
Machine Learning VS Deep Learning
Presented by : Dr. Hanaa Bayomi

h.mobarz@fci-cu.edu.eg

Agenda
1- Machine learning
 Definition and types
 machine Learning road map
 feature selection
 filter, wrapper and embedded
 Model selection
 cross validation(K-fold)

2- Deep learning
 Definition
 ML VS DL
 DL architecture
 fully connected NN
 convolution NN
 Recurrent NN (LSTM)

3- NLP Tasks

Machine Learning definition

Machine Learning types

Machine Learning types

Machine Learning types
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

ClusteringClassification

Dimensionality reductionRegression

Supervised Unsupervised

D
is

cr
et

e
C

o
n

ti
n

u
o
u

s

Learning Types

Feature selection

Performance of Machine Learning model

depend on

▪Choice of algorithm

▪Feature selection

▪Feature creation

▪Model selection

https://archive.ics.uci.edu/ml/datasets.html
UCI Machine Learning Repository: Data Sets

https://l.facebook.com/l.php?u=https://archive.ics.uci.edu/ml/datasets.html&h=ATOxFHFeM4cTLQf1aHUW5-68rBRnrlU6Shreu1xIXihH1Unj8ObS7I_SSTXU0xrvH-mCUyQJjDP7VRvcs-GzUYIzmgb9VM6qj9oPoCyNqLowT876B34Mnn3HOqEOEKi8Gw6ZrbWlYqLagYJGCSVKT039Kh7WfZHsV_WAN6q7l8C6mE1ugn-vW-G3-FHuauYf1o693xri1nCiCwGsuXUnZHZgVCDuK2SaJixxOq3E7y0O6UDUSjB5LpLDy9QOK5IXjvNJUn4OtNLH

Classification of FS methods

• Filter (single factor analysis)
– Assess the relevance of features only by looking at the essential

properties of the data.

– Usually, calculate the feature relevance score and remove low-
scoring features.

• Wrapper
– Bundle the search for best model with the FS.

– Generate and evaluate various subsets of features. The
evaluation is obtained by training and testing a specific ML
model.

• Embedded
– Embedded methods learn which features best contribute to the

accuracy of the model while the model is being created. The
most common type of embedded feature selection methods are
regularization methods.

Filter methods
• Filter methods are generally used as a

preprocessing step. The selection of features is

independent of any machine learning

algorithms.

• Two steps (score-and-filter approach)

1. assess each feature individually for its potential

in discriminating among classes in the data

2. features falling beyond threshold are eliminated

Wrappers

• Search for the best feature subset in

combination with a fixed classification

method.

• The goodness of a feature subset is determined

using cross-validation (k-fold, LOOCV) Leave-one-out

cross-validation

Embedded

Some of the most popular examples of these methods are LASSO and RIDGE

regression which have inbuilt penalization functions to reduce over fitting.

Lasso regression performs L1 regularization which adds penalty

equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty

equivalent to square of the magnitude of coefficients.

Choosing the best model

➢ Deep learning is a particular kind of machine
learning that achieves great power and flexibility by
learning to represent the world as nested hierarchy
of concepts, with each concept defined in relation to
simpler concepts, and more abstract representations
computed in terms of less abstract ones.

➢ Learning deep (many layered) neural networks

➢ The more layers in a Neural Network, the more
abstract features can be represented

Deep Learning definition

Deep Learning definition

E.g. Classify a cat:
 – Bottom Layers: Edge detectors, curves, corners straight lines
 – Middle Layers: Fur patterns, eyes, ears
 – Higher Layers: Body, head, legs
 – Top Layer: Cat or Dog

Machine Learning VS Deep Learning

1- Data Dependency
 - Deep learning need large amount of data to understand it perfectly

Machine Learning VS Deep Learning

2- Hardware Dependency
 - Deep learning algorithms heavily depend on high-end

 machines This is because the requirements of deep learning
 algorithm include GPUs which are an integral part of its working.
 - Machine Learning which can work on low-end machines.

3- Execution time
 - deep learning algorithm takes a long time to train. This is because

there are so many parameters in a deep learning algorithm that training
them takes longer than usual.

Machine Learning VS Deep Learning

4- Feature engineering
 - Deep learning algorithms try to learn high-level features from data.

 - Machine Learning which can work on low-end machines.

Output
LayerHidden Layers

Input
Layer

Element of Neural Network

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Deep means many hidden layers

neuron

bwawawaz KK ++++= 2211

Neural Network

𝑓: 𝑅𝐾 → 𝑅

z

1w

2w

Kw…

1a

2a

Ka

+

b

()z

bias

y

Activation
functionweights

Neuron

Activation Function types

ReLU Softplus

Sigmoid/logistic Tanh

Binary Signum

Softmax

Vanilla

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x

b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Neural Network training steps

Weight Initialization

Inputs Application

Sum of inputs - Weights product

Activation functions

Weights Adaptations

Back to step 2

1

2

3

4

5

6

0 ≤ α ≤ 10 ≤ ≤ 1Learning Rate

First method:

Regarding 5th step: Weights Adaptation

second method: Back propagation

Regarding 5th step: Weights Adaptation
Feedforward

In
p

u
ts

O
u

tp
u

ts

Backward

▪ Fowrward VS Backword passes

Fowrward Input
weights

backward

SOP
Prediction

Output
Prediction

Error

Prediction
Error

Prediction
Output

SOP
Input

weights

The Backpropagation algorithm is a sensible

approach for dividing the contribution of each

weight.

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Backword pass

What is the change in prediction Error (E) given the change in weight (W) ?
 Get partial derivative of E W.R.T W

W

E

2)(
2

1
ydE −=

d (desired output) Const
y (predicted output)

s
sf

−+
=

e1

1
)(

s (Sum Of Product SOP)

bw iji

m

j
ixs +=

2)
1

(
2

1

e bwx
n

j
iiji

dE

 +−

−=

ww 21,

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative

2)(
2

1
ydE −= s

sfy
−+

==
e1

1
)(bwxwxs ++= 2211 ww 21,

W

E

y

E

s

y

ww

ss

21

,

Chain Rule

ww

s
x

s

y
x

y

EE

22

=

ww

s
x

s

y
x

y

EE

11

=

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative

dyyd
yy

E
−=−

=

 2)(
2

1

)
e1

1
1(

e1

1

e1

1
sssss

y
−−− +

−
+

=
+

=

xbwxwx
ww

s
12211

11

=++

=

xbwxwx

ww

s
22211

22

=++

=

x
w

iss
i

dy
E

)
e1

1
1(

e1

1
)(

−− +
−

+
−=

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ interpreting derivatives

x
s

sf

w
i

i

dy
E

−=

)(
)(

W

Derivatives sign Derivatives Magnitude

Positive
directly proportional

Negative
opposite

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Update the Weights

In order to update the weights , use the Gradient Descent

f(w)

w

+ slop

Wnew= Wold - (+ve)

f(w)

w

- slop

Wnew= Wold - (-ve)

Convolution Neural Network
CNN

➢ Convolutional neural networks (or convnets for short) are used in
situations where data can be expressed as a "map" wherein the
proximity between two data points indicates how related they are.

➢ Convnets contain one or more of each of the following layers:

1. convolution layer
2. ReLU (rectified linear units) layer (element wise threshold)
3. pooling layer
4. fully connected layer
5. loss layer (during the training process)

introduction

1- Convolution layer
a convnet processes an image using a matrix of weights called filters (or
features) that detect specific attributes such as diagonal edges, vertical
edges, etc. Moreover, as the image progresses through each layer, the
filters are able to recognize more complex attributes.

