents feature co-adaptation: 
A feature cannot only be useful in the 
presence of particular other features

In a single layer: A kind of middle-ground 
between Naïve Bayes (where all feature 
weights are set independently) and logistic 
regression models (where weights are set in 
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

RNNs (Recursive)

Is a kind of deep neural 
network created by applying 
the same set of weights 
recursively over a structure, to 
produce a structured prediction 
over variable-size input 
structures, or a scalar 
prediction on it, by traversing a 
given structure in topological 
order.

RNNs have been successful for instance in 
learning sequence and tree structures in 
natural language processing, mainly phrase 
and sentence continuous representations 
based on word embedding.

RNNs (Recurrent)
Is a class of artificial neural network where connections between units form a 
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike 
feedforward neural networks, RNNs can use their internal memory to process 
arbitrary sequences of inputs. 

This makes them applicable to tasks such as 
unsegmented, connected handwriting recognition or 
speech recognition.

Convolutional Neural Networks (CNN)

They have applications in image and video 
recognition, recommender systems and 
natural language processing.

Pooling

Convolution

Subsampling

Auto-Encoders

Is an artificial neural network used for unsupervised 
learning of efficient codings.

The aim of an autoencoder 
is to learn a representation 
(encoding) for a set of data, 
typically for the purpose of 
dimensionality reduction. 
Recently, the autoencoder 
concept has become more 
widely used for learning 
generative models of data.

GANs

GANs or Generative 
Adversarial Networks are a 
class of artificial intelligence 
algorithms used in 
unsupervised machine 
learning, implemented by a 
system of two neural networks 
contesting with each other in a 
zero-sum game framework.

LSTMs

Long short-term memory - It is a type of recurrent (RNN), allowing 
data to flow both forwards and backwards within the network.

An LSTM is well-suited to learn from 
experience to classify, process and predict 
time series given time lags of unknown size 
and bound between important events. 
Relative insensitivity to gap length gives an 
advantage to LSTM over alternative RNNs, 
hidden Markov models and other sequence 
learning methods in numerous applications.

Feed Forward

Is an artificial neural network wherein connections between the units do not form a 
cycle. In this network, the information moves in only one direction, forward, from the 
input nodes, through the hidden nodes (if any) and to the output nodes. There are no 
cycles or loops in the network.

Kinds

Single-Layer Perceptron

The inputs are fed directly to the outputs via a 
series of weights. By adding an Logistic 
activation function to the outputs, the model 
is identical to a classical Logistic Regression 
model.

Multi-Layer Perceptron

This class of networks consists of multiple 
layers of computational units, usually 
interconnected in a feed-forward way. Each 
neuron in one layer has directed connections 
to the neurons of the subsequent layer. In 
many applications the units of these networks 
apply a sigmoid function as an activation 
function.



Tensorflow

Packages

tf Main Steps

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

4. Define the Session and Initialise Variables

5. Train the Model

6. Test Trained Model

tf.estimator

TensorFlow’s high-level machine learning API 
(tf.estimator) makes it easy to configure, train, and 
evaluate a variety of machine learning models.

tf.estimator.LinearClassifier: Constructs a linear classification model.

tf.estimator.LinearRegressor: Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimator.DNNRegressor: Construct a neural network regression model.

tf.estimator.DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

tf.estimator.DNNRegressor: Construct a neural network and linear combined regression model.

Main Steps

1. Define Feature Columns 

FeatureColumns are the primary way of 
encoding features for pre-canned tf.learn 
Estimators.

Categorical Numerical

When using FeatureColumns with tf.learn 
models, the type of feature column you 
should choose depends on the feature type 
and  the model type.

Continuous Features Can be represented by real_valued_column

Categorical Features

Can be represented by any 
sparse_column_with_* column 
(sparse_column_with_keys, 
sparse_column_with_vocabulary_file, 
sparse_column_with_hash_bucket, 
sparse_column_with_integerized_feature

2. Define your Layers, or use a prebuilt model

Using a pre-built Logistic Regression 
Classifier

3. Write the input_fn function This function holds the actual data (features 
and labels). Features is a python dictionary.

4. Train the model
Using the fit function, on the input_fn. Notice 
that the feature columns are fed to the model 
as arguments.

5. Predict and Evaluate Using the eval_input_fn defined previously.

Comparison to Numpy

Does lazy evaluation. Need to build the 
graph, and then run it in a session.

Main Components

Variables

Stateful nodes that output their current value, 
their state is retained across multiple 
executions of the graph.

Mostly Parameters we’re interested in tuning, 
such as Weights (W) and Biases (b).

Sharing

Variables can be shared by Explicitly passing 
tf.Variable objects around, or...

Implicitly wrapping tf.Variable objects within 
tf.variable_scope objects.Scopes

tf.variable_scope()

Provides simple name spacing to avoid cases 
when querying

tf.get_variable()Creates/Access variables from a variable 
scope

Placeholders
Nodes whose value is fed at execution time.

Inputs, Features (X) and Labels (y)

Mathematical 
OperationsMatMul, Add, ReLU, etc.

Graph
NodesThey are Operations, containing any number 

of inputs and outputs.

EdgesThe tensors that flow between the nodes.

Session

It a binding to a particular execution context: CPU, GPU.

Running a SessionInputs

FetchesList of graph nodes. Returns the output of 
these nodes.

Feeds

Dictionary mapping from graph nodes to 
concrete values.

