

The Tenth Conference

On Language Engineering
December 15-16, 2010, Cairo, Egypt

(ESOLEC'2010)

Organized by

Egyptian Society of Language Engineering (ESOLE)

Under the Auspices of

PROF. DR. HANY HELAL

Minister of Higher Education and Scientific Research

PROF. DR. TAREK KAMEL

Minister of Communications and Information

PROF. DR. AHMED ZAKI BADR

Minister of Education

PROF. DR. MOHAMMAD MAGED ELDIEB

President of Ain Shams University

PROF.DR. ALI SHERIF ELFAYAD

Dean, Faculty of Engineering, Ain Shams University

CONFERENCE CHAIRPERSON

PROF. DR. M. A. R. GHONAIMY

CONFERENCE COCHAIRPERSON

PROF. DR. SALWA ELRAMLY

Faculty of Engineering –Ain Shams University

http: //eng.asu.edu.eg/esole

Conference Chairman: Conference Sponsors

Prof. Dr. M. R. A. Ghonaimy

Technical Program Committee:

Prof. Taghrid Anber , Egypt
Prof. I. Abdel Ghaffar , Egypt

Prof. M. Ghaly, Egypt

Prof. M. Z. Abdel Mageed, Egypt

Prof. Khalid Choukri, ELDA, France

Prof. Nadia Hegazy, Egypt

Prof. Christopher Ciri, LDC, U.S.A

Prof. Mona T. Diab, Stanford U., U.S.A

Prof. Ayman ElDossouki, Egypt

Prof. Afaf AbdelFattah, Egypt

Prof. Y. ElGamal, Egypt

Prof. M. Elhamalaway, Egypt

Prof. S. Elramly, Egypt

Prof. H. Elshishiny, Egypt

Prof. A. A. Fahmy, Egypt

Prof. I. Farag, Egypt

Prof. Magdi Fikry, Egypt

Prof. Wafa Kamel, Egypt

Prof. S. Krauwer, Netherlands

Prof. Bente Maegaard, CST, Denmark

Prof. A. H. Moussa, Egypt

Prof. M. Nagy, Egypt

Prof. A. Rafae, Egypt

Prof. Mohsen Rashwan, Egypt

Prof. H.I. Shaheen, Egypt

Prof. S.I. Shaheen, Egypt

Prof. Hassanin M. AL-Barhamtoshy, Egypt

Prof. M. F. Tolba, Egypt

Dr. Tarik F. Himdi, Saudi Arabia

Organizing Committee

Prof. I. Farag Prof. S. Elramly

Prof. Nadia Hegazy Prof. Hany Kamal

Prof. H. Shahein Dr. A. Bahaa

Eng. Mona Zakaria Eng. Bassant A. Hamid

Conference Secretary General

Prof. Dr. Salwa Elramly

The Tenth Conference on Language Engineering

Final Program

Wednesday 15 December 2010

9.00 - 10.00 Registration

10.00 - 10.30 Opening Session

10.30 - 11.15 Session 1: Invited Paper 1:

Chairman: Prof. Dr. Adeeb Riad Ghonaimy

Arabic Linguistics and In-Depth Text Processing

Nabil Aly

Expert in Computational Linguistics

11.15 - 12.00 Coffee break

12.00 - 13.30 Session 2: Natural Language Processing for Information Retrieval

Chairman: Prof. Dr. Ibrahim Farag

1. Invited Paper 2: An NLP Based Fully Distributed Arabic Search

 Engine – Part (1)

 Taghride Anbar

 Al-Alson Faculty, Ain Shams University

2. Invited Paper 2: An NLP Based Fully Distributed Arabic Search

 Engine – Part (2)

 Mohammad Abdeen

 Faculty of Computer and Information Sciences, Ain Shams University

3. A Comparative Study of Rocchio Classifier Applied to supervised

 WSD Using Arabic Lexical Samples

 Soha M. Eid1, Almoataz B. Al-Said3, Nayer M. Wanas1, Mohsen

 A. Rashwan2, Nadia H. Hegazy1

 1Informatics Department, Electronics Research Institute, Cairo, Egypt

 2Electronics and Electrical Communications Department, Faculty of

 Engineering, Cairo University, Cairo, Egypt

 3Cairo University, Cairo, Egypt

13.30 - 14.30 Session 3: Machine Translation:

Chairman: Prof. Dr. Mohamad Zaki Abdel Mageed

1. UNL+3: The Gateway to a Fully Operational UNL System

 Sameh Alansary1, Magdy Nagi2, Noha Adly2
 1Department of Phonetics and Linguistics, Faculty of Arts, University

 of Alexandria, El Shatby, Alexandria, Egypt

 2Computer and Engineering Department, Faculty of Engineering,

 University of Alexandria, El Hadara, Alexandria, Egypt

2. A Practical Application of the UNL+3 Program on the Arabic

 Language

 Sameh Alansary

 Phonetics and Linguistics Department, Faculty of Arts, University of

 Alexandria, Alexandria, Egypt

 14.30 - 15.30 Lunch

15.30 - 17.00 Session 4: Room A: Language Analysis and Comprehension:

Chairman: Prof. Dr. Taghride Anbar

1. A Machine Learning-Based Automatic Arabic Diacritizer,

Tokenizer and Morphological Analyzer
 Ramy N. Eskander1, Amin F. Shoukry2, Saleh A.S. El-Shehaby3

 1Faculty of Engineering, Alexandria University, Alexandria, Egypt
 2Egypt-Japan University of Science and Technology (EJUST), New

 Borg El-Arab City, Alexandria, Egypt
 3Medical Research Institute, Alexandria University, Alexandria,

Egypt

 مساك (MSAC) تحليل للجملة العربية مبني على مدونة نصية من النصوص المعاصرة2.
ةد/سلوى السيد حماد

ّ حوث الإلكترونيمعهد ب اتّ

 3. Improving YamCha Tool Performance

 Salwa Hamada

 Electronics Research Institute (ERI)

15.30 - 17.00 Session 5: Room B: Semantic Web and Ontology Languages:

Chairman : Prof. Dr. Hassanin El-Barhamtoushy

1. Ontology-based Architecture for an Arabic Semantic Search

Engine

Ibrahim Fathy Moawad1, Mohammad Abdeen2, Mostafa Mahmoud

Aref3
1Computer Science Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Cairo, Egypt
2Information System Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Cairo, Egypt

2. Rich Semantic Graph Generation System Prototype

Mostafa Mahmoud Aref1, Ibrahim Fathy Moawad2, Soha Said

Ibrahim1
1Computer Science Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Cairo, Egypt
2Information System Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Cairo, Egypt

3. Ontology and its Methodology

Susan Fisal Ellakwah1, Passent El-Kafrawy2, Mohamed Amin2, El-

Sayed El-Azhary1
1Central Lab for Agricultural Expert Systems (CLAES), Agricultural

Research Center (ARC), Giza, Egypt
2Mathematics and CS Department, Faculty of Science, Menoufia

University, Egypt

17.00 - 17.30 Session 6: Room B: Language Engineering and Artificial

Intelligence

Chairman: Prof. Dr. Hany Kamal Mahdy

 1. AL-IMAM: A Comprehensive Database for Arabic Text Mining

 Ibrahim F. Imam, Ahmed Abd-Allah

 Computer Science Department, Arab Academy for Science,

 Technology and Maritime Transport, Cairo, Egypt

Thursday 16 December 2010

10.00 - 12.00 Session 7: Room A: Speech Processing, Recognition and Synthesis

Chairman: Prof. Dr. Mohsen Rashwan

1. On the Modeling of Non-Keyword Intervals for Spoken-Term

Detection in Arabic

M. Hesham1, M. F. Abu-EL-Yazeed2, and A. Toulan2
1Engineering Math. & Physics Dept., Faculty of Engineering, Cairo

University
2Electronics & Communications Engineering Dept., Faculty of

Engineering, Cairo University, Egypt

2. Designing and Implementing Arabic Text-To-Speech (ArTTS)

Hassanin M. Al-Barhamtoshy, Fahd Al-Hiedary, Mansour Al-Johany and

Wajdi H. Al-Jedaibi

Faculty of Computing and Information Technology, King Abdulaziz

University, SA

3. Automatic Speech Segmentation Using Genetic Algorithm Based on

Best Tree Encoding

Amr M. Gody

Electrical Engineering Department, Faculty of Engineering, Fayoum

University, Fayoum, Egypt

4. Variable Bit Rate Speech Coding Using Wavelet Transform

 Sarah Baligh Boulos1, Dr. Naglaa Hosny2
 1Communications and Electronics Department, Faculty of Engineering,

 Ain Shams University

 2Canadian International College, Egypt

12.00 - 12.30 Coffee Break

12.30 - 13.30 Session 8: Room A: Automatic Optical Character Recognition

Chairman: Prof. Dr. Waleed Fakhr

1. Recent Advances in Arabic Handwriting Recognition

Mostafa G. Mostafa1, Mohamed F. Tolba2
 1Computer Science Department, Faculty of Computer & Information

Sciences, Ain Shams University, Cairo, Egypt.
2Scientific Computing Department, Faculty of Computer & Information

Sciences, Ain Shams University, Cairo, Egypt

2. Arabic Character Recognition Using statistical Moment Invariants

 and ANN

 Ismail I. Amr1, Mohamed Amin2, Passent El-Kafrawy2, and Amr M.