The convolution layer is always the first step in a convnet. Let's say
we have a 10 x 10 pixel image, here represented by a 10 x 10 x 1
matrix of numbers:

Convolution layer

stride

•The ReLU (short for rectified linear units) layer commonly follows the
convolution layer.

• The addition of the ReLU layer allows the neural network to account
for non-linear relationships, i.e. the ReLU layer allows the convnet to
account for situations in which the relationship between the pixel value
inputs and the convnet output is not linear.

• the convolution operation is a linear one. y = w1x1 +w2x2 + w3x3 + ...

• The ReLU function takes a value x and returns 0 if x is negative
and x if x is positive.

2- ReLU Layer f(x) = max(0,x)

2- ReLU Layer f(x) = max(0,x)

Other functions such as tanh or the sigmoid function can
be used to add non-linearity to the network, but ReLU
generally works better in practice.

3- Pooling layer
• the pooling layer makes the convnet less sensitive to small changes in
the location of a feature
• Pooling also reduces the size of the feature map, thus simplifying
computation in later layers.

4- fully connected NN + loss layers

The fully-connected layer is where the final "decision" is made.

Recurrent Neural Network
RNN

Learning sequences

RNN VS Vanilla
Vanilla

• pass all input in the same time
• inputs are independent in each other
• fixed input and fixed output
•using different parameters with different layers in the network

Motivation

Image
classification

Image
captioning

Sentiment
analysis

Machine
translation

Synced sequence(video
classification)

RNN architecture
▪ RNNs are called recurrent because
they perform the same task for every
element of a sequence, with the
output being depended on the
previous computations (memory).

▪ Inputs x(t) outputs y(t) hidden state
s(t) the memory of the network
A delay unit is introduced to hold
activation until they are processed at
the next step.

▪ The decision a recurrent net reached at time step t-1 affects the
decision it will reach one moment later at time step t. So recurrent
networks have two sources of input, the present and the recent past,
which combine to determine how they respond to new data

RNN Architecture

 The recurrent network can be converted into a feed forward
network by unfolding over time

Vanishing Gradients

long-term dependencies

Recurrent NN - LSTM

The basic unit in the hidden layer of an LSTM network is a memory
block, it replaces the hidden unit in a traditional RNN. A memory block
contains one or more memory cell and a pair of adaptive multiplicative
gating units which gates input and output to all cells in the block.
Memory blocks allow cells to share the same gates thus reducing the
number of parameters. Each cell has in its core a recurrently self
connected linear unit called the “Constant error carousel” whose
activation we call the cell state.

Natural Language Processing
Tasks

1- Automatic Summarization

the process of shortening a text document
with software, in order to create a summary with
the major points of the original document.

There are two methods

1-extracting sentences or parts thereof from the original text
2- generating abstract summaries.

Tools- The Python library sumy,

2- Co reference resolution

Coreference resolution is the task of finding all
expressions that refer to the same entity in a text.

Tools- The Apache OpenNLP

tokenization, sentence segmentation, part-of-speech tagging, named entity
extraction, chunking, parsing, and co reference resolution.

3- Named Entity Recognition

Named-entity recognition (NER) (also known as entity
identification, entity chunking and entity extraction) is a subtask
of information extraction that seeks to locate and classify named
entities in text into pre-defined categories such as

Tools- The Apache OpenNLP

• number
•Device
•Jop
•Car
•Cell Phone

•person names
• company/organization names
• locations
• dates & time
• percentages
• monetary amounts (Currency)

4- Sentiment analysis

The task of finding the opinions of authors about specific entities.

Sentiment Analysis Problem

An opinion is a quintuple
 (, , , ,) O F S_P OH T

Object

Feature

Subjectivity or Polarity classification

Opinion Holder

Time

https://github.com/Kyubyong
/nlp_tasks#coreference-

resolution

Concepts

Unit (Neurons)

A unit often refers to the activation
function in a layer by which the
inputs are transformed via a
nonlinear activation function (for
example by the logistic sigmoid
function). Usually, a unit has
several incoming connections and
several outgoing connections.

Input Layer Comprised of multiple Real-Valued inputs. Each input
must be linearly independent from each other.

Hidden Layers

Layers other than the input and
output layers. A layer is the
highest-level building block in
deep learning. A layer is a
container that usually receives
weighted input, transforms it with
a set of mostly non-linear
functions and then passes these
values as output to the next
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in
several ways. First, the gradient of the loss over a mini-batch is an estimate of the
gradient over the training set, whose quality improves as the batch size increases.
Second, computation over a batch can be much more efficient than m computations for
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and
at each step we consider a mini- batch x1...m
of size m. The mini-batch is used to approx-
imate the gradient of the loss function with
respect to the parameters.

Cost/Loss(Min)
Objective(Max)
Functions

Maximum
Likelihood
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ,
given outcomes x, is equal to the probability (density) assumed for those
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood
estimation and related techniques.

In general, for a fixed set of data and underlying
statistical model, the method of maximum likelihood
selects the set of values of the model parameters that
maximizes the likelihood function. Intuitively, this
maximizes the "agreement" of the selected model with
the observed data, and for discrete random variables it
indeed maximizes the probability of the observed data
under the resulting distribution. Maximum-likelihood
estimation gives a unified approach to estimation,
which is well-defined in the case of the normal
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss
function in machine learning and optimization.
The true probability pi is the true label, and
the given distribution qi is the predicted value
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when
using least squares techniques. It is often more mathematically
tractable than other loss functions because of the properties of
variances, as well as being symmetric: an error above the target
causes the same loss as the same magnitude of error below the target.
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for
training classifiers. For an intended output t =
±1 and a classifier score y, the hinge loss of
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of
measure theory, let P and Q denote two
probability measures that are absolutely

continuous with respect to a third probability
measure λ. The square of the Hellinger

distance between P and Q is defined as the
quantity

Kullback-Leibler Divengence

Is a measure of how one probability
distribution diverges from a second expected
probability distribution. Applications include
characterizing the relative (Shannon) entropy
in information systems, randomness in
continuous time-series, and information gain
when comparing statistical models of
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a
perceptual measure, it is intended to reflect
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Regularization

L1 norm Manhattan Distance

L1-norm is also known as least absolute
deviations (LAD), least absolute errors (LAE). It
is basically minimizing the sum of the
absolute differences (S) between the target
value and the estimated values.

L2 norm Euclidean Distance
L2-norm is also known as least squares. It is
basically minimizing the sum of the square of
the differences (S) between the target value
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing
complex co-adaptations on training data. It is a very efficient way of performing model
averaging with neural networks. The term "dropout" refers to dropping out units (both
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each
column and an L1 norm over all columns. It
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to
the overall average of the functions across all tasks. This is useful for
expressing prior information that each task is expected to share similarities
with each other task. An example is predicting blood iron levels measured at
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces
similarity between tasks within the same
cluster. This can capture more complex prior
information. This technique has been used to
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between
tasks can be defined by a function. The
regularizer encourages the model to learn
similar functions for similar tasks.

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data
normalization it is reasonable to assume that
approximately half of the weights will be
positive and half of them will be negative. A
reasonable-sounding idea then might be to
set all the initial weights to zero, which you
expect to be the “best guess” in expectation.

But, this turns out to be a mistake, because if
every neuron in the network computes the
same output, then they will also all compute
the same gradients during back-propagation
and undergo the exact same parameter
updates. In other words, there is no source of
asymmetry between neurons if their weights
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very
close to zero, but not identically zero. In this
way, you can random these neurons to small
numbers which are very close to zero, and it is
treated as symmetry breaking. The idea is that
the neurons are all random and unique in the
beginning, so they will compute distinct
updates and integrate themselves as diverse
parts of the full network.