Specified the value of each graph node given 
in the dictionary.

Phases

1. Construction

Assembles a computational graph

The computation graph has no numerical 
value until evaluated. 

All computations add nodes to global default graph

2. Execution

A Session object encapsulates the environment 
in which Tensor objects are evaluated

Uses a session to execute ops in the graph

Declared variables must be initialised before 
they have values.

When you train a model you use variables to hold and update 
parameters. Variables are in-memory buffers containing tensors.

TensorboardTensorFlow has some neat built-in visualization tools (TensorBoard).

Intuition

TensorFlow is a deep learning library recently open-sourced by 
Google. It provides primitives for defining functions on tensors and 
automatically computing their derivatives, expressed as a graph.

The Tensorflow Graph is build to contain all placeholders for X and y, 
all variables for W’s and b’s, all mathematical operations, the cost 
function, and the optimisation procedure. Then, at runtime, the values 
for the data are fed into that Graph, by placing the data batches in 
the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node 
over the network, and thus running Tensorflow models can be 
parallelised.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor


Machine Learning Process

Data

Find

Collect

Explore

Clean Features

Impute Features

Engineer Features

Select Features

Encode Features

Build Datasets
Machine Learning is math. In specific, 
performing Linear Algebra on Matrices. Our 
data values must be numeric.

Model Select Algorithm based on question and 
data available

Cost Function

The cost function will provide a measure of how far my algorithm and 
its parameters are from accurately representing my training data.

Sometimes referred to as Cost or Loss function when the goal is to 
minimise it, or Objective function when the goal is to maximise it.

Optimization
Having selected a cost function, we need a method to minimise the Cost function, or 
maximise the Objective function. Typically this is done by Gradient Descent or Stochastic 
Gradient Descent.

Tuning
Different Algorithms have different Hyperparameters, which will affect the 
algorithms performance. There are multiple methods for Hyperparameter 
Tuning, such as Grid and Random search.

Results and Benchmarking

Analyse the performance of each algorithms and 
discuss results.

Are the results good enough for 
production?

Is the ML algorithm training 
and inference completing in a 
reasonable timeframe?

Scaling How does my algorithm scales for both training and inference?

Deployment and 
Operationalisation

How can feature manipulation be done for training and 
inference in real-time?

How to make sure that the algorithm is retrained 
periodically and deployed into production?

How will the ML algorithms be integrated with 
other systems?

Infrastructure

Can the infrastructure running the machine learning process scale?

How is access to the ML algorithm provided? REST API? 
SDK?

Is the infrastructure adapter to the algorithm 
we are running? Should GPU’s be considered 
rather than CPUs’?

Direction

SaaS - Pre-built Machine Learning models

Google Cloud

Vision API

Speech API

Jobs API

Video Intelligence API

Language API

Translation API

AWS

Rekognition

Lex

Polly

… many others

Data Science and Applied Machine 
Learning

Google CloudML Engine

AWSAmazon Machine Learning

Tools: Jupiter / Datalab / Zeppelin

… many others

Machine Learning Research

Tensorflow

MXNet

Torch

… many others

Question

Is this A or B?Classification

How much, or how many of these? Regression

Is this anomalous?Anomaly Detection

How can these elements be grouped?Clustering

What should I do now?Reinforcement Learning



Machine Learning Data 
Processing

Feature Selection

Correlation
Features should be uncorrelated with each other and highly 
correlated to the feature we’re trying to predict.

Covariance

A measure of how much two random variables change 
together.  Math: dot(de_mean(x), de_mean(y)) / (n - 1)

Dimensionality Reduction

Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to 
convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated 
variables called principal components. This transformation is defined in such a way that the first principal 
component has the largest possible variance (that is, accounts for as much of the variability in the data as 
possible), and each succeeding component in turn has the highest variance possible under the constraint that 
it is orthogonal to the preceding components.

Plot the variance per feature and select the 
features with the largest variance.

Singular Value Decomposition (SVD)
SVD is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition 
of a positive semidefinite normal matrix (for example, a symmetric matrix with positive eigenvalues) to 
any m×n  matrix via an extension of the polar decomposition. It has many useful applications in signal 
processing and statistics.

Importance

Filter Methods

Filter type methods select features based only on general metrics like the 
correlation with the variable to predict. Filter methods suppress the least 
interesting variables. The other variables will be part of a classification or a 
regression model used to classify or to predict data. These methods are 
particularly effective in computation time and robust to overfitting.

Correlation

Linear Discriminant Analysis

ANOVA: Analysis of Variance

Chi-Square

Wrapper Methods

Wrapper methods evaluate subsets of variables which allows, unlike 
filter approaches, to detect the possible interactions between 
variables. The two main disadvantages of these methods are : The 
increasing overfitting risk when the number of observations is 
insufficient. AND. The significant computation time when the 
number of variables is large.

Forward Selection

Backward Elimination

Recursive Feature Ellimination

Genetic Algorithms

Embedded Methods
Embedded methods try to combine the advantages of both previous 
methods. A learning algorithm takes advantage of its own variable 
selection process and performs feature selection and classification 
simultaneously.

Lasso regression performs L1 regularization which adds penalty 
equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty 
equivalent to square of the magnitude of coefficients.

Feature Encoding

Machine Learning algorithms perform Linear Algebra on Matrices, which means all features 
must be numeric. Encoding helps us do this.