 Sauber2
 1College of Computers and Informatics, Misr International University,

 Cairo, Egypt

 2Mathematics and CS Department, Faculty of Science, Menoufiya

 University, Egypt

13.30

-

14.00

Session 9: Room A: Large Corpora

Chairman: Prof. Dr. Mohamad Fahmy Tolba

1. A General Purpose Large Scale Arabic Online Handwriting Corpus

 Sherif Abdou1,3, Mohamed Waleed Fakhr2,3, Ibrahim Hosney1,

 FakhrEdeen Alwajeeh1
 1Faculty of Computers and Information Cairo University, Egypt
 2The Arabic Academy of Science and Technology, Egypt
 3The Arabic Language technologies Center (ALTEC), Egypt

2. Printed-Arabic Large Text Corpus for OCR Research (P-ALTEC)

 Waleed Fakhr1, Mohsen Moftah1, Mohsen Rashwan2, Mohamed

 ElMahallawy1
 1College of Computing, Arab Academy for Science and Technology,

 Cairo, Egypt

 2Communications Department, College of Engineering, Cairo University,

 Giza, Egypt

14.00 - 15.00 Lunch

15.00 - 17.00 Session 10: Room A: AOCR Products Evaluation Workshop

Chairman: Prof. Dr. M. Fahmy Tolba

العربية حروفعلى الالضوئي التعرف المعايير اللغوية والفنية لتقييم برامج .1

 عمرو جمعة عبد الرسول

 جامعة القاهرة –كلية دار العلوم

2. Panel Discussion

10.00 - 12.00 Session 11: Room B: Workshop on Language Modeling Applications in

Arabic NLP

Part 1: Prof. Dr. Mohamed Waleed Fakhre

12.30 - 14.00 Session 12: Room B: Workshop on Language Modeling Applications in

Arabic NLP

Part 2: Eng. Mohsen Moftah

15.00 - 17.00 Session 13: Room B: Workshop on Language Modeling Applications in

Arabic NLP

Part 3: Eng. Shady Abdel Ghaffar

17.00 - 17:30 Closing session

 أعضاء الجمعية من المؤسسات
 جامعة عين شمس -كلية الهندسة –مركز نظم المعلومات -1
 جامعة القاهرة -معهد الدراسات والبحوث الإحصائية -2
 جامعة عين شمس -مركز الحساب العلمى -3
 الأكاديمية العربية للعلوم والتكنولوجيا والنقل البحرى -4

 أكاديمية أخبار اليوم -5

 معهد بحوث الإلكترونيات -6

 معهد تكنولوجيا المعلومات -7

 الإسكندريةمكتبة -8
 (NTI)المعهد القومى للاتصالات -9

 (RDI)الشركة الهندسية لتطوير نظم الحاسبات -10
 الهيئة القومية للاستشعار من بعد و علوم الفضاء -11

 كلية الحاسبات و المعلومات جامعة قناة السويس -12

 دار التأصيل للبحث و الترجمة -13

 أهداف الجمعية
وصااراها المعجميااة بمجاااه هندسااة اللتويااات مااز التركيااز علااى اللتااة العربيااة بصافتها لتتنااا القوميااة والتركيااز علااى قواعااد ال يانااات الاهتماام -1

ونحوها ودلالتها بهدف الوصوه إلى أنظمة ألية لترجمة النصوص من اللتاات الأجن ياة إلاى اللتاة العربياة والعكاسك وكاللة معالجاة اللتاة
 المنطوقة والتعرف عليها وتوليدهاك ومعالجة الأنماط مز التركيز على اللتة المكتوبة بهدف إدخالها إلى الأجهزة الرقمية.

 متابعة التطور اى العلوم والمجالات المختصة بهندسة اللتة -2

 التعاون مز الجمعيات العلمية المماثلة على المستوى المحلى والقومى والعالمى. -3

إنشاااء قواعااد بيانااات عاان البحااوث التااى ساا ئ نشاارها والنتااائل التااى تاام التوصاال إليهااا اااى مجاااه هندسااة اللتااة بالإ ااااة إلااى المراجااز التااى -4
 يمكن الرجوع إليها سواء اى اللتة العربية أو اللتات الأخرى.

إنشاااء مجلااة علميااة دوريااة للجمعيااة عات مسااتوى عاااه لنشاار البحااوث الخاصااة بهندسااة اللتااة وكااللة بعاا النشاارات الدوريااة الإعلاميااة -5
 الأخرى بعد موااقة الجهات المختصة.

 عقد ندوات لراز الوعى اى مجاه هندسة اللتة -6

خلائ لوتتاح لكل من يهمه المو وع. وعلة من أجل تحسين أداء المشتتلين اى البحاث بالمتخصصينتنظيم دورات تدري ية يستعان ايها -7
 لتة مشتركة للتفاهم بين الأعضاء

 إنشاء مكتبة تتاح للمهتمين بالمو وع تشمل المراجز وأدوات البحث من برامل وخلااه. -8

 خلئ مجاه للتعاون وتباده المعلومات وعلة عن طريئ تهيئة الفرصة لعمل بحوث مشتركة بين المشتتلين اى نفس المو وعات. -9

 تقييم المنتجات التجارية أو البحثية والتى تتعرض لعملية ميكنة اللتة. -10

 .رصد الجوائز التشجيعية للجهود المتميزة اى مجالات هندسة اللتة -11

 .إنشاء اروع للجمعية اى المحااظات -12

 لهندسة اللغة العاشر المؤتمر
 2010ديسمبر 15-16
جمهورية مصر العربية -القاهرة

 ينظم المؤتمر

 الجمعية المصرية لهندسة اللغة

 تحت رعـاية
أحمد زكى بدر الأستاذ الدكتور/ الأستاذ الدكتور/ طارق كامل الأستاذ الدكتور/هانى هلال

 وزير التربية والتعليم وزير الاتصالات والمعلومات وزير التعليم العالى والبحث العلمى

 الديب ماجد محمدالأستاذ الدكتور/
 رئيس جامعة عين شمس

 الفياض شريف عليالأستاذ الدكتور/
جامعة عين شمس -عميد كلية الهندسة

 رئيس المؤتمر
 الأستاذ الدكتور/ محمد أديب رياض غنيمى

جامعة عين شمس –كلية الهندسة
 مقرر المؤتمر

الرملى حسين الأستاذ الدكتور / سلوى
 جامعة عين شمس -كلية الهندسة

جامعة عين شمس -المؤتمر : كلية الهندسة عقد مكان
http: //eng.asu.edu.eg/esole

Table of Contents
 page

I. Language Engineering Frameworks and Methodologies

1. Invited Paper 1: Arabic Linguistics and In-Depth Text Processing

Nabil Aly

Expert in Computational Linguistics

1

II. Language Analysis and Comprehension

2. A Machine Learning-Based Automatic Arabic Diacritizer, Tokenizer

and Morphological Analyzer
1Ramy N. Eskander, 2Amin F. Shoukry, 3Saleh A.S. El-Shehaby
1Faculty of Engineering, Alexandria University, Alexandria, Egypt
2Egypt-Japan University of Science and Technology (EJUST), New Borg

El-Arab City, Alexandria, Egypt
3Medical Research Institute, Alexandria University, Alexandria, Egypt

3. Improving YamCha Tool Performance

Salwa Hamada

Electronics Research Institute (ERI)

 تحليل للجملة العربية مبني على مدونة نصية من النصوص المعاصرة .4
An Analysis of Arabic Sentence based on a Modern Standard Arabic

Corpus (MSAC) مساك
ةد/سلوى السيد حماد

ّ حوث الإلكترونيمعهد ب اتّ

III. Language Engineering and Artificial Intelligence

5. AL-IMAM: A Comprehensive Database for Arabic Text Mining

Ibrahim F. Imam, Ahmed Abd-Allah

Computer Science Department, Arab Academy for Science, Technology and

Maritime Transport, Cairo, Egypt

IV. Semantic Web and Ontology Languages

6. Rich Semantic Graph Generation System Prototype
1Mostafa Mahmoud Aref, 2Ibrahim Fathy Moawad, 1Soha Said Ibrahim
1Computer Science Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt
2Information System Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt

7. Ontology and its Methodology

1Susan Fisal Ellakwah, 2Passent El-Kafrawy, 2Mohamed Amin, 1El-Sayed

El-Azhary
1Central Lab for Agricultural Expert Systems (CLAES), Agricultural

Research Center (ARC), Giza, Egypt
2Mathematics and CS Department, Faculty of Science, Menoufia University,

Egypt

8. Ontology-based Architecture for an Arabic Semantic Search Engine
1Ibrahim Fathy Moawad, 2Mohammad Abdeen, 3Mostafa Mahmoud Aref
1Computer Science Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt
2Information System Department, Faculty of Computer Science and

Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt

V. Automatic Optical Character Recognition

9. Recent Advances in Arabic Handwriting Recognition
1Mostafa G. Mostafa, 2Mohamed F. Tolba
 1Computer Science Department, Faculty of Computer & Information

Sciences, Ain Shams University, Cairo, Egypt.
2Scientific Computing Department, Faculty of Computer & Information

Sciences, Ain Shams University, Cairo, Egypt

10. Printed-Arabic Large TExt Corpus for OCR Research (P-ALTEC)
1Waleed Fakhr, 1Mohsen Moftah, 2Mohsen Rashwan, 1Mohamed

ElMahallawy
1 College of Computing, Arab Academy for Science and Technology

Ahmed Ismail street, Heliopolis, Cairo, Egypt
2 Communications Department, College of Engineering, Cairo University,

Giza, Cairo, Egypt

11. P17

VI. Large Corpora

12. P16

VII. Evaluation of Natural Language Processing Systems

 العربية حروف على الالضوئي التعرف المعايير اللغوية والفنية لتقييم برامج .13

 عمرو جمعة عبد الرسول

القاهرة جامعة –كلية دار العلوم

VIII. Machine Translation

14. UNL+3: The Gateway to a Fully Operational UNL System

Sameh Alansary1, Magdy Nagi2, Noha Adly2
1Department of Phonetics and Linguistics, Faculty of Arts, University of

Alexandria, El Shatby, Alexandria, Egypt
2Computer and Engineering Department, Faculty of Engineering, University

of Alexandria, El Hadara, Alexandria, Egypt

15. P11

IX. Speech Processing, Recognition and Synthesis

16. Designing and Implementing Arabic Text-To-Speech (ArTTS)

Hassanin M. Al-Barhamtoshy, Fahd Al-Hiedary, Mansour Al-Johany and

Wajdi H. Al-Jedaibi

Faculty of Computing and Information Technology, King Abdulaziz

University, SA

17. On the Modeling of Non-Keyword Intervals for Spoken-Term Detection

in Arabic

M. Hesham, M. F. Abu-EL-Yazeed, and A. Toulan

Engineering Math. & Physics Dept., Faculty and University, Electronics &

Communications Engineering Dept., Faculty of Engineering, Cairo

University, Egypt

18. Automatic Speech Segmentation Using Genetic Algorithm Based on Best

Tree Encoding

Amr M. Gody

Electrical Engineering Department, Faculty of Engineering, Fayoum

University, Fayoum, Egypt

A Machine Learning-Based Automatic Arabic

Diacritizer, Tokenizer and Morphological Analyzer
Ramy N. Eskander*, Amin F. Shoukry**, Saleh A.S. El-Shehaby***

*
Faculty of Engineering, Alexandria University

Alexandria, Egypt
rami_iskander@hotmail.com

**
Egypt-Japan University of Science and Technology (EJUST)

P.O.Box 179, New Borg El-Arab City, Alexandria, Egypt
amin.shoukry@ejust.edu.eg

Medical Research Institute, Alexandria University

Alexandria, Egypt
sshehaby@gmail.com

Abstract— Arabic language is a language that does not lend itself, easily, to automatic processing. This is caused by many issues such

as the affixation system in Arabic, the omission of disambiguating short vowels, and the diacritization system which may be absent

from the text. Moreover, Arabic letters are usually written in different shapes according to their positions in a word. Accordingly, an

Arabic word has about ten possible morphological solutions (analyses); with only one being the correct solution; depending on the

context of the word. Learning is required to understand context.