The implementation for weights might simply
drawing values from a normal distribution with
zero mean, and unit standard deviation. It is
also possible to use small numbers drawn
from a uniform distribution, but this seems to
have relatively little impact on the final
performance in practice.

Calibrating the Variances

One problem with the above suggestion is
that the distribution of the outputs from a
randomly initialized neuron has a variance that
grows with the number of inputs. It turns out
that you can normalize the variance of each
neuron's output to 1 by scaling its weight
vector by the square root of its fan-in (i.e., its
number of inputs)

This ensures that all neurons in the network
initially have approximately the same output
distribution and empirically improves the rate
of convergence. The detailed derivations can
be found from Page. 18 to 23 of the slides.
Please note that, in the derivations, it does
not consider the influence of ReLU neurons.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Mini-batch Stochastic Gradient Descent
(SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Momentum

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will
increase the size of the steps taken towards
the minimum.

AdagradAdaptive learning rates for each parameter

Learning Rate

Neural networks are often trained by gradient
descent on the weights. This means at each
iteration we use backpropagation to calculate
the derivative of the loss function with respect
to each weight and subtract it from that
weight.

However, if you actually try that, the weights
will change far too much each iteration, which
will make them “overcorrect” and the loss will
actually increase/diverge. So in practice,
people usually multiply each derivative by a
small value called the “learning rate” before
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Backpropagation

Is a method used in artificial neural networks to
calculate the error contribution of each neuron
after a batch of data. It calculates the gradient
of the loss function. It is commonly used in the
gradient descent optimization algorithm. It is
also called backward propagation of errors,
because the error is calculated at the output
and distributed back through the network
layers.Neural Network taking 4 dimension vector

representation of words.

In this method, we reuse partial derivatives
computed for higher layers in lower layers, for
efficiency.

Intuition for backpropagation

Simple Example (Circuits)Another Example (Circuits)

Simple Example (Flowgraphs)

Activation Functions

Defines the output of that node given an input
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity

Architectures Strategy

1. Select Network Structure appropriate for
problem

Structure: Single words, fixed windows,
sentence based, document level; bag of
words, recursive vs. recurrent, CNN

Nonlinearity (Activation Functions)

2. Check for implementation bugs with
gradient checks

1. Implement your gradient

2. Implement a finite difference computation
by looping through the parameters of your
network, adding and subtracting a small
epsilon (10-4) and estimate derivatives

3. Compare the two and make sure they are
almost the same

Using Gradient Checks

If you gradient fails and you don’t know why?
Simplify your model until you have no bug!

What now? Create a very tiny synthetic model
and dataset

Example: Start from simplest model then go
to what you want:

Only softmax on fixed input

Backprop into word vectors and softmax

Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add multiple
units, bias • Add one softmax on top, then
two softmax layers

Add bias

3. Parameter initialization

Initialize hidden layer biases to 0 and output
(or reconstruction) biases to optimal value if
weights were 0 (e.g., mean target or inverse
sigmoid of mean target).

Initialize weights Uniform(−r, r), r inversely
proportional to fan-in (previous layer size) and
fan-out (next layer size):

4. Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Ordinary gradient descent as a batch method
is very slow, should never be used. Use 2nd
order batch method such as L-BFGS.

On large datasets, SGD usually wins over all
batch methods. On smaller datasets L-BFGS
or Conjugate Gradients win. Large-batch L-
BFGS extends the reach of L-BFGS [Le et al.
ICML 2011].

Mini-batch Stochastic Gradient Descent
(SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Most commonly used now, Size of each mini
batch B: 20 to 1000

Helps parallelizing any model by computing
gradients for multiple elements of the batch in
parallel

Momentum

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will
increase the size of the steps taken towards
the minimum.

Reduce global learning rate when using a lot
of momentum

Update Rule
v is initialized at 0

Momentum often increased after some
epochs (0.5 à 0.99)

Adagrad

Adaptive learning rates for each parameter!

Learning rate is adapting differently for each
parameter and rare parameters get larger
updates than frequently occurring parameters.
Word vectors!

5. Check if the model is powerful enough to
overfit

If not, change model structure or make model “larger”

If you can overfit: Regularize to prevent
overfitting:

Simple first step: Reduce model size by
lowering number of units and layers and other
parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave
best validation error

Sparsity constraints on hidden activations,
e.g., add to cost:

Dropout

Training time: at each instance of evaluation
(in online SGD-training), randomly set 50% of
the inputs to each neuron to 0

Test time: halve the model weights (now twice
as many) This prevents feature co-adaptation:
A feature cannot only be useful in the
presence of particular other features

In a single layer: A kind of middle-ground
between Naïve Bayes (where all feature
weights are set independently) and logistic
regression models (where weights are set in
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

RNNs (Recursive)

Is a kind of deep neural
network created by applying
the same set of weights
recursively over a structure, to
produce a structured prediction
over variable-size input
structures, or a scalar
prediction on it, by traversing a
given structure in topological
order.

RNNs have been successful for instance in
learning sequence and tree structures in
natural language processing, mainly phrase
and sentence continuous representations
based on word embedding.

RNNs (Recurrent)
Is a class of artificial neural network where connections between units form a
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs can use their internal memory to process
arbitrary sequences of inputs.

This makes them applicable to tasks such as
unsegmented, connected handwriting recognition or
speech recognition.

Convolutional Neural Networks (CNN)

They have applications in image and video
recognition, recommender systems and
natural language processing.

Pooling

Convolution

Subsampling

Auto-Encoders

Is an artificial neural network used for unsupervised
learning of efficient codings.

The aim of an autoencoder
is to learn a representation
(encoding) for a set of data,
typically for the purpose of
dimensionality reduction.
Recently, the autoencoder
concept has become more
widely used for learning
generative models of data.

GANs

GANs or Generative
Adversarial Networks are a
class of artificial intelligence
algorithms used in
unsupervised machine
learning, implemented by a
system of two neural networks
contesting with each other in a
zero-sum game framework.

LSTMs

Long short-term memory - It is a type of recurrent (RNN), allowing
data to flow both forwards and backwards within the network.

An LSTM is well-suited to learn from
experience to classify, process and predict
time series given time lags of unknown size
and bound between important events.
Relative insensitivity to gap length gives an
advantage to LSTM over alternative RNNs,
hidden Markov models and other sequence
learning methods in numerous applications.

Feed Forward

Is an artificial neural network wherein connections between the units do not form a
cycle. In this network, the information moves in only one direction, forward, from the
input nodes, through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network.

Kinds

Single-Layer Perceptron

The inputs are fed directly to the outputs via a
series of weights. By adding an Logistic
activation function to the outputs, the model
is identical to a classical Logistic Regression
model.

Multi-Layer Perceptron

This class of networks consists of multiple
layers of computational units, usually
interconnected in a feed-forward way. Each
neuron in one layer has directed connections
to the neurons of the subsequent layer. In
many applications the units of these networks
apply a sigmoid function as an activation
function.

Tensorflow

Packages

tf Main Steps

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

4. Define the Session and Initialise Variables

5. Train the Model

6. Test Trained Model

tf.estimator

TensorFlow’s high-level machine learning API
(tf.estimator) makes it easy to configure, train, and
evaluate a variety of machine learning models.

tf.estimator.LinearClassifier: Constructs a linear classification model.

tf.estimator.LinearRegressor: Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimator.DNNRegressor: Construct a neural network regression model.

tf.estimator.DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

tf.estimator.DNNRegressor: Construct a neural network and linear combined regression model.

Main Steps

1. Define Feature Columns

FeatureColumns are the primary way of
encoding features for pre-canned tf.learn
Estimators.

Categorical Numerical

When using FeatureColumns with tf.learn
models, the type of feature column you
should choose depends on the feature type
and the model type.