Label Encoding One Hot Encoding

In One Hot Encoding, make sure the 
encodings are done in a way that all features 
are linearly independent.

Feature Normalisation 
or Scaling

Since the range of values of raw data varies widely, in some machine learning 
algorithms, objective functions will not work properly without normalization. 
Another reason why feature scaling is applied is that gradient descent converges 
much faster with feature scaling than without it.

Methods

Rescaling The simplest method is rescaling the range of 
features to scale the range in [0, 1] or [−1, 1].

Standardization
Feature standardization makes the values of each 
feature in the data have zero-mean (when subtracting 
the mean in the numerator) and unit-variance.

Scaling to unit length To scale the components of a feature vector 
such that the complete vector has length one.

Dataset Construction

Training Dataset A set of examples used for 
learning

To fit the parameters of the classifier in the 
Multilayer Perceptron, for instance, we would 
use the training set to find the “optimal” 
weights when using back-progapation.

Test Dataset A set of examples used only to assess the 
performance of a fully-trained classifier

In the Multilayer Perceptron case, we would use the test to 
estimate the error rate after we have chosen the final model (MLP 
size and actual weights) After assessing the final model on the test 
set, YOU MUST NOT tune the model any further.

Validation Dataset A set of examples used to tune the 
parameters of a classifier

In the Multilayer Perceptron case, we would use the validation 
set to find the “optimal” number of hidden units or determine a 
stopping point for the back-propagation algorithm

Cross Validation
One round of cross-validation involves partitioning a sample of data into complementary subsets, 
performing the analysis on one subset (called the training set), and validating the analysis on the other 
subset (called the validation set or testing set). To reduce variability, multiple rounds of cross-validation 
are performed using different partitions, and the validation results are averaged over the rounds.

Feature Engineering

DecomposeConverting 2014-09-20T20:45:40Z into categorical 
attributes like hour_of_the_day, part_of_day, etc.

Discretization
Continuous Features

Typically data is discretized into partitions of K 
equal lengths/width (equal intervals) or K% of 
the total data (equal frequencies).

Categorical FeaturesValues for categorical features may be combined, particularly 
when there’s few samples for some categories.

Reframe Numerical QuantitiesChanging from grams to kg, and losing detail might 
be both wanted and efficient for calculation

Crossing
Creating new features as a combination of existing features. Could be 
multiplying numerical features, or combining categorical variables. This is a 
great way to add domain expertise knowledge to the dataset.

Feature Imputation

Hot-DeckThe technique then finds the first missing value and uses the cell value 
immediately prior to the data that are missing to impute the missing value.

Cold-DeckSelects donors from another dataset to complete missing data.

Mean-substitutionAnother imputation technique involves replacing any missing value with the mean of that variable 
for all other cases, which has the benefit of not changing the sample mean for that variable.

RegressionA regression model is estimated to predict observed values of a variable based on other 
variables, and that model is then used to impute values in cases where that variable is missing

Some Libraries...

Feature Cleaning

Missing valuesOne may choose to either omit elements from a dataset 
that contain missing values or to impute a value

Special valuesNumeric variables are endowed with several formalized special values including ±Inf, NA and NaN. 
Calculations involving special values often result in special values, and need to be handled/cleaned

OutliersThey should be detected, but not necessarily removed. Their 
inclusion in the analysis is a statistical decision.

Obvious inconsistenciesA person's age cannot be negative, a man cannot be pregnant 
and an under-aged person cannot possess a drivers license.

Data Exploration

Variable IdentificationIdentify Predictor (Input) and Target (output) variables. Next, 
identify the data type and category of the variables.

Univariate Analysis
Continuous Features

Mean, Median, Mode, Min, Max, Range, 
Quartile, IQR, Variance, Standard Deviation, 
Skewness, Histogram, Box Plot

Categorical FeaturesFrequency, Histogram

Bi-variate Analysis

Finds out the relationship between two variables. 

Scatter Plot

Correlation Plot - Heatmap

Two-way table
We can start analyzing the relationship by 
creating a two-way table of count and 
count%.

Stacked Column Chart

Chi-Square Test
This test is used to derive the statistical 
significance of relationship between the 
variables.

Z-Test/ T-Test

ANOVA

Data Types

Nominal -  is for mutual exclusive, but not ordered, categories.

Ordinal - is one where the order matters but not the difference between values.

Interval - is a measurement where the difference between two values is meaningful.

Ratio - has all the properties of an interval variable, and also has a clear definition of 0.0.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Gradient_descent


Machine Learning 
Concepts

Types

Regression A supervised problem, the outputs are continuous rather than discrete.

Classification
Inputs are divided into two or more classes, and the learner must produce a 
model that assigns unseen inputs to one or more (multi-label classification) of 
these classes. This is typically tackled in a supervised way.

Clustering
A set of inputs is to be divided into groups. 
Unlike in classification, the groups are not 
known beforehand, making this typically an 
unsupervised task.

Density Estimation Finds the distribution of inputs in some space.

Dimensionality Reduction Simplifies inputs by mapping them into a 
lower-dimensional space.

Kind

Parametric

Step 1: Making an assumption about the functional form or shape 
of our function (f), i.e.: f is linear, thus we will select a linear model.

Step 2: Selecting a procedure to fit or train our model. This means 
estimating the Beta parameters in the linear function. A common 
approach is the (ordinary) least squares, amongst others.