In this study, a machine-learning-based Arabic automatic tagger is implemented. The tagger acts as an automatic diacritizer,

tokenizer and morphological analyzer. The tagger is trained on a corpus whose Buckwalter morphological analysis is known and

depends on a set of SVMs (Support Vector Machines) for classification. Each classifier is trained, separately, on a single

morphological feature out of 13 features; which represent an extension of the set (of 10 features) provided by the Buckwalter analyser.

This divide-and-conquer technique has proved to be efficient. A best-match technique is used to pick the correct Buckwalter

morphological solution consistent with the output provided by the trained classifiers. The tagging results are promising and

competitive relative to existing systems. The authors plan to extend it to domain specific Arabic language understanding tasks.

1 INTRODUCTION

The Arabic language is one that is difficult to handle automatically. This is due to the following issues:

- the existence of affixation (prefixes or suffixes) with the Arabic words,

- the omission of disambiguating short vowels,

- the diacritization system which may be absent from the text,

- the different variants in which some Arabic letters may be written.

 As a result, most of the Arabic words are ambiguous in their morphological analysis. Generally, for an Arabic word there are

about ten possible morphological solutions (analyses) on average; with only one being the correct analysis according to the

context of the word. For instance; the Arabic word 'و��' may have the meanings of 'passion', 'and + grandpa', 'and + seriousness,

and 'found', with the following possibilities for the noun forms: nominative, accusative or genitive, and the verbal forms: perfect

or imperative.

In order to extract the correct solution of an Arabic word, it is a must to look at the context of this word. While humans

understand the meaning of the context first, machines need some kind of learning, since no direct rules can resolve the

morphological analysis of any natural language.

An Arabic word consists of 3 parts; 0-3 prefixes, 1 stem and 0-3 suffixes, where the prefixes and suffixes are called the affixes

of the word. Prefixes always have a length of 0-4 characters, while suffixes always have a length of 0-6 characters. A stem can

have any number of characters, but should have at least 1 character.

The objective of this study is to make an Arabic automatic tagger that acts as a diacritizer, tokenizer and morphological

analyzer. This is to be done through using a strong Arabic morphological analyzer. The Buckwalter morphological analyzer [2]

is the one that is recommended for this purpose due to previous related work and good results. The Buckwalter analyzer accepts

an Arabic text as an input and outputs all the possible morphological solutions for each word in the input text. A complete

Buckwalter solution contains:

- the complete POS of the word; the POS includes word diacritization, word tokenization and all the morphological

features of the word, such as basic POS, gender... etc.,

- the English gloss of the word, the English translation of the word (e.g., ktba = wrote + [he/it]),

- word vocalization (diacritization), the pronunciation of the word,

- word lemma, a distinct form of the word that has similar meanings (e.g., mdrsp = school or teacher).

These solutions correspond to the values of a large number of features, such as the basic Part-Of-Speech (POS), voice, gender,

person… etc. For Arabic, this gives us about 300,000 theoretically possible completely specified Buckwalter morphological

POS’s.

In order to train classifiers on this huge set (300,000 possible complete POS's), a divide and conquer technique seems to be a

good solution. The set of POSs is split into smaller sets, and a classifier is trained for each set independently. SVMs have been

chosen for this purpose. When testing the classifiers, their outputs are combined together in order to reach the correct POS and

select the correct Buckwalter analysis.

The remaining of this paper is organized as follows: section 2 illustrates how the presented work relates to previous known

work. Section 3 gives a general overview of the proposed system. Section 4 describes the data preparation phase while section 5

describes the classifiers training and testing. Section 6 describes the obtained results and, finally, section 7 concludes the paper.

2 RELATION TO PREVIOUS WORK

While there have been many publications on computational morphological analysis for Arabic, only Diab et al. [7] and Habash

et al. [8] performed a large-scale corpus-based (supervised) evaluation of their approach. They mainly depend on the

Buckwalter morphological analyzer, and use SVM-based learner for their automatic tagging tasks. Although the system

presented, in this work, is similar to the one used by Habash et al. [8], the main differences are:

- Habash et al. specifies a set of ten morphological features, for each word, within an input Arabic text. These features

are the basic POS: conjunction, particle, pronoun, determiner, gender, number, person, voice and aspect. These features

are not enough to specify the complete Buckwalter solution. Therefore, three more features have been added, which are

indefiniteness, case and mood.

- The target of the tagger is to make an automatic tagger that acts as a diacritizer, tokenizer and morphological analyzer.

This is to be done by automatically assigning the complete Buckwalter analysis and not just a set of morphological

features. By knowing the correct Buckwalter analysis, much valuable information can be obtained such as the complete

POS of the word, the English translation of the word, word vocalization (diacritization) and word lemma.

- Selecting the possibly correct Buckwalter analysis is done through an advanced best-match algorithm designed to deal

with morphological data and makes use of the history of previous tagging results.

- Many issues have been investigated, such as the alternatives and the different parameters values that affect the tagging

process such as the selection of the features and their possible values, and the tuning of the learning parameters while

training the classifiers.

3 OVERVIEW OF THE PROPOSED SYSTEM

The development of the proposed system necessitates three phases. The first phase is the construction of the training and testing

data sets from an Arabic Corpus. The training data is constructed by converting an annotated Arabic corpus to what is called

“Morph objects” through a “Morph generator” (implemented according to the domain of the features and their values). The

second phase is the supervised training of the SVM-based classifiers [6] using the training data set. The third phase consists in

applying the trained classifiers on the untagged input Arabic text, and processing the output of these classifiers to get the

possibly correct Buckwalter analysis. By comparing the obtained results with the known correct Buckwalter solutions, the

performance of the system is evaluated.

4 DATA PREPARATION

The source of the data (training corpus) is the Penn Arabic Treebank Corpus (PAT), developed by the Linguistic Data

Consortium (LDC). This corpus has been used in the previous Arabic automatic taggers developed by Diab et al [7] and Habash

et al [8], and proved to be an excellent source when it comes to Buckwalter-based data.

The PAT corpus is a huge collection of Arabic text, generated from different sources at different times and contexts. Each word

in the PAT corpus is associated with all the possible Buckwalter solutions, with the correct one identified. The PAT corpus is

not well-written which means that it may contain Arabic text that does not follow strict syntactical or grammatical rules. For

each word in the PAT Corpus, the corpus lists all the solutions corresponding to the possible different variants of that word, e.g.,

it tries to replace the Arabic letter ALEF with ALEF-with-HAMZA-Above and ALEF-with-HAMZA-Below plus the other

possible variants for the Arabic letter ALEF. The same is done with the Arabic letter HEH and THE-MARBUTA, and the

Arabic letter ALEF-MAKSURA and YEH. Also, the corpus lists all the solutions corresponding to the possible diacritization

marks of the word. Additionally, the analysis of a word always contains a proper noun solution whose gloss in not in the

lexicon.

The PAT corpora have three main parts. For this study, part 3 (with a size of 340,000 words) has been used. It has been initially

chosen to use 327k words for the training purpose while the remaining 13k words are used for testing and analyzing the

developed system. In general, increasing the size of the training corpus enhances the tagger performance. But at some point,

increasing the size of the corpus will not affect the final output of the tagger, which is known as a 'Saturation State". This

happens when the classifier is not capable of generating any further information from any extra training data, i.e., the

information within the extra training data is redundant.

 Each word in the training corpus is converted into a Morph object by splitting the correct POS of this word into a group of

morphological features. This process is not easy in several cases, and many decisions have to be determined. This conversion

process is done by what is called a 'Morph generator’. A Morph generator has as input a Buckwalter solution and outputs its

corresponding Morph object. As mentioned before, a word may have several Buckwalter solutions with one of them being the

correct one according to the context of the word. A Buckwalter solution includes the following information; the complete POS,

English gloss, vocalization and lemma.

A Morph object represents all the morphological features of a word based on a specific Buckwalter solution. For a given word,

if there are 'n' different Buckwalter solutions, then there are 'n' possible Morph objects, each corresponding to a specific

Buckwalter solution.

In order to implement the Morph generator Application, it is required to:

1. Determine the morphological features that a Morph object should contain, the selection of the features should be

sufficient to identify a unique complete Buckwalter POS out of different possible complete Buckwalter POSs

2. Determine the domain of each morphological feature.

3. Specify rules to obtain the value of each morphological feature from the input Buckwalter solution.

Figure 1: Morph generator

 The definition of each of the 13 features used is as follows:
The basic POS of the word, e.g., noun, verb, pronoun, particle…… etc. (ع ا������
)
The existence of a determiner associated with the word (ا������ ��ل)
The existence of a particle associated with the word (���� و��د ��ف)
The existence of a pronoun associated with the word (���� ���� (و��د
The existence of a conjunction associated with the word (�� (و��د ��ف �
The gender of the word (!"ع ا��
)
The number of the word (ا���د)
The person of the word (#$%ا�)
The voice of the word (only with verbs) (��&ء ا��!�)
The aspect of the word (only with verbs) (��&(ز�) ا�
The indefiniteness of the word (�*�� (ا+
The mood of the word (only with verbs - like the case in the nouns) (��&ا� ����)

The case of the word (nominative -accusative - genitive) (�� (ا�,��� ا+��ا�

The basic POS is the most important feature. It is determined according to the stem of the word. The different types of stems are

put in different categories (see Table(1)). The other features depend mainly on the basic POS, i.e., the value of the other features

may relate to the value of the basic POS of the word (see Table(2)).