Continuous Features Can be represented by real_valued_column

Categorical Features

Can be represented by any
sparse_column_with_* column
(sparse_column_with_keys,
sparse_column_with_vocabulary_file,
sparse_column_with_hash_bucket,
sparse_column_with_integerized_feature

2. Define your Layers, or use a prebuilt model

Using a pre-built Logistic Regression
Classifier

3. Write the input_fn function This function holds the actual data (features
and labels). Features is a python dictionary.

4. Train the model
Using the fit function, on the input_fn. Notice
that the feature columns are fed to the model
as arguments.

5. Predict and Evaluate Using the eval_input_fn defined previously.

Comparison to Numpy

Does lazy evaluation. Need to build the
graph, and then run it in a session.

Main Components

Variables

Stateful nodes that output their current value,
their state is retained across multiple
executions of the graph.

Mostly Parameters we’re interested in tuning,
such as Weights (W) and Biases (b).

Sharing

Variables can be shared by Explicitly passing
tf.Variable objects around, or...

Implicitly wrapping tf.Variable objects within
tf.variable_scope objects.Scopes

tf.variable_scope()

Provides simple name spacing to avoid cases
when querying

tf.get_variable()Creates/Access variables from a variable
scope

Placeholders
Nodes whose value is fed at execution time.

Inputs, Features (X) and Labels (y)

Mathematical
OperationsMatMul, Add, ReLU, etc.

Graph
NodesThey are Operations, containing any number

of inputs and outputs.

EdgesThe tensors that flow between the nodes.

Session

It a binding to a particular execution context: CPU, GPU.

Running a SessionInputs

FetchesList of graph nodes. Returns the output of
these nodes.

Feeds

Dictionary mapping from graph nodes to
concrete values.

Specified the value of each graph node given
in the dictionary.

Phases

1. Construction

Assembles a computational graph

The computation graph has no numerical
value until evaluated.

All computations add nodes to global default graph

2. Execution

A Session object encapsulates the environment
in which Tensor objects are evaluated

Uses a session to execute ops in the graph

Declared variables must be initialised before
they have values.

When you train a model you use variables to hold and update
parameters. Variables are in-memory buffers containing tensors.

TensorboardTensorFlow has some neat built-in visualization tools (TensorBoard).

Intuition

TensorFlow is a deep learning library recently open-sourced by
Google. It provides primitives for defining functions on tensors and
automatically computing their derivatives, expressed as a graph.

The Tensorflow Graph is build to contain all placeholders for X and y,
all variables for W’s and b’s, all mathematical operations, the cost
function, and the optimisation procedure. Then, at runtime, the values
for the data are fed into that Graph, by placing the data batches in
the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node
over the network, and thus running Tensorflow models can be
parallelised.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

Machine Learning Process

Data

Find

Collect

Explore

Clean Features

Impute Features

Engineer Features

Select Features

Encode Features

Build Datasets
Machine Learning is math. In specific,
performing Linear Algebra on Matrices. Our
data values must be numeric.

Model Select Algorithm based on question and
data available

Cost Function

The cost function will provide a measure of how far my algorithm and
its parameters are from accurately representing my training data.

Sometimes referred to as Cost or Loss function when the goal is to
minimise it, or Objective function when the goal is to maximise it.

Optimization
Having selected a cost function, we need a method to minimise the Cost function, or
maximise the Objective function. Typically this is done by Gradient Descent or Stochastic
Gradient Descent.

Tuning
Different Algorithms have different Hyperparameters, which will affect the
algorithms performance. There are multiple methods for Hyperparameter
Tuning, such as Grid and Random search.

Results and Benchmarking

Analyse the performance of each algorithms and
discuss results.

Are the results good enough for
production?

Is the ML algorithm training
and inference completing in a
reasonable timeframe?

Scaling How does my algorithm scales for both training and inference?

Deployment and
Operationalisation

How can feature manipulation be done for training and
inference in real-time?

How to make sure that the algorithm is retrained
periodically and deployed into production?

How will the ML algorithms be integrated with
other systems?

Infrastructure

Can the infrastructure running the machine learning process scale?

How is access to the ML algorithm provided? REST API?
SDK?

Is the infrastructure adapter to the algorithm
we are running? Should GPU’s be considered
rather than CPUs’?

Direction

SaaS - Pre-built Machine Learning models

Google Cloud

Vision API

Speech API

Jobs API

Video Intelligence API

Language API

Translation API

AWS

Rekognition

Lex

Polly

… many others

Data Science and Applied Machine
Learning

Google CloudML Engine

AWSAmazon Machine Learning

Tools: Jupiter / Datalab / Zeppelin

… many others

Machine Learning Research

Tensorflow

MXNet

Torch

… many others

Question

Is this A or B?Classification

How much, or how many of these? Regression

Is this anomalous?Anomaly Detection

How can these elements be grouped?Clustering

What should I do now?Reinforcement Learning

Machine Learning Data
Processing

Feature Selection

Correlation
Features should be uncorrelated with each other and highly
correlated to the feature we’re trying to predict.

Covariance

A measure of how much two random variables change
together. Math: dot(de_mean(x), de_mean(y)) / (n - 1)

Dimensionality Reduction

Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. This transformation is defined in such a way that the first principal
component has the largest possible variance (that is, accounts for as much of the variability in the data as
possible), and each succeeding component in turn has the highest variance possible under the constraint that
it is orthogonal to the preceding components.

Plot the variance per feature and select the
features with the largest variance.

Singular Value Decomposition (SVD)
SVD is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition
of a positive semidefinite normal matrix (for example, a symmetric matrix with positive eigenvalues) to
any m×n matrix via an extension of the polar decomposition. It has many useful applications in signal
processing and statistics.

Importance

Filter Methods

Filter type methods select features based only on general metrics like the
correlation with the variable to predict. Filter methods suppress the least
interesting variables. The other variables will be part of a classification or a
regression model used to classify or to predict data. These methods are
particularly effective in computation time and robust to overfitting.

Correlation

Linear Discriminant Analysis

ANOVA: Analysis of Variance

Chi-Square

Wrapper Methods

Wrapper methods evaluate subsets of variables which allows, unlike
filter approaches, to detect the possible interactions between
variables. The two main disadvantages of these methods are : The
increasing overfitting risk when the number of observations is
insufficient. AND. The significant computation time when the
number of variables is large.

Forward Selection

Backward Elimination

Recursive Feature Ellimination

Genetic Algorithms

Embedded Methods
Embedded methods try to combine the advantages of both previous
methods. A learning algorithm takes advantage of its own variable
selection process and performs feature selection and classification
simultaneously.

Lasso regression performs L1 regularization which adds penalty
equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty
equivalent to square of the magnitude of coefficients.

Feature Encoding

Machine Learning algorithms perform Linear Algebra on Matrices, which means all features
must be numeric. Encoding helps us do this.

Label Encoding One Hot Encoding

In One Hot Encoding, make sure the
encodings are done in a way that all features
are linearly independent.

Feature Normalisation
or Scaling

Since the range of values of raw data varies widely, in some machine learning
algorithms, objective functions will not work properly without normalization.
Another reason why feature scaling is applied is that gradient descent converges
much faster with feature scaling than without it.

Methods

Rescaling The simplest method is rescaling the range of
features to scale the range in [0, 1] or [−1, 1].

Standardization
Feature standardization makes the values of each
feature in the data have zero-mean (when subtracting
the mean in the numerator) and unit-variance.

Scaling to unit length To scale the components of a feature vector
such that the complete vector has length one.

Dataset Construction

Training Dataset A set of examples used for
learning

To fit the parameters of the classifier in the
Multilayer Perceptron, for instance, we would
use the training set to find the “optimal”
weights when using back-progapation.