Non-Parametric
When we do not make assumptions about the form of our function (f). However, 
since these methods do not reduce the problem of estimating f to a small number 
of parameters, a large number of observations is required in order to obtain an 
accurate estimate for f. An example would be the thin-plate spline model.

Categories

Supervised
The computer is presented with example inputs and their 
desired outputs, given by a "teacher", and the goal is to learn a 
general rule that maps inputs to outputs.

Unsupervised
No labels are given to the learning algorithm, leaving it on its 
own to find structure in its input. Unsupervised learning can be a 
goal in itself (discovering hidden patterns in data) or a means 
towards an end (feature learning).

Reinforcement Learning
A computer program interacts with a dynamic environment in which it must 
perform a certain goal (such as driving a vehicle or playing a game against an 
opponent). The program is provided feedback in terms of rewards and 
punishments as it navigates its problem space.

Approaches

Decision tree learning

Association rule learning

Artificial neural networks

Deep learning

Inductive logic programming

Support vector machines

Clustering

Bayesian networks

Reinforcement learning

Representation learning

Similarity and metric learning

Sparse dictionary learning

Genetic algorithms

Rule-based machine learning

Learning classifier systems

Taxonomy

Generative Methods

Model class-conditional pdfs and prior 
probabilities. “Generative” since sampling can 
generate synthetic data points.

Popular models

Gaussians, Naïve Bayes, Mixtures of multinomials

Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)

Sigmoidal belief networks, Bayesian networks, Markov random fields

Discriminative Methods

Directly estimate posterior probabilities. No 
attempt to model underlying probability 
distributions. Focus computational resources 
on given task– better performance

Popular Models

Logistic regression, SVMs

Traditional neural networks, Nearest neighbor

Conditional Random Fields (CRF)

Selection Criteria
Prediction 
Accuracy vs Model 
Interpretability

There is an inherent tradeoff between Prediction Accuracy and Model Interpretability, 
that is to say that as the model get more flexible in the way the function (f) is selected, 
they get obscured, and are hard to interpret. Flexible methods are better for 
inference, and inflexible methods are preferable for prediction.

Libraries Python

Numpy
Adds support for large, multi-dimensional arrays and matrices, 
along with a large library of high-level mathematical functions 
to operate on these arrays

Pandas Offers data structures and operations for manipulating numerical tables and time series

Scikit-Learn
It features various classification, regression and clustering algorithms 
including support vector machines, random forests, gradient boosting, k-
means and DBSCAN, and is designed to interoperate with the Python 
numerical and scientific libraries NumPy and SciPy.

Tensorflow

Components Does lazy evaluation. Need to build the 
graph, and then run it in a session.

MXNet
Is an modern open-source deep learning framework used to train, and deploy deep neural 
networks. MXNet library is portable and can scale to multiple GPUs and multiple machines. 
MXNet is supported by major Public Cloud providers including AWS and Azure. Amazon has 
chosen MXNet as its deep learning framework of choice at AWS.

Keras
Is an open source neural network library written in Python. It is capable of running on top of MXNet, 
Deeplearning4j, Tensorflow, CNTK or Theano. Designed to enable fast experimentation with deep neural 
networks, it focuses on being minimal, modular and extensible.

Torch
Torch is an open source machine learning library, a scientific computing framework, and a script 
language based on the Lua programming language. It provides a wide range of algorithms for deep 
machine learning, and uses the scripting language LuaJIT, and an underlying C implementation.

Microsoft Cognitive Toolkit
Previously known as CNTK and sometimes styled as The Microsoft Cognitive 
Toolkit, is a deep learning framework developed by Microsoft Research. 
Microsoft Cognitive Toolkit describes neural networks as a series of 
computational steps via a directed graph.

Tuning

Cross-validation

One round of cross-validation involves partitioning a sample of data into complementary subsets, 
performing the analysis on one subset (called the training set), and validating the analysis on the 
other subset (called the validation set or testing set). To reduce variability, multiple rounds of 
cross-validation are performed using different partitions, and the validation results are averaged 
over the rounds.

Methods

Leave-p-out cross-validation

Leave-one-out cross-validation

k-fold cross-validation

Holdout method

Repeated random sub-sampling validation

Hyperparameters

Grid Search

The traditional way of performing hyperparameter optimization has 
been grid search, or a parameter sweep, which is simply an exhaustive 
searching through a manually specified subset of the hyperparameter 
space of a learning algorithm. A grid search algorithm must be guided 
by some performance metric, typically measured by cross-validation 
on the training set or evaluation on a held-out validation set.

Random Search

Since grid searching is an exhaustive and therefore potentially 
expensive method, several alternatives have been proposed. In 
particular, a randomized search that simply samples parameter settings 
a fixed number of times has been found to be more effective in high-
dimensional spaces than exhaustive search.

Gradient-based optimization
For specific learning algorithms, it is possible to compute the gradient with respect to 
hyperparameters and then optimize the hyperparameters using gradient descent. The first 
usage of these techniques was focused on neural networks. Since then, these methods have 
been extended to other models such as support vector machines or logistic regression.

Early Stopping (Regularization)Early stopping rules provide guidance as to how many iterations can be 
run before the learner begins to over-fit, and stop the algorithm then.