TABLE 1: BASIC POS TYPES

Basic POS Stem Types

Abbreviation (ABR) ABBREV

Adjective (ADJ) ADJ

Adverb (ADV) ADV

Conjunction (CONJ) CONJ

Demonstrative Pronoun (DPRO)

DEM

DEM_PRON_F

DEM_PRON_FD

DEM_PRON_FS

DEM_PRON_MD

DEM_PRON_MP

DEM_PRON_MS

Interjection (INTERJ) INTERJ

Negative Part (NEG_PART) NEG_PART

Noun (NN) NOUN

Proper Noun (NNP)

NOUN_PROP

FUNC_WORD

NUMERIC_COMMA

LATIN

Number (NUM) NUM

Particle (PP)

DET

PREP

PART

EXCEPT_PART

FOCUS_PART

FUT_PART

INTERROG_PART

VERB_PART

SUB_CONJ

REL_ADV

Pronoun (PRON)

PRON_1P

PRON_1S

PRON_2FS

PRON_2MP

PRON_2MS

PRON_3D

PRON_3FP

PRON_3FS

PRON_3MP

PRON_3MS

Punctuation (PUNC) PUNC

Relative Pronoun (RPRON) REL_PRON

Verb (VB)

VERB_IMPERATIVE

VERB_IMPERFECT

VERB_IMPERFECT_PASSIVE

VERB_PERFECT

VERB_PERFECT_PASSIVE

Unknown (X) UNKNOWN

NIL Gloss: not in lexicon

TABLE 2: FEATURE DOMAINS

Feature Domain

Basic Part Of Speech (POS) See Table 1

Aspect (ASP) Perfect(PER) – Imperfect(PER) – Imperative(IMP) – Not Valid(NV)

Case (CASE)
Nominative(NOM) – Accusative(ACC) – Genitive(GEN) – Acc/Gen(AG) –

Not Valid(NV) – Not Applicable(NA)

Conjunction (CONJ) True(T) – False(F) (either exists or not) – Not Applicable(NA)

Determiner (DET) True(T) – False(F) (either exists or not) – Not Valid(NV)

Gender (GEN) Masculine(M) – Feminine(F) – Neutral(N) – Not Valid(NV)

Indefiniteness (INDEF) True(T) – False(F) (either exists or not) – Not Valid(NV)

Mood (MOOD)
Indicative(I) – Subjunctive(S) – Jussive – Subjunctive/Jussive(SJ) – Not

Valid(NV) – Not Applicable(NA)

Number (NUM) Single(SG) – Dual(DL) – Plural(PL) – Not Valid(NV)

Particle (PART) True(T) – False(F) (either exists or not)

Person (PER) One(1) – Two(2) – Three(3) – Not Valid(NV)

Pronoun (PRON) True(T) – False(F) (either exists or not) – Not Valid(NV)

Voice (VOICE) Active(ACT) – Passive(PAS) – Not Valid(NV)

 In order to settle the rules that assign the values of the 13 morphological features it is necessary to

determine the following information for each feature:

1- the possible POS type that may carry this feature, i.e., the feature has a 'Not valid' value for the

other basic POS types,

2- the default value of the feature in the case of not being able to assign a specific value,

3- the method of extracting the feature value based on the information from (1) and (2).

 In order to obtain such information, it is necessary to take into consideration all the possible forms of the

Buckwalter POS. Since each Arabic word has 3 main parts; prefixes (0-3) stem (1) and suffixes (0-3),

hence, the Buckwalter POS of a word can have 3 POS parts, resulting in more than 300,000 [8] possible

POS forms. Therefore, to get the information regarding each feature, it is necessary to iteratively scan all

the possible Buckwalter solutions in the training corpus, and studying the relations between the features

and their corresponding basic POS types, and observing the value of each feature under all possible cases.

Some features always have a value regardless of the basic POS type of the word, while others may have

no-value with specific types; for instance, a conjunction always exists for any basic POS type (either the

word is associated with a conjunction or not), while the aspect feature is not valid except for the verbs.

Therefore, a feature domain may contain an extra value which is "Not Valid". Table (3) lists the possible

basic POS types for each feature, and its corresponding default value.

TABLE 3: POSSIBLE BASIC POS TYPES OF THE MORPHOLOGICAL FEATURES

Feature Possible basic POS Types Def. Value

Basic POS (POS) All X

Aspect (ASP) VB Perfect

Case (CASE) ADJ, ADV, DPRO, INT, NEG, NN, NNP, NUM, PP, RPRO Nominative

Conjunction (CONJ) All False

Determiner (DET) ABR, ADJ, INT, NEG, NN, NNP, NUM False

Gender (GEN) ADJ, ADV, DPRO, NN, NNP, NUM, PRO, RPRO, VB Masculine

Indefiniteness (INDEF) ADJ, ADV, DPRO, INT, NEG, NN, NNP, NUM, PP, RPRO False

Mood (MOOD) VB Indicative

Number (NUM) ADJ, ADV, DPRO, NN, NNP, NUM, PRO, RPRO, VB Singular

Particle (PART) All False

Person (PER) ADJ, ADV, DPRO, INT, NEG, NUM, NN, NNP, PP, PRO, VB Three

Pronoun (PRON) ADJ, ADV, INT, NEG, NN, NNP, NUM, PP, VB False

Voice (VOICE) VB Perfect

From what has been given above, the number of constructed Morph objects is equal to the size of the

training corpus. These objects represent the basis for the training data, and are formatted for the training of

the classifiers. Figure 2 illustrates the conversion of the training corpus to training Morph objects.

Figure 2: Generating the training Morph objects

5 CLASSIFIERS TRAINING AND TESTING

In the data preparation phase, many thousands of Arabic words are generated; each is associated with its morphological features

in the form of a Morph object. The target of this section is to explain the training of the classifiers using these morphological

features, so that the classifiers can be tested on any text required for tagging.

Yamcha classifiers, based on Support Vector Machines (SVMs), are used for the training and testing phases. The Morph

objects, generated in the data preparation phase, are converted into training files that have the correct format required for

Yamcha. Each feature is to be learned independently, i.e., there is an independent training file and an independent classifier for

each of the 13 morphological features (see Figure(3)). Each classifier is trained independently resulting in what is called a

“Model” file which represents the trained classifier. These model files are then used for testing untagged input data and

converting them to output data. Figure 4 illustrates the usage of Yamcha in training the classifiers and outputting the model

files. Figure 5 illustrates the testing process.

A feature value of a word in a sentence is most likely correlated to the values of this feature or other features in the adjacent

words. For instance, if a word is preceded by a preposition then it is nominative, and when a word has a determiner and is

preceded with an accusative word, then it is accusative. Generally speaking, during training, it is necessary to have a look at the

grammatical context of the analyzed words. This is DONE in Yamcha through the window Size parameter and the static and

dynamic features. The window size parameter determines how many adjacent pieces of information are considered while

training the classifiers. All features have been trained under window sizes that have a range between 1 and 5.

Figure 3: Converting the Morph objects to training files

The learning process consumes much time; the bigger the window size and the learning domain are, the bigger time the learning

process consumes. This is not a problem since learning is done only once. However, testing should be fast since it is done

frequently, i.e., each time a new untagged input text is queried.

Figure 4: Training the classifiers

Figure 5: Testing process

The untagged input Arabic text that is required for tagging should have a specific format that is acceptable by Yamcha, where a

new line character represents the sentence boundary and, the words including the punctuation marks and any individual tokens,

are space-separated.

The suggested Morph objects represent the morphological solutions provided by the classifiers. They are generated by using the

13 tagged files generated in the test phase. These tagged files are then merged together into one tagged file. Figure 6 illustrates

the merging process.

Figure 6: Merging the tagged files

The merged tagged file is then encapsulated into a list of Morph objects using the Morph generator application that was used in

generating the training Morph objects. Figure 7 illustrates this process. There is one morph object for each word. This Morph

object is the suggested solution provided by the classifiers, and is called the suggested Morph object. The suggested Morph

objects are then compared with all the possible Morph objects resulted from the Buckwalter analysis, but first they have to get

some kind of tuning.

Figure 7: Generating the suggested Morph objects

The aim of the tuning process is to make the output of the classifier more consistent with the Arabic rules. For example, it has

been noted that some feature values make conflict with other features values and some feature values do not match the syntax of

the underlying word. Therefore, these values are modified in order to be consistent with Arabic morphological rules. Tuning

the morphological rules is a linguistic issue and is open for enhancement as there are many rules to be considered.

Next, the suggested Morph objects are compared with the candidate Morph objects obtained by running the Buckwalter analysis

on the input untagged text. Figure 8 illustrates the generation process of the candidate Morph object, while Figure 9 represents a

full picture of the process of automatically selecting the possibly correct Buckwalter analysis.

Figure 8: Generating the candidate Morph objects

Figure 9: Selecting the possibly correct Buckwalter analysis

A The Best-Match Morph Object Algorithm (BMMO)

The purpose of the BMMO algorithm is to find the best-match of a given Morph object with a list of

candidate Morph objects. Before discussing the BMMO algorithm, it is necessary to describe some

concepts that are used within the algorithm. These concepts are:

feature weight, Morph agreement, awarded and penalized Morph Objects and Morph frequency. They are

briefly explained below.

1) Feature Weight: The weight of a morphological feature describes how much the classifier of this feature is trusted. It is

equal to the maximum learning accuracy obtained from training the classifiers.