Test Dataset A set of examples used only to assess the
performance of a fully-trained classifier

In the Multilayer Perceptron case, we would use the test to
estimate the error rate after we have chosen the final model (MLP
size and actual weights) After assessing the final model on the test
set, YOU MUST NOT tune the model any further.

Validation Dataset A set of examples used to tune the
parameters of a classifier

In the Multilayer Perceptron case, we would use the validation
set to find the “optimal” number of hidden units or determine a
stopping point for the back-propagation algorithm

Cross Validation
One round of cross-validation involves partitioning a sample of data into complementary subsets,
performing the analysis on one subset (called the training set), and validating the analysis on the other
subset (called the validation set or testing set). To reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the validation results are averaged over the rounds.

Feature Engineering

DecomposeConverting 2014-09-20T20:45:40Z into categorical
attributes like hour_of_the_day, part_of_day, etc.

Discretization
Continuous Features

Typically data is discretized into partitions of K
equal lengths/width (equal intervals) or K% of
the total data (equal frequencies).

Categorical FeaturesValues for categorical features may be combined, particularly
when there’s few samples for some categories.

Reframe Numerical QuantitiesChanging from grams to kg, and losing detail might
be both wanted and efficient for calculation

Crossing
Creating new features as a combination of existing features. Could be
multiplying numerical features, or combining categorical variables. This is a
great way to add domain expertise knowledge to the dataset.

Feature Imputation

Hot-DeckThe technique then finds the first missing value and uses the cell value
immediately prior to the data that are missing to impute the missing value.

Cold-DeckSelects donors from another dataset to complete missing data.

Mean-substitutionAnother imputation technique involves replacing any missing value with the mean of that variable
for all other cases, which has the benefit of not changing the sample mean for that variable.

RegressionA regression model is estimated to predict observed values of a variable based on other
variables, and that model is then used to impute values in cases where that variable is missing

Some Libraries...

Feature Cleaning

Missing valuesOne may choose to either omit elements from a dataset
that contain missing values or to impute a value

Special valuesNumeric variables are endowed with several formalized special values including ±Inf, NA and NaN.
Calculations involving special values often result in special values, and need to be handled/cleaned

OutliersThey should be detected, but not necessarily removed. Their
inclusion in the analysis is a statistical decision.

Obvious inconsistenciesA person's age cannot be negative, a man cannot be pregnant
and an under-aged person cannot possess a drivers license.

Data Exploration

Variable IdentificationIdentify Predictor (Input) and Target (output) variables. Next,
identify the data type and category of the variables.

Univariate Analysis
Continuous Features

Mean, Median, Mode, Min, Max, Range,
Quartile, IQR, Variance, Standard Deviation,
Skewness, Histogram, Box Plot

Categorical FeaturesFrequency, Histogram

Bi-variate Analysis

Finds out the relationship between two variables.

Scatter Plot

Correlation Plot - Heatmap

Two-way table
We can start analyzing the relationship by
creating a two-way table of count and
count%.

Stacked Column Chart

Chi-Square Test
This test is used to derive the statistical
significance of relationship between the
variables.

Z-Test/ T-Test

ANOVA

Data Types

Nominal - is for mutual exclusive, but not ordered, categories.

Ordinal - is one where the order matters but not the difference between values.

Interval - is a measurement where the difference between two values is meaningful.

Ratio - has all the properties of an interval variable, and also has a clear definition of 0.0.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Gradient_descent

Machine Learning
Concepts

Types

Regression A supervised problem, the outputs are continuous rather than discrete.

Classification
Inputs are divided into two or more classes, and the learner must produce a
model that assigns unseen inputs to one or more (multi-label classification) of
these classes. This is typically tackled in a supervised way.

Clustering
A set of inputs is to be divided into groups.
Unlike in classification, the groups are not
known beforehand, making this typically an
unsupervised task.

Density Estimation Finds the distribution of inputs in some space.

Dimensionality Reduction Simplifies inputs by mapping them into a
lower-dimensional space.

Kind

Parametric

Step 1: Making an assumption about the functional form or shape
of our function (f), i.e.: f is linear, thus we will select a linear model.

Step 2: Selecting a procedure to fit or train our model. This means
estimating the Beta parameters in the linear function. A common
approach is the (ordinary) least squares, amongst others.

Non-Parametric
When we do not make assumptions about the form of our function (f). However,
since these methods do not reduce the problem of estimating f to a small number
of parameters, a large number of observations is required in order to obtain an
accurate estimate for f. An example would be the thin-plate spline model.

Categories

Supervised
The computer is presented with example inputs and their
desired outputs, given by a "teacher", and the goal is to learn a
general rule that maps inputs to outputs.

Unsupervised
No labels are given to the learning algorithm, leaving it on its
own to find structure in its input. Unsupervised learning can be a
goal in itself (discovering hidden patterns in data) or a means
towards an end (feature learning).

Reinforcement Learning
A computer program interacts with a dynamic environment in which it must
perform a certain goal (such as driving a vehicle or playing a game against an
opponent). The program is provided feedback in terms of rewards and
punishments as it navigates its problem space.

Approaches

Decision tree learning

Association rule learning

Artificial neural networks

Deep learning

Inductive logic programming

Support vector machines

Clustering

Bayesian networks

Reinforcement learning

Representation learning

Similarity and metric learning

Sparse dictionary learning

Genetic algorithms

Rule-based machine learning

Learning classifier systems

Taxonomy

Generative Methods

Model class-conditional pdfs and prior
probabilities. “Generative” since sampling can
generate synthetic data points.

Popular models

Gaussians, Naïve Bayes, Mixtures of multinomials

Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)

Sigmoidal belief networks, Bayesian networks, Markov random fields

Discriminative Methods

Directly estimate posterior probabilities. No
attempt to model underlying probability
distributions. Focus computational resources
on given task– better performance

Popular Models

Logistic regression, SVMs

Traditional neural networks, Nearest neighbor

Conditional Random Fields (CRF)

Selection Criteria
Prediction
Accuracy vs Model
Interpretability

There is an inherent tradeoff between Prediction Accuracy and Model Interpretability,
that is to say that as the model get more flexible in the way the function (f) is selected,
they get obscured, and are hard to interpret. Flexible methods are better for
inference, and inflexible methods are preferable for prediction.

Libraries Python

Numpy
Adds support for large, multi-dimensional arrays and matrices,
along with a large library of high-level mathematical functions
to operate on these arrays

Pandas Offers data structures and operations for manipulating numerical tables and time series

Scikit-Learn
It features various classification, regression and clustering algorithms
including support vector machines, random forests, gradient boosting, k-
means and DBSCAN, and is designed to interoperate with the Python
numerical and scientific libraries NumPy and SciPy.

Tensorflow

Components Does lazy evaluation. Need to build the
graph, and then run it in a session.

MXNet
Is an modern open-source deep learning framework used to train, and deploy deep neural
networks. MXNet library is portable and can scale to multiple GPUs and multiple machines.
MXNet is supported by major Public Cloud providers including AWS and Azure. Amazon has
chosen MXNet as its deep learning framework of choice at AWS.

Keras
Is an open source neural network library written in Python. It is capable of running on top of MXNet,
Deeplearning4j, Tensorflow, CNTK or Theano. Designed to enable fast experimentation with deep neural
networks, it focuses on being minimal, modular and extensible.

Torch
Torch is an open source machine learning library, a scientific computing framework, and a script
language based on the Lua programming language. It provides a wide range of algorithms for deep
machine learning, and uses the scripting language LuaJIT, and an underlying C implementation.

Microsoft Cognitive Toolkit
Previously known as CNTK and sometimes styled as The Microsoft Cognitive
Toolkit, is a deep learning framework developed by Microsoft Research.
Microsoft Cognitive Toolkit describes neural networks as a series of
computational steps via a directed graph.