Overfitting

When a given method yields a small training MSE (or cost), but a large test MSE (or cost), we are said to be overfitting 
the data. This happens because our statistical learning procedure is trying too hard to find pattens in the data, that 
might be due to random chance, rather than a property of our function. In other words, the algorithms may be 
learning the training data too well. If model underfits, try removing some features, decreasing degrees of freedom, or 
adding more data.

Underfitting
Opposite of Overfitting. Underfitting occurs when a statistical model or machine learning algorithm cannot 
capture the underlying trend of the data. It occurs when the model or algorithm does not fit the data enough. 
Underfitting occurs if the model or algorithm shows low variance but high bias (to contrast the opposite, 
overfitting from high variance and low bias). It is often a result of an excessively simple model.

Bootstrap
Test that applies Random Sampling with Replacement of the 
available data, and assigns measures of accuracy (bias, variance, 
etc.) to sample estimates.

Bagging 

An approach to ensemble learning that is based on bootstrapping. Shortly, given a training set, 
we produce multiple different training sets (called bootstrap samples), by sampling with 
replacement from the original dataset. Then, for each bootstrap sample, we build a model. The 
results in an ensemble of models, where each model votes with the equal weight. Typically, the 
goal of this procedure is to reduce the variance of the model of interest (e.g. decision trees).

Performance 
Analysis

Confusion Matrix

Accuracy
Fraction of correct predictions, not reliable as skewed when the 
data set is unbalanced (that is, when the number of samples in 
different classes vary greatly)

f1 score

Precision
Out of all the examples the classifier labeled as 
positive, what fraction were correct?

Recall
Out of all the positive examples there were, what 
fraction did the classifier pick up?

Harmonic Mean of Precision and Recall: (2 * p * r / (p + r))

ROC Curve - Receiver Operating 
Characteristics

True Positive Rate (Recall / Sensitivity) vs False Positive 
Rate (1-Specificity)

Bias-Variance Tradeoff

Bias refers to the amount of error that is introduced by approximating 
a real-life problem, which may be extremely complicated, by a simple 
model. If Bias is high, and/or if the algorithm performs poorly even on 
your training data, try adding more features, or a more flexible model.

Variance is the amount our model’s prediction would 
change when using a different training data set. High: 
Remove features, or obtain more data.

Goodness of Fit = R^21.0 - sum_of_squared_errors / total_sum_of_squares(y)

Mean Squared Error (MSE)

The mean squared error (MSE) or mean squared deviation 
(MSD) of an estimator (of a procedure for estimating an 
unobserved quantity) measures the average of the squares 
of the errors or deviations—that is, the difference between 
the estimator and what is estimated.

Error Rate
The proportion of mistakes made if we apply 
out estimate model function the the training 
observations in a classification setting.

Motivation

Prediction

When we are interested mainly in the predicted variable as a result of the inputs, but not 
on the each way of the inputs affect the prediction. In a real estate example, Prediction 
would answer the question of: Is my house over or under valued? Non-linear models are 
very good at these sort of predictions, but not great for inference because the models 
are much less interpretable.

Inference
When we are interested in the way each one of the inputs affect the prediction. In a real 
estate example, Prediction would answer the question of: How much would my house 
cost if it had a view of the sea? Linear models are more suited for inference because the 
models themselves are easier to understand than their non-linear counterparts.

https://en.wikipedia.org/wiki/Autonomous_car


Machine Learning 
Mathematics

Cost/Loss(Min) 
Objective(Max) 
Functions

Maximum 
Likelihood 
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares 
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ, 
given outcomes x, is equal to the probability (density) assumed for those 
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the 
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same 
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood 
estimation and related techniques.

In general, for a fixed set of data and underlying 
statistical model, the method of maximum likelihood 
selects the set of values of the model parameters that 
maximizes the likelihood function. Intuitively, this 
maximizes the "agreement" of the selected model with 
the observed data, and for discrete random variables it 
indeed maximizes the probability of the observed data 
under the resulting distribution. Maximum-likelihood 
estimation gives a unified approach to estimation, 
which is well-defined in the case of the normal 
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss 
function in machine learning and optimization. 
The true probability pi is the true label, and 
the given distribution qi  is the predicted value 
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when 
using least squares techniques. It is often more mathematically 
tractable than other loss functions because of the properties of 
variances, as well as being symmetric: an error above the target 
causes the same loss as the same magnitude of error below the target. 
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently 
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for 
training classifiers. For an intended output t = 
±1 and a classifier score y, the hinge loss of 
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between 
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of 
measure theory, let P and Q denote two 
probability measures that are absolutely 

continuous with respect to a third probability 
measure λ. The square of the Hellinger 

distance between P and Q is defined as the 
quantity

Kullback-Leibler Divengence

Is a measure of how one probability 
distribution diverges from a second expected 
probability distribution. Applications include 
characterizing the relative (Shannon) entropy 
in information systems, randomness in 
continuous time-series, and information gain 
when comparing statistical models of 
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an 
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a 
perceptual measure, it is intended to reflect 
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Probability Concepts

Frequentist vs Bayesian Probability

Frequentist Basic notion of probability: # Results / # Attempts

Bayesian The probability is not a number, but a distribution itself.

http://www.behind-the-enemy-lines.com/2008/01/are-you-bayesian-or-frequentist-or.html

Random Variable
In probability and statistics, a random variable, random quantity, aleatory variable or stochastic variable is 
a variable whose value is subject to variations due to chance (i.e. randomness, in a mathematical sense). A 
random variable can take on a set of possible different values (similarly to other mathematical variables), 
each with an associated probability, in contrast to other mathematical variables.