2) Morph Agreement: Morph agreement is a measure of the similarity between two Morph objects. It is based on the

values of the morphological features within the two Morph objects. The agreement is either absolute or weighted. The

absolute agreement is the number of the equal features within the two compared Morph objects (an integer in the

interval [0, 13]). The weighted agreement is the sum of the weights of the equal features within the two compared

Morph objects.

3) Awarded and Penalized Morph Objects: When comparing the suggested Morph object provided by the classifiers to

the list of the candidate Morph objects provided by the Buckwalter analysis, some candidate Morph objects seem

preferable than others. Deciding which Morph objects should be awarded or penalized is a linguistic issue and is open

for enhancement as there are many rules to be considered. For example, a Morph object suggesting a noun with no

associated case should be penalized as this solution does not make sense. In this work, a positive or negative credit is

added to the calculated agreement. The amount of credit to be added has been determined by a trial-and-error

technique.

4) Morph Frequency: Morph frequency represents how frequent a Buckwalter solution is associated to a Morph object in

the training corpus or from previous tagging results. It is a simple type of statistical analysis used in natural language

processing. More precisely, Morph frequency is a function of the occurrence of the individual components of the

Buckwalter solution in the previous history. These individual components are the POS, English gloss, vocalization and

lemma. Mathematically Morph frequency is given as:

Morph Frequency = (X1.POS + X2.Gloss + X3.Voc + X4.Lemma) / (X1 + X2 + X3 + X4)

Where, POS, Gloss, Voc, and Lemma represent the frequencies of the occurrence of the POS, English gloss, vocalization and

Lemma respectively in the previous historical data. X1, X2, X3 and X4 are weighting factors that are determined by some kind of

trial-and-error technique.

The BMMO algorithm is described as follows:

The Best-Match Morph Object Algorithm – BMMO

Input
A Morph object (suggested Morph object)

A list of Morph objects (candidate Morph objects)

Output
The candidate Morph objects list sorted due to the best-match with the suggested Morph object.

The Best-Match Morph Object Algorithm – BMMO

Procedure

1- Calculate the agreement (either absolute or weighted) between each candidate Morph Object and

the suggested Morph object.

2- Add an appropriate credit (either positive or negative) to each agreement value calculated in (1)

due to the nature of the associated Buckwalter solution.

3- Calculate the Morph frequency for each Morph object according to the following equation:

Morph Frequency = (X1.POS + X2.Gloss + X3.Voc + X4.Lemma) / (X1 + X2 + X3 + X4)

4- For each candidate Morph object, add the value calculated in (1 & 2) + the value calculated in

(3) which is equivalent to:

Agreement + awarded or penalized credit + Morph frequency

5- Sort the candidate Morph objects list according to the values calculated in (4).

 In the case of equality, the preference is given to the Morph object that has a higher agreement

According to the presented system, the following parameters and choices were considered while applying the best-match

algorithm:

- Agreement: The weighted agreement is used instead of the absolute agreement.

- NOT_IN_LEXICON solutions are penalized by a negative credit of 3, added to the corresponding agreement.

- Noun without cases solutions are penalized by a negative credit of 1, added to the corresponding agreement.

- Morph Frequency = (POS + Gloss + Voc + Lemma) / 4, where X1, X2, X3 and X4 are all set to 1.

6 RESULTS

There are two variants of the presented system; normal and strict. The normal variant expects the received Arabic input text to

be not well written, i.e., includes syntactical errors (e.g., eliminating the letter HAMZA while it is required). The normal variant

deals with training data generated from not well-written text, and has its own model files and features weights. Also, when

applying the best match algorithm, the normal variant considers all the variants generated from the Buckwalter analysis. On the

contrary, the strict variant expects the received Arabic input text to be well written, i.e., does not include syntactical errors. This

variant deals with training data generated from well-written text, and also has its own model files and features weights. Also,

when applying the best match algorithm, the strict variant eliminates the variants that do not match the original tested text, and

are generated from the Buckwalter analysis.

Table 4 lists the final obtained accuracies for all the13 morphological features

TABLE 4: FINAL ACCURACIES OF THE MORPHOLOGICAL FEATURES

Morphological Feature

Accuracy %

Normal Variant Strict Variant

POS 96.7 96.9

Aspect 99.3 99.4

Case 91.3 91.5

Conjunction 99.9 99.9

Determiner 99.1 99.2

Gender 98.7 98.7

Indefiniteness 95.4 95.5

Mood 99.2 99.3

Number 98.6 98.6

Particle 99.8 99.9

Person 99.2 99.2

Pronoun 99.3 99.3

Voice 99.1 99.2

The aspect, mood and voice features have a very high accuracy of about 99.2% because these features appear only with verbs

and have an invalid value with the other POS types (verbal features). Because verbs appear less frequently than nouns and

particles, the "invalid" value within the verbal features is the major one, and hence the verbal features have high accuracies.

Notice that the learning of these features requires a relatively large window size, since the recognition of verbs requires

inspecting the surrounding words.

The conjunction, determiner, gender, number, particle, person and pronoun features have very high accuracies of 99.9%,

99.2%, 98.7%, 98.6%, 99.9%, 99.2% and 99.3% respectively. These features distinguish their associated words with static and

limited prefixes and suffixes, and hence their inspection is not difficult, and their learning has high accuracy. Notice that the

learning of these features requires a relatively small window size because the associated words have specific affixes that can

distinguish the presence of the inspected features, while a larger window size adds additional misleading information.

The POS feature has an accuracy of 96.9% which is much less than the accuracy of the previous features. This is because the

POS feature has a large domain consisting of 17 values. Moreover, the POS value depends on the context of the word which in

turn makes the learning process more difficult.

The case and indefiniteness features have low accuracies of 91.5% and 95.5% respectively. This is because these features

heavily depend on the location of the word within the sentence, which in turn makes their learning more difficult, and explains

why they need a relatively large window size.

It is noticeable that the strict variant has higher accuracies rather than the normal variant. This is because a token in the strict

variant has less features values in the training data. Moreover, when applying the best-match algorithm, the selection is done

with a less number of candidate Morph objects where the Buckwalter variants that do not match the tested token are eliminated.

Table 5 lists the percentages of the occurrence and the accuracies of the different basic POS types in the PAT testing corpus.

Ten basic POS types are detected correctly with an accuracy of higher that 95%. These types are Conjunctions, demonstrative

pronouns, interjections, nouns, numbers, particles, pronouns, punctuations, relative pronouns and verbs. Other POS types have

also good accuracies, while other types have lower but still-acceptable accuracies.

TABLE 5: FINAL ACCURACIES OF THE BASIC POS TYPES

Basic POS Type Occurrence %

Accuracy %

Normal Variant Strict Variant

Abbreviation 00.15 70.0 70.0

Adjective 10.70 90.1 91.6

Adverb 00.67 86.3 87.3

Conjunction 00.54 100.0 100.0

Demonstrative pronoun 01.07 100.0 100.0

Interjection 00.05 100.0 100.0

Negation 01.23 93.2 93.8

Not In Lexicon 01.50 79.6 80.2

Noun 36.03 98.0 97.9

Proper noun 05.73 93.5 93.2

Number 01.50 94.9 96

Particle 16.71 99.5 99.5

Pronoun 00.54 100.0 100.0

Punctuation 11.09 100.0 100.0

Relative pronoun 01.66 95.4 95.4

Verb 09.97 96.1 96.4

Unknown 00.89 85.4 86.1

Conjunctions, demonstrative pronouns, interjections, pronouns and punctuations are always detected correctly (have an

accuracy of 100%). This is because these POS types have limited forms that can be easily recognized in the input text.

Punctuations have an extra advantage that they have only one Buckwalter solution, so they are always detected correctly.

Nouns, numbers, particles, relative pronouns and verbs have good accuracies of higher than 95%. Their detection accuracies

are 97.8%, 96.0%, 99.5%, 95.4%, and 96.4% respectively. It is important to have nouns, verbs and particles with these high

accuracies, since they are considered as the basic tokens of any natural language.

Adjectives, negations and proper nouns have also good accuracies of 91.6%, 93.8% and 93.2% respectively. These accuracies

are acceptable since these types rarely occur in the natural language. Moreover, there should be conflicts among nouns,

adjectives and proper nouns. This conflict is mostly resolved for nouns, which in turn decreases the detection accuracies of

adjectives and proper nouns. This is acceptable since the occurrence frequency of nouns is the highest one among all the basic

POS types, and then the detection of nouns is the most important.

Abbreviations, adverbs, not in lexicon types and unknown types have relatively lower accuracies of 70.0%, 87.3%, 80.2%

and 86.1% respectively. The detection accuracy of the adverbs should be better than that, while the other types are most likely

to be absent in the training data, so their occurrence in any tested text is mostly surprising, and as a result their detection

accuracies are the least among the detection accuracies of the other POS types.

Table 6 lists the final overall accuracies of the presented tagger. The following may be observed: Word vocalization has an

accuracy of 87.7%, which means that diacritization can be assigned with an accuracy of 87.7% on the letter basis. Word

Tokenization has a very high accuracy of 99.6%. Tokenization is not a separate part of the Buckwalter solution, but it can be

extracted from the complete Buckwalter POS, where the words are divided to prefixes, a stem and suffixes. Finally, the tagger

can assign a complete Buckwalter solution correctly (POS, gloss, vocalization and lemma ID) with an accuracy of 84.3%. These

final results are promising, competitive and high enough to overcome the current lingual systems that deal with the Arabic

language.

TABLE 6: FINAL OVERALL ACCURACIES

Solution Part

Accuracy %

Normal Variant Strict Variant

Complete POS 84.7 85.7

English Gloss 91.3 92.3

Vocalization (Diacritization) 86.7 87.7

Lemma ID 94.5 95.2

Tokenization 99.6 99.6

Complete Buckwalter Solution 83.3 84.3

The tagger outputs 2 main files; the first file includes all the morphological features of the input untagged text, while the second

one outputs the input text in a diacritized format. The diacritization is complete including the main case of the word. The

following example illustrates the power of the diacritizatoin of the presented system.