Tuning

Cross-validation

One round of cross-validation involves partitioning a sample of data into complementary subsets,
performing the analysis on one subset (called the training set), and validating the analysis on the
other subset (called the validation set or testing set). To reduce variability, multiple rounds of
cross-validation are performed using different partitions, and the validation results are averaged
over the rounds.

Methods

Leave-p-out cross-validation

Leave-one-out cross-validation

k-fold cross-validation

Holdout method

Repeated random sub-sampling validation

Hyperparameters

Grid Search

The traditional way of performing hyperparameter optimization has
been grid search, or a parameter sweep, which is simply an exhaustive
searching through a manually specified subset of the hyperparameter
space of a learning algorithm. A grid search algorithm must be guided
by some performance metric, typically measured by cross-validation
on the training set or evaluation on a held-out validation set.

Random Search

Since grid searching is an exhaustive and therefore potentially
expensive method, several alternatives have been proposed. In
particular, a randomized search that simply samples parameter settings
a fixed number of times has been found to be more effective in high-
dimensional spaces than exhaustive search.

Gradient-based optimization
For specific learning algorithms, it is possible to compute the gradient with respect to
hyperparameters and then optimize the hyperparameters using gradient descent. The first
usage of these techniques was focused on neural networks. Since then, these methods have
been extended to other models such as support vector machines or logistic regression.

Early Stopping (Regularization)Early stopping rules provide guidance as to how many iterations can be
run before the learner begins to over-fit, and stop the algorithm then.

Overfitting

When a given method yields a small training MSE (or cost), but a large test MSE (or cost), we are said to be overfitting
the data. This happens because our statistical learning procedure is trying too hard to find pattens in the data, that
might be due to random chance, rather than a property of our function. In other words, the algorithms may be
learning the training data too well. If model underfits, try removing some features, decreasing degrees of freedom, or
adding more data.

Underfitting
Opposite of Overfitting. Underfitting occurs when a statistical model or machine learning algorithm cannot
capture the underlying trend of the data. It occurs when the model or algorithm does not fit the data enough.
Underfitting occurs if the model or algorithm shows low variance but high bias (to contrast the opposite,
overfitting from high variance and low bias). It is often a result of an excessively simple model.

Bootstrap
Test that applies Random Sampling with Replacement of the
available data, and assigns measures of accuracy (bias, variance,
etc.) to sample estimates.

Bagging

An approach to ensemble learning that is based on bootstrapping. Shortly, given a training set,
we produce multiple different training sets (called bootstrap samples), by sampling with
replacement from the original dataset. Then, for each bootstrap sample, we build a model. The
results in an ensemble of models, where each model votes with the equal weight. Typically, the
goal of this procedure is to reduce the variance of the model of interest (e.g. decision trees).

Performance
Analysis

Confusion Matrix

Accuracy
Fraction of correct predictions, not reliable as skewed when the
data set is unbalanced (that is, when the number of samples in
different classes vary greatly)

f1 score

Precision
Out of all the examples the classifier labeled as
positive, what fraction were correct?

Recall
Out of all the positive examples there were, what
fraction did the classifier pick up?

Harmonic Mean of Precision and Recall: (2 * p * r / (p + r))

ROC Curve - Receiver Operating
Characteristics

True Positive Rate (Recall / Sensitivity) vs False Positive
Rate (1-Specificity)

Bias-Variance Tradeoff

Bias refers to the amount of error that is introduced by approximating
a real-life problem, which may be extremely complicated, by a simple
model. If Bias is high, and/or if the algorithm performs poorly even on
your training data, try adding more features, or a more flexible model.

Variance is the amount our model’s prediction would
change when using a different training data set. High:
Remove features, or obtain more data.

Goodness of Fit = R^21.0 - sum_of_squared_errors / total_sum_of_squares(y)

Mean Squared Error (MSE)

The mean squared error (MSE) or mean squared deviation
(MSD) of an estimator (of a procedure for estimating an
unobserved quantity) measures the average of the squares
of the errors or deviations—that is, the difference between
the estimator and what is estimated.

Error Rate
The proportion of mistakes made if we apply
out estimate model function the the training
observations in a classification setting.

Motivation

Prediction

When we are interested mainly in the predicted variable as a result of the inputs, but not
on the each way of the inputs affect the prediction. In a real estate example, Prediction
would answer the question of: Is my house over or under valued? Non-linear models are
very good at these sort of predictions, but not great for inference because the models
are much less interpretable.

Inference
When we are interested in the way each one of the inputs affect the prediction. In a real
estate example, Prediction would answer the question of: How much would my house
cost if it had a view of the sea? Linear models are more suited for inference because the
models themselves are easier to understand than their non-linear counterparts.

https://en.wikipedia.org/wiki/Autonomous_car

Machine Learning
Mathematics

Cost/Loss(Min)
Objective(Max)
Functions

Maximum
Likelihood
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ,
given outcomes x, is equal to the probability (density) assumed for those
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood
estimation and related techniques.

In general, for a fixed set of data and underlying
statistical model, the method of maximum likelihood
selects the set of values of the model parameters that
maximizes the likelihood function. Intuitively, this
maximizes the "agreement" of the selected model with
the observed data, and for discrete random variables it
indeed maximizes the probability of the observed data
under the resulting distribution. Maximum-likelihood
estimation gives a unified approach to estimation,
which is well-defined in the case of the normal
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss
function in machine learning and optimization.
The true probability pi is the true label, and
the given distribution qi is the predicted value
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when
using least squares techniques. It is often more mathematically
tractable than other loss functions because of the properties of
variances, as well as being symmetric: an error above the target
causes the same loss as the same magnitude of error below the target.
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for
training classifiers. For an intended output t =
±1 and a classifier score y, the hinge loss of
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of
measure theory, let P and Q denote two
probability measures that are absolutely

continuous with respect to a third probability
measure λ. The square of the Hellinger

distance between P and Q is defined as the
quantity

Kullback-Leibler Divengence

Is a measure of how one probability
distribution diverges from a second expected
probability distribution. Applications include
characterizing the relative (Shannon) entropy
in information systems, randomness in
continuous time-series, and information gain
when comparing statistical models of
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a
perceptual measure, it is intended to reflect
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Probability Concepts

Frequentist vs Bayesian Probability

Frequentist Basic notion of probability: # Results / # Attempts

Bayesian The probability is not a number, but a distribution itself.

http://www.behind-the-enemy-lines.com/2008/01/are-you-bayesian-or-frequentist-or.html

Random Variable
In probability and statistics, a random variable, random quantity, aleatory variable or stochastic variable is
a variable whose value is subject to variations due to chance (i.e. randomness, in a mathematical sense). A
random variable can take on a set of possible different values (similarly to other mathematical variables),
each with an associated probability, in contrast to other mathematical variables.

Expectation (Expected Value) of a Random Variable Same, for continuous variables

Independence
Two events are independent, statistically independent,
or stochastically independent if the occurrence of one
does not affect the probability of the other.

Conditionality

Bayes Theorem (rule, law)

Simple Form

With Law of Total probability

Marginalisation

The marginal distribution of a subset of a collection
of random variables is the probability distribution of
the variables contained in the subset. It gives the
probabilities of various values of the variables in the
subset without reference to the values of the other
variables. Continuous Discrete

Law of Total Probability
Is a fundamental rule relating marginal probabilities
to conditional probabilities. It expresses the total
probability of an outcome which can be realized
via several distinct events - hence the name.

Chain Rule

Permits the calculation of any member of the joint distribution of a set of
random variables using only conditional probabilities.