Expectation (Expected Value) of a Random Variable Same, for continuous variables

Independence
Two events are independent, statistically independent, 
or stochastically independent if the occurrence of one 
does not affect the probability of the other. 

Conditionality

Bayes Theorem (rule, law)

Simple Form

With Law of Total probability

Marginalisation

The marginal distribution of a subset of a collection 
of random variables is the probability distribution of 
the variables contained in the subset. It gives the 
probabilities of various values of the variables in the 
subset without reference to the values of the other 
variables. Continuous Discrete

Law of Total Probability
Is a fundamental rule relating marginal probabilities 
to conditional probabilities. It expresses the total 
probability of an outcome which can be realized 
via several distinct events - hence the name.

Chain Rule

Permits the calculation of any member of the joint distribution of a set of 
random variables using only conditional probabilities.

Bayesian Inference Bayesian inference derives the posterior probability as a consequence of two 
antecedents, a prior probability and a "likelihood function" derived from a statistical 
model for the observed data. Bayesian inference computes the posterior probability 
according to Bayes' theorem. It can be applied iteratively so to update the confidence on 
out hypothesis.

Distributions

Definition
Is a table or an equation that links each outcome of a statistical experiment 
with the probability of occurence. When Continuous, is is described by the 
Probability Density Function

Types (Density Function)

Normal (Gaussian)
Poisson

Uniform

Bernoulli

Gamma

Binomial

Cumulative Distribution Function (CDF)

Information Theory

Entropy

Entropy is a measure of 
unpredictability of information 
content.

To evaluate a language model, we should measure how much surprise it gives us for real sequences in that 
language. For each real word encountered, the language model will give a probability p. And we use -log(p) 
to quantify the surprise. And we average the total surprise over a long enough sequence. So, in case of a 
1000-letter sequence with 500 A and 500 B, the surprise given by the 1/3-2/3 model will be:
[-500*log(1/3) - 500*log(2/3)]/1000 = 1/2 * Log(9/2)
While the correct 1/2-1/2 model will give:
[-500*log(1/2) - 500*log(1/2)]/1000 = 1/2 * Log(8/2)
So, we can see, the 1/3, 2/3 model gives more surprise, which indicates it is worse than the correct model.
Only when the sequence is long enough, the average effect will mimic the expectation over the 1/2-1/2 
distribution. If the sequence is short, it won't give a convincing result.

Cross Entropy

Cross entropy between two probability distributions p and q  over the same underlying set of events measures the average number of 
bits needed to identify an event drawn from the set, if a coding scheme is used that is optimized for an "unnatural" probability 
distribution q, rather than the "true" distribution p.

Joint Entropy

Conditional Entropy

Mutual Information

Kullback-Leibler Divergence

Density Estimation

Mostly Non-Parametric. Parametric makes assumptions on my data/random-variables, 
for instance, that they are normally distributed. Non-parametric does not.

The methods are generally intended for description rather than formal inference

Methods

Kernel Density Estimation

non-negative

it’s a type of PDF that it is symmetric

real-valued

symmetric 

integral over function is equal to 1

non-parametric

calculates kernel distributions for every 
sample point, and then adds all the 
distributions

Uniform, Triangle, Quartic, Triweight, 
Gaussian, Cosine, others...

Cubic Spline
A cubic spline is a function created from cubic polynomials on each 
between-knot interval by pasting them together twice continuously 
differentiable at the knots.

Regularization

L1 normManhattan Distance

L1-norm is also known as least absolute 
deviations (LAD), least absolute errors (LAE). It 
is basically minimizing the sum of the 
absolute differences (S) between the target 
value and the estimated values.

L2 normEuclidean Distance
L2-norm is also known as least squares. It is 
basically minimizing the sum of the square of 
the differences (S) between the target value 
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be 
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing 
complex co-adaptations on training data. It is a very efficient way of performing model 
averaging with neural networks. The term "dropout" refers to dropping out units (both 
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each 
column and an L1 norm over all columns. It 
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to 
the overall average of the functions across all tasks. This is useful for 
expressing prior information that each task is expected to share similarities 
with each other task. An example is predicting blood iron levels measured at 
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces 
similarity between tasks within the same 
cluster. This can capture more complex prior 
information. This technique has been used to 
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between 
tasks can be defined by a function. The 
regularizer encourages the model to learn 
similar functions for similar tasks.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

AdagradAdaptive learning rates for each parameter

Statistics

Measures of Central Tendency

Mean 

MedianValue in the middle or an ordered 
list, or average of two in middle.

ModeMost Frequent Value

QuantileDivision of probability distributions based on contiguous intervals with equal 
probabilities. In short: Dividing observations numbers in a sample list equally.

Dispersion

Range

Medium Absolute Deviation (MAD)The average of the absolute value of the deviation of each 
value from the mean

Inter-quartile Range (IQR)Three quartiles divide the data in approximately four equally divided parts

Variance

Definition
The average of the squared differences from the Mean. Formally, is the expectation of 
the squared deviation of a random variable from its mean, and it informally measures 
how far a set of (random) numbers are spread out from their mean.

Types

Continuous

Discrete

Standard Deviation

sqrt(variance)

z-score/value/factor
The signed number of standard 
deviations an observation or datum 
is above the mean.