Input text:

ول ���ر أآ��� �
� أو��� ا��
� أن ا����� ������� ا����� ������ إ��اد �$ ا#"! �ء

 .ا#2!��ر+� وا�����ت ا�0-� ا�!/�. -,�د+* ��"(ن �)�وع

Text after diacritization:
4�9� ا#?"<ِ! �ءِ ِ�$ إ;�:�ادِ أَآ4�5 �4�:�9ر> �9�:
=ول> �;���4:
4ِ� ا����8ِ� 9���5���ِِ� ا��8��ِِ� أَن5 ا�4� �4��
4ِ� أَو:َ:�
 .�9ْ)�=وعA ��"=(ن; -9,�دِ+*; ا�!5ْ/ِ�.; ا�0-8ِ� و9ا���4��تِ ا#?2<ِ!��ر;+8ِ�

Finally, it is worthy to mention that that tagger has the ability to run with an average speed of 2000 words per minute, i.e. the

tagger could assign the diacritization, tokenization and morphological analysis with a very high competitive speed. This speed

can be enhanced by loading the resources once before running the tagging process for several times for several inputs.

7 CONCLUSIONS AND FUTURE WORK

The objective of this work has been the use of machine learning to design an Arabic automatic tagger that acts as a diacritizer,

tokenizer and morphological analyzer. This objective has been reached through a supervised tagging technique, i.e., a one that

uses an annotated corpus (whose correct Buckwalter morphological analysis is known) for classifiers training.

The results are promising and competitive. The tagger can assign the complete Buckwalter POS, English gloss, vocalization

(diacritization), lemma ID and tokenization with accuracies of 85.7%, 92.3%, 87.7%, 95.2% and 99.6% respectively. The

overall accuracy of assigning a complete Buckwalter analysis is 84.3%.

Enhancement and extension of the proposed system will be the subjects of future research work. For instance, the main problem

in building corpora is the annotation process. If the annotations can be made automatically then it would save much time and

efforts. This is doable by building a corpus whose annotations are made automatically using the presented tagger. Also, the

annotations would be much rich and useful since the presented tagger can accomplish diacritization, tokenization and

morphological analyses for the corpus text.

After syntactically analyzing the text, the next step is to analyze the text semantically and understand what does an input text

means. A semantic analysis can be accomplished based on the syntactical analysis of the presented tagger. Semantic

applications have great interest due to their importance in the real life practice, such as understanding the written/spoken text,

monitoring and tracking systems, language learning programs and other several vital applications.

REFERENCES

 [1] Imad A. Al-Sughaiyer and Ibrahim A. Al-Kharashi, “Arabic morphological analysis techniques. A comprehensive survey”,

Journal of the American Society for Information Science and Technology, Pages 189–213, 2004.

[2] Tim Buckwalter, “Buckwalter Arabic Morphological Analyzer”, Linguistic Data Consortium, University of Pennsylvania,

LDC (The Linguistic Data Consortium), Pages 1-5, 2002.

[3] Emad Mohamed and Sandra Kübler, “Is Arabic part of speech tagging feasible without word segmentation?”, The 2010

Annual Conference of NAACL (North American Chapter of the Association for Computational Linguistics), Los Angeles,

California, Pages 705-708, 2010.

[4] Kareem Darwish, “Building a shallow Arabic Morphological Analyser in One Day”, 41st Meeting of ACL (Association for

Computational Linguistics) Workshop on Computational Approaches to Semitic Languages, Philadelpia, PA, Pages 47-54,

2002.

[5] Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan, “Language model based Arabic word

segmentation”, 41st Meeting of ACL (Association for Computational Linguistics), Sapporo, Japan, Pages 399–406, 2003.

[6] Taku Kudo and Yuji Matsumato, “Use of Support Vector Learning for Chunk Identification”, Proc. of the 4th Conf. on Very

Large Corpora, Pages 142-144, 2000.

[7] Mona Diab, Kadri Hacioglu, and Daniel Jurafsky, “Automatic tagging of Arabic Text: From Raw Text to Base Phrase

Chunks”, I5th Meeting of the North American Chapter of the Association for Computational Linguistics/Human Language

Technologies Conference, Boston, MA, Pages 149-152, 2004.

[8] Nizar Habash and Owen Rambow, Arabic Tokenization, “Part-of-Speech Tagging and Morphological Disambiguation in

One Fell Swoop”, 43rd Meeting of ACL (Association for Computational Linguistics) Workshop on Computational Approaches

to Semitic Languages, Pages 573-580, 2005.

[9] Shereen Khoja, “APT: Arabic Part-of-speech Tagger”, Proc. of the Student Workshop at NAACL (North American Chapter

of the Association for Computational Linguistics), Pages 20-25, 2001.

[10] Mohamed Maamouri, Ann Bies, and Tim Buckwalter, “The Penn Arabic Treebank: Building a Largescale Annotated

Arabic Corpus”, NEMLAR (Network for Euro-Mediterranean Language Resources) Conference on Arabic Language Resources

and Tools, Cairo, Egypt, Pages 263–270, 2004.

[11] Taku Kudo and Yuji Matsumoto, “Fast Methods for Kernel-Based Text Analysis”, 41st Meeting of ACL (Association for

Computational Linguistics), Sapporo, Japan, Pages 24-31, 2003.

[12] Ali Farghaly and Khaled Shaalan, “Arabic Natural Language Processing: Challenges and Solutions”, ACM Transactions

on Asian Language Information Processing (TALIP), Volume 8, Issue 4, 2009.

 لتقييم والفنية المعايير اللغوية

 العربية حروفعلى الالضوئي التعرف برامج
 عمرو جمعة عبد الرسول

 جامعة القاهرة -كلية دار العلوم
amrdaramy@hotmail.com

amr1979go@yahoo.com

تحويل من خلالها حيث يتم أمرا بالغ الأهمية، مصادر المعلومات العربية تعد عملية رقمنة :ملخص

من خلال قاب لعليات المعالجة الآلية، وذلك نصوص مصادر المعلومات الورقية إلي شك إلكتروني

وصلول إللن نسلإة إلكترونيلة مةابقلة تماملا لللن الأصللي وملن ملم الالمسح الضوئي للنصوص،

 علن سبي المثال. .pdf. أو jpgات لفلللورة ملالموجود في ص

مع ازدياد الحاجة إلن رقمنة مث هذه الملفات، من خلال التقنيات المتإصصة فلي التعلر و

زادت الحاجة إللن تحديلد "OCR" Optical Character Recognitionالضوئي علن الحرو

 .برامجهذه المعايير لغوية لتقييم

 –عللن وجلا الإصلوص -والبحث الذي بين أيدينا يرسم خةوطا عريضة للمعايير اللغويلة

، وتتباين هذه المعايير ما بين الفنية واللغوية؛ فالفنية منها تإ شك الحلر لتقييم مث هذه البرامج

العربي وأنواع خةوطا المإتلفة سواء باليد أو بالآللة الكاتبلة، أملا المعلايير اللغويلة فلتإ الجانل

اللغوي للحرو العربية من حيث اتصالها وانفصالها والبدء بها أو الانتهاء بهلا، هلذا باافلافة إللن

فبط الحرو العربية بالشك في المستوى الكلاسيكي منها، وهو الأمر الذي يزيد ملن تعقيلد عمليلة

التعر علن الحرو العربية، ومن المعايير اللغوية كذلك مدى استإدام القواعد اللغوية في التعلر

 علن الحرو العربية، أو استإدام آلية لغوية لتصحيح الأخةاء اللغوية في التعر .

 جوهريةالكلمات ال
 –التعلر الآللي عللن الحلرو م المحلار –القلار الآللي -الإط العربلي -الإةوط العربية

 Optical Character -مصللادر المعلومللات رقمنللة –التعللر الضللوئي علللن الحللرو

Recognition- OCR""

 وسنعرض في هذا البحث للنقاط التالية:

 مشكلات التعرف على الحروف العربية، وتكمن في:

غيلر حروفهلا متصللةكتابلة العربيلة ب حيلث تتميلز، العربيرة فالكتابة المتصلة للحررو -1

 ها نتيجة لتداخلها.يالتعر عل يصع ، ومن مم منفصلة مث اانجليزية مثلا

، الحلرو أو إعجامهلا نقلطتشترك نصف حرو العربية في ، أو الإعجام نقط الحروف -2

، والعلر قلديما كلانوا رق بلين الحلرو فالنقط مهم جدا في الأبجدية العربية، وذللك أنلا يفل

مهمللة أو إملا يةلقون عليا ااعجام أي إزالة الغموض ويأتي في مقابلا ااهمال، فلالحرو

عللن الآللي عنلد عمليلة التعلر كبيلرة صلعوبة أو ااعجلام يمثل ط ا اللنقهذ لكن و .معجمة

فررالحروف العربيررة .العربيللة لتشللابا الكثيللر مللن الحللرو العربيللة فللي الللنقط الحللرو

لا يكاد يفرق بينها إلا التنقيط، فحرو كالجيم والحاء والإلاء تكتل هكلذا م ،)ج،ح،خ(

مع اختلا وفع النقةلة عللن الحلر أو علدم وفلعها، وهلو ملا يضلا إللن صلعوبات

 التعر الآلي علن الحرو .

mailto:amrdaramy@hotmail.com

 والجدول التالي يرصد بعض صور هذه الحرو

 ي هر رفر رعر رطر رصر رشر ر د رجر ت ب 1ل احتما

 ى ةر رقر رغر رظر رضر رثر ز ذ رحر ن ري 2 احتمال

 رعر رفر رتر رخر 3 احتمال

 رغر رقر 4 احتمال

 المعجمة والمهملة في اللغة العربية الحروف جدول يوضح بعض صور

تتميللز العربيللة بللالتعبير عللن الأصللوات بحركللات التشللكي ، وتللأتي هللذه الضرطط بالشررك ، -3

فحركلات الكسلرة والضلمة والفتحلة ، e-o-iالحركات مقابلة للصوائت في اللغات الأخرى م

الكلملة يعتلوروهكلذا والسكون م ِ ُ َ ْ كلها علامات عللن الصلوائت وأدللة عللن وجودهلا.