Bayesian Inference Bayesian inference derives the posterior probability as a consequence of two
antecedents, a prior probability and a "likelihood function" derived from a statistical
model for the observed data. Bayesian inference computes the posterior probability
according to Bayes' theorem. It can be applied iteratively so to update the confidence on
out hypothesis.

Distributions

Definition
Is a table or an equation that links each outcome of a statistical experiment
with the probability of occurence. When Continuous, is is described by the
Probability Density Function

Types (Density Function)

Normal (Gaussian)
Poisson

Uniform

Bernoulli

Gamma

Binomial

Cumulative Distribution Function (CDF)

Information Theory

Entropy

Entropy is a measure of
unpredictability of information
content.

To evaluate a language model, we should measure how much surprise it gives us for real sequences in that
language. For each real word encountered, the language model will give a probability p. And we use -log(p)
to quantify the surprise. And we average the total surprise over a long enough sequence. So, in case of a
1000-letter sequence with 500 A and 500 B, the surprise given by the 1/3-2/3 model will be:
[-500*log(1/3) - 500*log(2/3)]/1000 = 1/2 * Log(9/2)
While the correct 1/2-1/2 model will give:
[-500*log(1/2) - 500*log(1/2)]/1000 = 1/2 * Log(8/2)
So, we can see, the 1/3, 2/3 model gives more surprise, which indicates it is worse than the correct model.
Only when the sequence is long enough, the average effect will mimic the expectation over the 1/2-1/2
distribution. If the sequence is short, it won't give a convincing result.

Cross Entropy

Cross entropy between two probability distributions p and q over the same underlying set of events measures the average number of
bits needed to identify an event drawn from the set, if a coding scheme is used that is optimized for an "unnatural" probability
distribution q, rather than the "true" distribution p.

Joint Entropy

Conditional Entropy

Mutual Information

Kullback-Leibler Divergence

Density Estimation

Mostly Non-Parametric. Parametric makes assumptions on my data/random-variables,
for instance, that they are normally distributed. Non-parametric does not.

The methods are generally intended for description rather than formal inference

Methods

Kernel Density Estimation

non-negative

it’s a type of PDF that it is symmetric

real-valued

symmetric

integral over function is equal to 1

non-parametric

calculates kernel distributions for every
sample point, and then adds all the
distributions

Uniform, Triangle, Quartic, Triweight,
Gaussian, Cosine, others...

Cubic Spline
A cubic spline is a function created from cubic polynomials on each
between-knot interval by pasting them together twice continuously
differentiable at the knots.

Regularization

L1 normManhattan Distance

L1-norm is also known as least absolute
deviations (LAD), least absolute errors (LAE). It
is basically minimizing the sum of the
absolute differences (S) between the target
value and the estimated values.

L2 normEuclidean Distance
L2-norm is also known as least squares. It is
basically minimizing the sum of the square of
the differences (S) between the target value
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing
complex co-adaptations on training data. It is a very efficient way of performing model
averaging with neural networks. The term "dropout" refers to dropping out units (both
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each
column and an L1 norm over all columns. It
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to
the overall average of the functions across all tasks. This is useful for
expressing prior information that each task is expected to share similarities
with each other task. An example is predicting blood iron levels measured at
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces
similarity between tasks within the same
cluster. This can capture more complex prior
information. This technique has been used to
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between
tasks can be defined by a function. The
regularizer encourages the model to learn
similar functions for similar tasks.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Mini-batch Stochastic Gradient Descent
(SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Momentum

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will
increase the size of the steps taken towards
the minimum.

AdagradAdaptive learning rates for each parameter

Statistics

Measures of Central Tendency

Mean

MedianValue in the middle or an ordered
list, or average of two in middle.

ModeMost Frequent Value

QuantileDivision of probability distributions based on contiguous intervals with equal
probabilities. In short: Dividing observations numbers in a sample list equally.

Dispersion

Range

Medium Absolute Deviation (MAD)The average of the absolute value of the deviation of each
value from the mean

Inter-quartile Range (IQR)Three quartiles divide the data in approximately four equally divided parts

Variance

Definition
The average of the squared differences from the Mean. Formally, is the expectation of
the squared deviation of a random variable from its mean, and it informally measures
how far a set of (random) numbers are spread out from their mean.

Types

Continuous

Discrete

Standard Deviation

sqrt(variance)

z-score/value/factor
The signed number of standard
deviations an observation or datum
is above the mean.

Relationship

Covariance

dot(de_mean(x), de_mean(y)) / (n - 1)

A measure of how much two random variables change together. http://
stats.stackexchange.com/questions/18058/how-would-you-explain-
covariance-to-someone-who-understands-only-the-mean

Correlation

Pearson
Benchmarks linear relationship, most appropriate for measurements taken from
an interval scale, is a measure of the linear dependence between two variables

SpearmanBenchmarks monotonic relationship (whether linear or not), Spearman's coefficient is
appropriate for both continuous and discrete variables, including ordinal variables.

Kendall

Is a statistic used to measure the ordinal association between two measured quantities.

Contrary to the Spearman correlation, the Kendall correlation is not affected by how far from
each other ranks are but only by whether the ranks between observations are equal or not,
and is thus only appropriate for discrete variables but not defined for continuous variables.

Co-occurrenceThe results are presented in a matrix format, where the cross tabulation of two fields is a cell value.
The cell value represents the percentage of times that the two fields exist in the same events.

Techniques

Null HypothesisIs a general statement or default position that there is no relationship between two measured phenomena, or no
association among groups. The null hypothesis is generally assumed to be true until evidence indicates otherwise.

p-value

In this method, as part of experimental design, before performing the experiment, one first
chooses a model (the null hypothesis) and a threshold value for p, called the significance
level of the test, traditionally 5% or 1% and denoted as α. If the p-value is less than the
chosen significance level (α), that suggests that the observed data is sufficiently inconsistent
with the null hypothesis that the null hypothesis may be rejected. However, that does not
prove that the tested hypothesis is true. For typical analysis, using the standard α = 0.05
cutoff, the null hypothesis is rejected when p < .05 and not rejected when p > .05. The p-
value does not, in itself, support reasoning about the probabilities of hypotheses but is only
a tool for deciding whether to reject the null hypothesis.

Five heads in a row Example

Suppose a researcher flips a coin five times in a row and assumes a null hypothesis that the coin is fair. The test statistic
of "total number of heads" can be one-tailed or two-tailed: a one-tailed test corresponds to seeing if the coin is biased
towards heads, but a two-tailed test corresponds to seeing if the coin is biased either way. The researcher flips the coin
five times and observes heads each time (HHHHH), yielding a test statistic of 5. In a one-tailed test, this is the upper
extreme of all possible outcomes, and yields a p-value of (1/2)5 = 1/32 ≈ 0.03. If the researcher assumed a significance
level of 0.05, this result would be deemed significant and the hypothesis that the coin is fair would be rejected. In a two-
tailed test, a test statistic of zero heads (TTTTT) is just as extreme and thus the data of HHHHH would yield a p-value of
2×(1/2)5 = 1/16 ≈ 0.06, which is not significant at the 0.05 level.

This demonstrates that specifying a direction (on a symmetric test statistic) halves the p-value (increases the significance)
and can mean the difference between data being considered significant or not.

p-hacking
The process of data mining involves automatically testing huge numbers of hypotheses about a single data set by exhaustively searching for
combinations of variables that might show a correlation. Conventional tests of statistical significance are based on the probability that an observation
arose by chance, and necessarily accept some risk of mistaken test results, called the significance.