Relationship

Covariance

dot(de_mean(x), de_mean(y)) / (n - 1)

A measure of how much two random variables change together. http://
stats.stackexchange.com/questions/18058/how-would-you-explain-
covariance-to-someone-who-understands-only-the-mean

Correlation

Pearson
Benchmarks linear relationship, most appropriate for measurements taken from 
an interval scale, is a measure of the linear dependence between two variables

SpearmanBenchmarks monotonic relationship (whether linear or not), Spearman's coefficient is 
appropriate for both continuous and discrete variables, including ordinal variables.

Kendall

Is a statistic used to measure the ordinal association between two measured quantities.

Contrary to the Spearman correlation, the Kendall correlation is not affected by how far from 
each other ranks are but only by whether the ranks between observations are equal or not, 
and is thus only appropriate for discrete variables but not defined for continuous variables.

Co-occurrenceThe results are presented in a matrix format, where the cross tabulation of two fields is a cell value. 
The cell value represents the percentage of times that the two fields exist in the same events.

Techniques

Null HypothesisIs a general statement or default position that there is no relationship between two measured phenomena, or no 
association among groups. The null hypothesis is generally assumed to be true until evidence indicates otherwise.

p-value

In this method, as part of experimental design, before performing the experiment, one first 
chooses a model (the null hypothesis) and a threshold value for p, called the significance 
level of the test, traditionally 5% or 1% and denoted as α. If the p-value is less than the 
chosen significance level (α), that suggests that the observed data is sufficiently inconsistent 
with the null hypothesis that the null hypothesis may be rejected. However, that does not 
prove that the tested hypothesis is true. For typical analysis, using the standard α = 0.05 
cutoff, the null hypothesis is rejected when p < .05 and not rejected when p > .05. The p-
value does not, in itself, support reasoning about the probabilities of hypotheses but is only 
a tool for deciding whether to reject the null hypothesis.

Five heads in a row Example

Suppose a researcher flips a coin five times in a row and assumes a null hypothesis that the coin is fair. The test statistic 
of "total number of heads" can be one-tailed or two-tailed: a one-tailed test corresponds to seeing if the coin is biased 
towards heads, but a two-tailed test corresponds to seeing if the coin is biased either way. The researcher flips the coin 
five times and observes heads each time (HHHHH), yielding a test statistic of 5. In a one-tailed test, this is the upper 
extreme of all possible outcomes, and yields a p-value of (1/2)5 = 1/32 ≈ 0.03. If the researcher assumed a significance 
level of 0.05, this result would be deemed significant and the hypothesis that the coin is fair would be rejected. In a two-
tailed test, a test statistic of zero heads (TTTTT) is just as extreme and thus the data of HHHHH would yield a p-value of 
2×(1/2)5 = 1/16 ≈ 0.06, which is not significant at the 0.05 level.

This demonstrates that specifying a direction (on a symmetric test statistic) halves the p-value (increases the significance) 
and can mean the difference between data being considered significant or not.

p-hacking
The process of data mining involves automatically testing huge numbers of hypotheses about a single data set by exhaustively searching for 
combinations of variables that might show a correlation. Conventional tests of statistical significance are based on the probability that an observation 
arose by chance, and necessarily accept some risk of mistaken test results, called the significance.

Central Limit Theorem
States that a random variable defined as the average of a large number of 
independent and identically distributed random variables is itself approximately 
normally distributed.

http://blog.vctr.me/posts/central-limit-theorem.html

Linear Algebra

Matrices
Almost all Machine Learning algorithms use Matrix algebra in one way or 
another. This is a broad subject, too large to be included here in it’s full length. 
Here’s a start: https://en.wikipedia.org/wiki/Matrix_(mathematics)

Basic Operations: Addition, Multiplication, 
Transposition

Transformations

Trace, Rank, Determinante, Inverse

Eigenvectors and Eigenvalues
In linear algebra, an eigenvector or characteristic vector of a linear transformation T 
from a vector space V over a field F into itself is a non-zero vector that does not 
change its direction when that linear transformation is applied to it.

http://setosa.io/ev/eigenvectors-and-
eigenvalues/

Derivatives Chain Rule
RuleLeibniz Notation

Jacobian Matrix
The matrix of all first-order partial derivatives of a vector-valued function. 
When the matrix is a square matrix, both the matrix and its determinant 
are referred to as the Jacobian in literature

Gradient
The gradient is a multi-variable generalization of the 
derivative. The gradient is a vector-valued function, 
as opposed to a derivative, which is scalar-valued.

Tensors
For Machine Learning purposes, a Tensor can be described as a 
Multidimentional Matrix Matrix. Depending on the dimensions, the 
Tensor can be a Scalar, a Vector, a Matrix, or a Multidimentional Matrix.

When measuring the forces applied to an 
infinitesimal cube, one can store the force 
values in a multidimensional matrix. 

Curse of Dimensionality
When the dimensionality increases, the volume of the space increases so fast that the available data 
become sparse. This sparsity is problematic for any method that requires statistical significance. In 
order to obtain a statistically sound and reliable result, the amount of data needed to support the 
result often grows exponentially with the dimensionality.
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Machine Learning 
Models

Regression

Linear Regression

Generalised Linear Models (GLMs)

Is a flexible generalization of ordinary linear regression that allows for response 
variables that have error distribution models other than a normal distribution. The 
GLM generalizes linear regression by allowing the linear model to be related to the 
response variable via a link function and by allowing the magnitude of the variance 
of each measurement to be a function of its predicted value.