 حركات الضبط بالشك .انتهاء بمن نقط الحرو وابتداء الكثير من الزوائد الشكلية العربية

تتميز العربية بإمكانيلة ، (... - فارسي –أندلسي –)كوفي الخطوط الفنية الزخرفية -4

المتعلقلة بعدد من الحرو الزخرفية، والتي تضليف إللن الصلعوبات السلابقة كتابة حروفها

 صعوبة أخرى جديدة.بإصائ الحرو العربية

نوع الخط أشكالها بتغير وتغير تغير أشكال الحروف العربية بتغير مواقعها -5

يكت في أول الكلام مسلل وفي آخر فحر مس علن سبي المثال المكتوبة به

يإتلف شكلا بإط النسخ عنا في حال خط كذا الكلمة مس وفي وسط الكلمة ملسل ، و

 الرقعة.
 وثمة مستويان للنصوص المعالجة:

 (نصوص بسيطة)أولا : النصوص غير المضطوطة بالشك

 (نصوص معقدة) ثانيا: النصوص المضطوطة بالشك

 :ف الآلي على الحروف العربيةلتقييم برامج التعروالفنية المعايير اللغوية

المسللتإدمة فللن الكتابللة الخطرروط العربيررة حررروفجميرر التعرررف علررى المعيررار الول:

 العربية

 وإننا نقترح المصادر التالية لتكون مصادر نموذجية لعملية التقييم:

(المسرتخدمة لتقيريم حروف وأرقام وعلامات تشكي وعلامات تررقيم)من تجمي النصوص مصادر

 برامج التعرف الآلي على الحروف العربية:

 مجموعة من خطوط اليد لمجموعة متفاوتة في السن وفي التعليم.(1)

مجموعررة مختلفررة الخطرروط مررن الصررح والجرائررد فرري شررتى أنحررا الرروطن (2)

 العربي.

 مستندات مكتوبة على الآلة الكاتطة.(3)

 .غير الزخرفية نصوص لخطاطين بشتى أنواع الخط العربي(4)

 الزخرفية.غير الوفيسنماذج من خطوط (5)

 ات احتواء الن علن تنسيقفتنسيقات مختلفة لصور الخطوط السابقة جميعها. (6)

غاية في التعقيد مث موجلود علدة أعملدة رأسلية، ووجلود إيضلاحات أو هلوام أو

تلأمير سللبي ملن شلأنا أن يكلون للاحواشٍ في أماكن غير منتظمة، إلي غير ذلك ،

 التعر الضوئي علن الحرو . جودةعلن

محللرو وأرقللام نصرروص متعررددة اللغررات أو متعررددة الرمرروز أو الحررروف (7)

 ، أو تداخ العديد من اللغات في النصوص التي تحتوي أكثر من لغة .متداخلة

 :التمثي لك من النماذج السابقةحاول في الصفحات القليلة القادمة وسن
 مجموعة من خطوط اليد لمجموعة متفاوتة في السن وفي التعليم.(1)

 إط اليد نموذجا ل يمث 1م شك

 إط اليدنموذجا ل يمث 2م شك

 إط اليدنموذجا ل يمث 3م شك

 مجموعة مختلفة الخطوط من الصح والجرائد في شتى أنحا الوطن العربي. (2)

 نموذجا لإط إحدى الصحف يمث 4م شك

 نموذجا لإط إحدى الصحف يمث 5م شك

 نموذجا لإط إحدى الصحف يمث 5م شك

 نموذجا لإط إحدى الصحف يمث 6م شك

 مستندات مكتوبة على الآلة الكاتطة.(3)

 نموذجا لإط الآلة الكاتبة يمث 7م شك

 نصوص لخطاطين بشتى أنواع الخط العربي غير الزخرفية.(4)

 الإط الرقعي

 الرقعة مضبوطا بالشك نموذجا لإط يمث 8م شك

../../../Local%20Settings/Ù�Ø¤ØªÙ�Ø±Ø§Øª%20Ù�Ù�Ø¯%20Ø§Ù�Ù�Ø¸Ø±/ESOLE_2010/Ø®Ø·_Ø¹Ø±Ø¨Ù�.htm#.D8.A7.D9.84.D8.AE.D8.B7_.D8.A7.D9.84.D8.B1.D9.82.D8.B9.D9.8A

 الزخرفية.غير الوفيسنماذج من خطوط (5)

 يوفح خةوط الأوفيس الزخرفية منها وغير الزخرفية 1م جدول
fonts Office

 Akhbar MT بسم الله الرحمن الرحيم Microsoft Uighur بسم الله الرحمن الرحيم

 Andalus بسم الله الرحمن الرحيم Monotype Koufi بسم الله الرحمن الرحيم
 Arabic Typesetting بسم الله الرحمن الرحيم Mudir MT بسم الله الرحمن الرحيم

 بسم الله الرحمن الرحيم
Old Antic Bold بسم الله الرحمن الرحيم Arial

 بسم الله الرحمن الرحيم
Old Antic Decorative

 بسم الله الرحمن الرحيم
Bold Italic Art

 بسم الله الرحمن الرحيم
Old Antic Outline بسم الله الرحمن الرحيم DecoType Naskh

 بسم الله الرحمن الرحيم
Old Antic Outline

Shaded
 DecoType Naskh بسم الله الرحمن الرحيم

Extensions

 DecoType Naskh بسم الله الرحمن الرحيم PT Bold Arch بسم الله الرحمن الرحيم

Special

 DecoType Naskh بسم الله الرحمن الرحيم PT Bold Broken بسم الله الرحمن الرحيم

Swashes

 DecoType Naskh بسم الله الرحمن الرحيم PT Bold Dusky بسم الله الرحمن الرحيم

Variants

 DecoType Thuluth بسم الله الرحمن الرحيم PT Bold Heading بسم الله الرحمن الرحيم

 بسم الله الرحمن الرحيم PT Bold Mirror بسم الله الرحمن الرحيم
Diwani Bent

 بسم الله الرحمن الرحيم PT Bold Stars بسم الله الرحمن الرحيم
Diwani Letter

 بسم الله الرحمن الرحيم PT Simple Bold Ruled بسم الله الرحمن الرحيم
Diwani Outline Shaded

 بسم الله الرحمن الرحيم Simple Bold Jut Out بسم الله الرحمن الرحيم
Diwani Simple Outline

 بسم الله الرحمن الرحيم Simple Indust Outline بسم الله الرحمن الرحيم
Diwani Simple Outline

2

 بسم الله الرحمن الرحيم Simple Indust Shaded بسم الله الرحمن الرحيم
Diwani Simple Striped

 Farsi Simple Bold بسم الله الرحمن الرحيم Simple Outline Pat بسم الله الرحمن الرحيم

 Farsi Simple Outline بسم الله الرحمن الرحيم Simplified Arabic بسم الله الرحمن الرحيم

بسم الله الرحمن
 الرحيم

Simplified Arabic Fixed بسم الله الرحمن الرحيم
Italic Outline Art

 Kufi Extended Outline بسم الله الرحمن الرحيم Tahoma بسم الله الرحمن الرحيم

 Kufi Outline Shaded بسم الله الرحمن الرحيم Times New Roman بسم الله الرحمن الرحيم

 Traditional Arabic بسم الله الرحمن الرحيم
 بسم الله الرحمن الرحيم

Led Italic Font

علن الأق في –وقد قمنا بتظلي الإةوط الزخرفية في قائمة خةوط الأوفيس؛ لتجن معالجتها

 -المرحلة الأولن من معايير البرنامج

غاية في التعقيد ات احتواء الن علن تنسيقفتنسيقات مختلفة لصور الخطوط السابقة جميعها. (6)

مث موجود عدة أعمدة رأسية، ووجود إيضاحات أو هوام أو حواشٍ في أماكن غير منتظمة، إلي

 التعر الضوئي علن الحرو . جودةتأمير سلبي علن من شأنا أن يكون لاغير ذلك ،

 غاية في التعقيد ات حتواء الن علن تنسيق يمث نموذجا لا9شك م

محلرو وأرقلام متداخللة ، أو تلداخ نصوص متعددة اللغرات أو متعرددة الرمروز أو الحرروف (7)

 العديد من اللغات في النصوص التي تحتوي أكثر من لغة .

 نصوص متعددة اللغات أو متعددة الرموز أو الحرو حتواء الن علن يمث نموذجا لا10شك م

التعرف على علامات الضطط بالشك)علامات التشكي (والتفرقرة بينهرا المعيار الثاني:

 وبين نقط الإعجام
 بحركللات الضللبط، وتللأتي هللذه vowelsتتميللز اللغللة العربيللة بللالتعبير عللن الأصللوات م

 ، وهكلذا يتعلاور عللن الكلملة e-o-i-u-aالحركات مقابلة للصلوائت فلي اللغلات الأخلرى م

 الكثير من الزوائد الشكلية من تنقيط الحرو وحركات الضبط بالشك .العربية

 يوفح علامات الضبط بالشك في العربية 2جدول م

 َ َ َ َ َ َ َ َ َ َ َ َ َ
تنوين فتحة

 بالفتحة

تنوين ضمة

 بالضمة

تنوين كسرة

 بالكسرة

شدة سكون

 وفتحة

شدة

وتنوين

 بالفتحة

شدة

 وضمة

 َ َ َ َ َ َ
شدة

وتنوين

 بالضمة

شدة

 وكسرة

شدة

وتنوين

 بالكسرة

ة، والحق أنها اللغة العربية المعاصرة لا تسلتإدم علاملات الضلبط بالشلك فلي النصلوص المعاصلر

ومللن مللم يمكللن مراعللاة هللذا المعيللار فللي النصللوص الكلاسلليكية وحسلل ، وتجاهلللا فللي النصللوص

 .المعاصرة

 (.3-2-1(والعربية)٣-٢-١التعرف على الرقام العربية بصورتيها الهندية)المعيار الثالث:

ومن المهم هنلا ملاحظلة أن هلذه .!(-؟ -؛ -. -)، التعرف على علامات الترقيم: راب المعيار ال

تارة وقد لا تتص بها تارة أخرى، ومن مم ينبغلي معالجلة هلذه العلاملات قد تتص بالكلمةالعلامات

 في كلتا صورتيها.