Central Limit Theorem
States that a random variable defined as the average of a large number of
independent and identically distributed random variables is itself approximately
normally distributed.

http://blog.vctr.me/posts/central-limit-theorem.html

Linear Algebra

Matrices
Almost all Machine Learning algorithms use Matrix algebra in one way or
another. This is a broad subject, too large to be included here in it’s full length.
Here’s a start: https://en.wikipedia.org/wiki/Matrix_(mathematics)

Basic Operations: Addition, Multiplication,
Transposition

Transformations

Trace, Rank, Determinante, Inverse

Eigenvectors and Eigenvalues
In linear algebra, an eigenvector or characteristic vector of a linear transformation T
from a vector space V over a field F into itself is a non-zero vector that does not
change its direction when that linear transformation is applied to it.

http://setosa.io/ev/eigenvectors-and-
eigenvalues/

Derivatives Chain Rule
RuleLeibniz Notation

Jacobian Matrix
The matrix of all first-order partial derivatives of a vector-valued function.
When the matrix is a square matrix, both the matrix and its determinant
are referred to as the Jacobian in literature

Gradient
The gradient is a multi-variable generalization of the
derivative. The gradient is a vector-valued function,
as opposed to a derivative, which is scalar-valued.

Tensors
For Machine Learning purposes, a Tensor can be described as a
Multidimentional Matrix Matrix. Depending on the dimensions, the
Tensor can be a Scalar, a Vector, a Matrix, or a Multidimentional Matrix.

When measuring the forces applied to an
infinitesimal cube, one can store the force
values in a multidimensional matrix.

Curse of Dimensionality
When the dimensionality increases, the volume of the space increases so fast that the available data
become sparse. This sparsity is problematic for any method that requires statistical significance. In
order to obtain a statistically sound and reliable result, the amount of data needed to support the
result often grows exponentially with the dimensionality.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Probability_and_statistics
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Marginal_probability
https://en.wikipedia.org/wiki/Conditional_probabilities
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Conditional_probabilities
https://en.m.wikipedia.org/wiki/Posterior_probability
https://en.m.wikipedia.org/wiki/Consequence_relation
https://en.m.wikipedia.org/wiki/Antecedent_(logic)
https://en.m.wikipedia.org/wiki/Prior_probability
https://en.m.wikipedia.org/wiki/Likelihood_function
https://en.m.wikipedia.org/wiki/Statistical_model
https://en.m.wikipedia.org/wiki/Statistical_model
https://en.m.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Ordinal_association
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Discrete_variable
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Vector-valued_function
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Determinant

Machine Learning
Models

Regression

Linear Regression

Generalised Linear Models (GLMs)

Is a flexible generalization of ordinary linear regression that allows for response
variables that have error distribution models other than a normal distribution. The
GLM generalizes linear regression by allowing the linear model to be related to the
response variable via a link function and by allowing the magnitude of the variance
of each measurement to be a function of its predicted value.

Link Function

Identity

Inverse

Logit

Cost Function is found via Maximum
Likelihood Estimation

Locally Estimated Scatterplot Smoothing (LOESS)

Ridge Regression

Least Absolute Shrinkage and Selection Operator (LASSO)

Logistic Regression

Logistic Function

Bayesian Naive Bayes
Naive Bayes Classifier. We neglect the
denominator as we calculate for every class
and pick the max of the numerator

Multinomial Naive Bayes

Bayesian Belief Network (BBN)

Dimensionality Reduction

Principal Component Analysis (PCA)

Partial Least Squares Regression (PLSR)

Principal Component Regression (PCR)

Partial Least Squares Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

Linear Discriminant Analysis (LDA)

Instance Based

k-nearest Neighbour (kNN)

Learning Vector Quantization (LVQ)

Self-Organising Map (SOM)

Locally Weighted Learning (LWL)

Decision Tree

Random Forest

Classification and Regression Tree (CART)

Gradient Boosting Machines (GBM)

Conditional Decision Trees

Gradient Boosted Regression Trees (GBRT)

Clustering

Algorithms

Hierarchical Clustering

Linkage

complete

single

average

centroid

Dissimilarity Measure

Euclidean
Euclidean distance or Euclidean
metric is the "ordinary" straight-
line distance between two points
in Euclidean space.

Manhattan
The distance between two
points measured along axes at
right angles.

k-Means How many clusters do we select?

k-Medians

Fuzzy C-Means

Self-Organising Maps (SOM)

Expectation Maximization

DBSCAN

Validation

Data Structure Metrics

Dunn Index

Connectivity

Silhouette Width

Stability Metrics

Non-overlap APN

Average Distance AD

Average Distance Between Means ADM

Figure of Merit FOM

Neural Networks

Unit (Neurons)

A unit often refers to the activation
function in a layer by which the
inputs are transformed via a
nonlinear activation function (for
example by the logistic sigmoid
function). Usually, a unit has
several incoming connections and
several outgoing connections.

Input LayerComprised of multiple Real-Valued inputs. Each input
must be linearly independent from each other.

Hidden Layers

Layers other than the input and
output layers. A layer is the
highest-level building block in
deep learning. A layer is a
container that usually receives
weighted input, transforms it with
a set of mostly non-linear
functions and then passes these
values as output to the next
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in
several ways. First, the gradient of the loss over a mini-batch is an estimate of the
gradient over the training set, whose quality improves as the batch size increases.
Second, computation over a batch can be much more efficient than m computations for
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and
at each step we consider a mini- batch x1...m
of size m. The mini-batch is used to approx-
imate the gradient of the loss function with
respect to the parameters.

Learning Rate

Neural networks are often trained by gradient
descent on the weights. This means at each
iteration we use backpropagation to calculate
the derivative of the loss function with respect
to each weight and subtract it from that
weight.

However, if you actually try that, the weights
will change far too much each iteration, which
will make them “overcorrect” and the loss will
actually increase/diverge. So in practice,
people usually multiply each derivative by a
small value called the “learning rate” before
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data
normalization it is reasonable to assume that
approximately half of the weights will be
positive and half of them will be negative. A
reasonable-sounding idea then might be to
set all the initial weights to zero, which you
expect to be the “best guess” in expectation.

But, this turns out to be a mistake, because if
every neuron in the network computes the
same output, then they will also all compute
the same gradients during back-propagation
and undergo the exact same parameter
updates. In other words, there is no source of
asymmetry between neurons if their weights
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very
close to zero, but not identically zero. In this
way, you can random these neurons to small
numbers which are very close to zero, and it is
treated as symmetry breaking. The idea is that
the neurons are all random and unique in the
beginning, so they will compute distinct
updates and integrate themselves as diverse
parts of the full network.

The implementation for weights might simply
drawing values from a normal distribution with
zero mean, and unit standard deviation. It is
also possible to use small numbers drawn
from a uniform distribution, but this seems to
have relatively little impact on the final
performance in practice.

Calibrating the Variances

One problem with the above suggestion is
that the distribution of the outputs from a
randomly initialized neuron has a variance that
grows with the number of inputs. It turns out
that you can normalize the variance of each
neuron's output to 1 by scaling its weight
vector by the square root of its fan-in (i.e., its
number of inputs)

This ensures that all neurons in the network
initially have approximately the same output
distribution and empirically improves the rate
of convergence. The detailed derivations can
be found from Page. 18 to 23 of the slides.
Please note that, in the derivations, it does
not consider the influence of ReLU neurons.

Backpropagation

Is a method used in artificial neural networks to
calculate the error contribution of each neuron
after a batch of data. It calculates the gradient
of the loss function. It is commonly used in the
gradient descent optimization algorithm. It is
also called backward propagation of errors,
because the error is calculated at the output
and distributed back through the network
layers.Neural Network taking 4 dimension vector

representation of words.

In this method, we reuse partial derivatives
computed for higher layers in lower layers, for
efficiency.

Activation Functions

Defines the output of that node given an input
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