Link Function

Identity

Inverse

Logit

Cost Function is found via Maximum 
Likelihood Estimation

Locally Estimated Scatterplot Smoothing (LOESS)

Ridge Regression

Least Absolute Shrinkage and Selection Operator (LASSO)

Logistic Regression

Logistic Function

Bayesian Naive Bayes
Naive Bayes Classifier. We neglect the 
denominator as we calculate for every class 
and pick the max of the numerator

Multinomial Naive Bayes

Bayesian Belief Network (BBN)

Dimensionality Reduction

Principal Component Analysis (PCA)

Partial Least Squares Regression (PLSR)

Principal Component Regression (PCR)

Partial Least Squares Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

Linear Discriminant Analysis (LDA)

Instance Based

k-nearest Neighbour (kNN)

Learning Vector Quantization (LVQ)

Self-Organising Map (SOM)

Locally Weighted Learning (LWL)

Decision Tree

Random Forest

Classification and Regression Tree (CART)

Gradient Boosting Machines (GBM)

Conditional Decision Trees

Gradient Boosted Regression Trees (GBRT)

Clustering

Algorithms

Hierarchical Clustering

Linkage

complete

single

average

centroid

Dissimilarity Measure

Euclidean
Euclidean distance or Euclidean 
metric is the "ordinary" straight-
line distance between two points 
in Euclidean space.

Manhattan
The distance between two 
points measured along axes at 
right angles.

k-Means How many clusters do we select?

k-Medians

Fuzzy C-Means

Self-Organising Maps (SOM)

Expectation Maximization

DBSCAN

Validation

Data Structure Metrics

Dunn Index

Connectivity

Silhouette Width

Stability Metrics

Non-overlap APN

Average Distance AD

Average Distance Between Means ADM

Figure of Merit FOM

Neural Networks

Unit (Neurons)

A unit often refers to the activation 
function in a layer by which the 
inputs are transformed via a 
nonlinear activation function (for 
example by the logistic sigmoid 
function). Usually, a unit has 
several incoming connections and 
several outgoing connections.

Input LayerComprised of multiple Real-Valued inputs. Each input 
must be linearly independent from each other.

Hidden Layers

Layers other than the input and 
output layers. A layer is the 
highest-level building block in 
deep learning. A layer is a 
container that usually receives 
weighted input, transforms it with 
a set of mostly non-linear 
functions and then passes these 
values as output to the next 
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in 
several ways. First, the gradient of the loss over a mini-batch is an estimate of the 
gradient over the training set, whose quality improves as the batch size increases. 
Second, computation over a batch can be much more efficient than m computations for 
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and 
at each step we consider a mini- batch x1...m 
of size m. The mini-batch is used to approx- 
imate the gradient of the loss function with 
respect to the parameters.

Learning Rate

Neural networks are often trained by gradient 
descent on the weights. This means at each 
iteration we use backpropagation to calculate 
the derivative of the loss function with respect 
to each weight and subtract it from that 
weight. 

However, if you actually try that, the weights 
will change far too much each iteration, which 
will make them “overcorrect” and the loss will 
actually increase/diverge. So in practice, 
people usually multiply each derivative by a 
small value called the “learning rate” before 
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the 
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical 
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration 
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data 
normalization it is reasonable to assume that 
approximately half of the weights will be 
positive and half of them will be negative. A 
reasonable-sounding idea then might be to 
set all the initial weights to zero, which you 
expect to be the “best guess” in expectation. 

But, this turns out to be a mistake, because if 
every neuron in the network computes the 
same output, then they will also all compute 
the same gradients during back-propagation 
and undergo the exact same parameter 
updates. In other words, there is no source of 
asymmetry between neurons if their weights 
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very 
close to zero, but not identically zero. In this 
way, you can random these neurons to small 
numbers which are very close to zero, and it is 
treated as symmetry breaking. The idea is that 
the neurons are all random and unique in the 
beginning, so they will compute distinct 
updates and integrate themselves as diverse 
parts of the full network.

The implementation for weights might simply 
drawing values from a normal distribution with 
zero mean, and unit standard deviation. It is 
also possible to use small numbers drawn 
from a uniform distribution, but this seems to 
have relatively little impact on the final 
performance in practice.

Calibrating the Variances

One problem with the above suggestion is 
that the distribution of the outputs from a 
randomly initialized neuron has a variance that 
grows with the number of inputs. It turns out 
that you can normalize the variance of each 
neuron's output to 1 by scaling its weight 
vector by the square root of its fan-in (i.e., its 
number of inputs)

This ensures that all neurons in the network 
initially have approximately the same output 
distribution and empirically improves the rate 
of convergence. The detailed derivations can 
be found from Page. 18 to 23 of the slides. 
Please note that, in the derivations, it does 
not consider the influence of ReLU neurons.

Backpropagation

Is a method used in artificial neural networks to 
calculate the error contribution of each neuron 
after a batch of data. It calculates the gradient 
of the loss function. It is commonly used in the 
gradient descent optimization algorithm. It is 
also called backward propagation of errors, 
because the error is calculated at the output 
and distributed back through the network 
layers.Neural Network taking 4 dimension vector 

representation of words.

In this method, we reuse partial derivatives 
computed for higher layers in lower layers, for 
efficiency. 

Activation Functions

Defines the output of that node given an input 
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.