 [(...] -% -$ -# -التعرف على الرموز والاختصارات المختلفة)@ : خامسالمعيار ال

 ونقلها مرة أخرى إلن الملف الرقمليعرف على الصور والشكال الرسومية، الت: سادسالمعيار ال

 . في مكانها من الملف الأصلي

)من خرلال مدى استخدام المعارف اللغوية في عملية التعرف الآلي على الحروف: ساب المعيار ال

 مراعاة خصائص الحروف من حيث الشك والترتيب والضطط بالشك (

للحرو العربية خصائ من حيث الشك والموفع من الكلمة، فهناك حلرو تلأتي فلي ف

أول الكلمة فقط، وهناك حرو تأتي في أوسةها ومنتصفها فقلط ، وهنلاك حلرو متةرفلة

الحللرو -الحللرو المتوسللةة -الحللرو الاسللتهلالية فقللط م تللأتي فللي أواخللر الكلمللة

، ب يتغير رسم الحر باختلا ترتيبا مع الحرو الأخرى بدايلة أو توسلةا أو المتةرفة

 . نهاية

 ومثال ذلك:

 (الهمزة)حرف الل

 : -علن سبي الحصر - كما يليالهمزة) الل تإتلف أشكال كتابة

 { ى – –ؤ –آ –ء –ا –إ –أ }

 فجميع هذه الصور تأتي في بداية الكلمة ماعدا

 ى{ – –ؤ –}ء

 وجميعها أيضا تأتي في وسط الكلمة ماعدا

 }ى{

 وجميعها كلها تأتي في نهاية الكلمة ماعدا

 }إ{

 وقد تجتمع أكثر من همزة في بداية الكلمة ولكن علن النحو التالي فقط :

 {آل –أ -أؤ -أ –أأ }
 ومنها:، قواعد الرسم الإملائي في العربيةومن ذلك أيضا مراعاة

 توالي المثال في العربية -

تهر العربية من توالي الأمثال علن مستوى الحرفين أحيانا، وتهر منا بشك قاطع عللن مسلتوى

 أحر . ملامة

، ةمكلرر ت إذا جلاءتإةئتها ويمكن حصر الحرو التي لا تتكرر أبدا علن مستوى حرفين، ومن مم

حرو فممنوع في العربية منعا قاطعا مثل م للللل فلي مللليملون وصلوابها ملليملون ، 3أما توالي

 .أو استبدالا بما يشابها ومن مم يمكن حذ الحر المكرر الثالث تلقائيا

 :مراعاة قواعد الضطط والتشكي -عند التعر علن النصوص المضبوطة بالشك –ومن ذلك أيضا

تأتي مع جميع موافلع الحلرو ملن الكلملة م الحلر الأول الفتحة والكسرة والضمة والسكون -أ

 والثاني والثالث، ... إلخ

يأتي مع نهايات الكلمة فقط معللن الحلر الأخيلر ولا يلأتي التنوين بالفتحة والكسرة والضمة -ب

التنوين مع بداية الكلمة معلن الحر الأول أو في وسةها موقد يلأتي التنلوين قبل الآخلر فلي حلال

 التنوين بالفتحة فقط مع إحدى صور كتابة التنوين بالفتحة

 يزيد حرفا هو الألف علن الكلمة غير المنتهية بتاء مربوطة أو ياء. التنوين بالفتحة -ج

لا يأتي علن الحر الأول في الكلمة في العربية والقاعلدة اللغويلة فلي ذللك مشلهورة: لا السكون -د

 يبُدأ بساكن .

 في العربية م ل ْ ل ْ ساكنانلا يتوالن - هر

لا تأتي علن الحر الأول في الكلمة في العربية ذلك أن الشدة عبلارة علن حلرفين: حلر الشدة -و

 ساكن+ حر متحرك

 لا تضبط بالشك أل الوص -ز

الاعتماد بلأخةاء القراءة من التصحيح التلقائي اجود تقنية لغوية متقدمة تمكنهو: ثامنالمعيار ال

 أو من خلال ممعجم لغوي علن مدقق إملائي يعتمد علن محل صرفي

مدى الاستفادة من تصحيحات المستخدم وتدريب برامج التعرف الآلي على التعلم :تاس المعيار ال

 من أخطائه السابقة
 [مواق)برامج التعرف الآلي على الحروف(على شطكة الإنترنتمن مواق الإنترنت]

http://www.caere.com

http://www.irislink.com

http://www.sakhr.com

http://www.textbridge.com

http://www.novodynamics.com

http://www.caere.com/
http://www.textbridge.com/
http://www.novodynamics.com/

http://www.ocr-systeme.de

http://www.olduvai.com

 والمصادرالمراج
 المراج اللغوية :أولا

يعي ، .1 يعقو ، د. تحقيقالمفص ، شر ابن ط. إمي العلمية، الكت هل، 1422، 1دار

 م . 2001

الهوريني، .2 نصر الوفاء دار أبو المصرية، للمةابع الإةية الأصول في النصرية المةالع

 .م2005هل/ 1426، 1م ط أفواء السلف للنشر والتوزيع،

د. إمي يعقو ، دار الكت العلمية، تحقيقافية ابن الحاج ، ششر ،لرفي ااستراباذيا .3

 هل. 1419، 1ط.
التوا ، .4 عبد الأولن، رمضان ط. القاهرة، الإانجي، مكتبة العربية، الهمزة مشكلة

 .م1996 /هل 1417

 1998سليمان فياض، استإدامات الحرو العربية، دار المريخ ، .5

الةي .6 الجواد بيروت ،عبد مانية، ط. الأوزاعي، دار ااملاء، قواعد في دراسة

 .م1986هل/1406

الأولن، .7 ط. الكويت، الدولية، إيلا دار ااملاء، قواعد هارون، السلام هل/ 1425عبد

 .م2004

 .م1975املاء والترقيم في الكتابة العربية، مكتبة غري ، القاهرة، اعبد العليم إبراهيم، .8

الصر ، ،الحملاويمحمد .9 فن في العر والنشر طبعة شذا للةباعة الرسالة مؤسسة

 .2003 ،والتوزيع

تاريخ الكتابة العربية وتةورها وأصول ااملاء العربي، وزارة الثقافة، ،محمود حاج حسين .10

 . م2004دمشق

 .م1990مصةفن التوني، الهمزة في اللغة العربية، دراسة لغوية، القاهرة .11

 الجامعية الرسائل: ثانيا
إبراهيم .12 محمد الحاسوبية ،العربي والمعالجة العربي الصر تقويمية ،منظومة – دراسة

 .1488رسالة ماجستير بكلية دار العلوم رقم

 ثالثا: البحاث

تقنيات التعر الضوئي للحرو ، معايير الاختيار، طريقة العم ، ،أحمد فرج أحمد .13

ااشكاليات، والآفاق المستقبلية، جامعة اامام محمد بن سعود ااسلامية، كلية علوم الحاس

 والمعلومات، قسم دراسات المعلومات.

 ،50العدد ،مجلة الفرقان، التقاء الحرو المتماملة في القرآن الكريم، محمد زكي خضر .14

 . 2006آذار

 –الموسم الثقافي لمجمع اللغة العربية، عمان ، الحر العربي والحوسبة، محمد زكي خضر

 . 2001الأردن ،

http://www.ocr-systeme.de/englisch/plus50.htm
http://www.olduvai.com/readit62.html

Rich Semantic Graph Generation System Prototype
Mostafa Mahmoud Aref *1, Ibrahim Fathy Moawad**2, Soha Said Ibrahim*3

*Computer Science Department, Faculty of Computer Science and Information Sciences, Ain Shams University

Abbassia, Cairo, Egypt
1aref_99@yahoo.com

3sohaelshafey@yahoo.com

**Information System Department, Faculty of Computer Science and Information Sciences, Ain Shams University

 Abbassia, Cairo, Egypt
2ibrahim_moawad@hotmail.com

Abstract— Information nowadays has become more and more accessible, so much as to give birth to an information overload issue. As

it is impossible to read all the relevant content that helps one stay informed, a possible solution would be condensing data and

obtaining the kernel of a text to explore, analyze, and discover knowledge from documents. In this paper, a system prototype is

proposed to analyze text and represent valuable information in an ontology-based representation form. The main objective is to

propose a system that transforms an input text to semantic graph representation called "Rich Semantic Graph" (RSG) in which

verbs and nouns of a document are represented as nodes along with edges corresponding to semantic and linguistic relations between

them. The rich semantic graph can be exploited in several applications like information retrieval, text summarization, and text

mining applications. This work is a part of an ongoing research to create an abstractive summary for a single input document.

1 INTRODUCTION

The explosive growth in the number of electronic documents produced daily increases the need for intelligent filtering

approaches. It becomes impossible to manually search, sift and choose the needed information. Knowledge representation and

discovery is the non-trivial extraction of implicit, unknown, and potentially useful information from document such that it is

easily accessed and manipulated [1], [2]. Different Natural Language Processing (NLP) applications (e.g. text summarization,

machine translation etc.) entail different internal representations that lead to different implementation techniques. Therefore, a

common semantic representation is needed to unify application representation techniques. Ontology has evolved in computer

science as a formal explicit specification of a shared conceptualization of vocabularies. It provides a shared and a common

understanding of vocabulary that can be communicated between people and distributed systems. By defining shared and

common vocabularies, ontology helps both people and machines to communicate and support the exchange of semantics but

also syntax [3].

In this paper, a new ontology-based system prototype is proposed to generate unified semantic representation from the input

document. The provided representation consists of document concepts as nodes along with edges corresponding to semantic and

linguistic relationships between them. This semantic graph representation is called "Rich Semantic Graph" (RSG). It can be

exploited in several applications like information retrieval, text summarization, and text mining applications. This work is part

of a novel approach to create an abstractive summary for a single input document using the "Rich Semantic Graph" (RSG). The

method summaries the input single document by creating a rich semantic graph for the original document, reducing the

generated graph to smaller graph, then applying a natural language generation technique on the reduced graph to generate the

final abstractive summary [4],[5]. In section 2, problem definition and related work are presented, while section 3 presents the

RSG generation model. Section 4 describes the system prototype, and finally section 5 concludes the paper.

2 PROBLEM DEFINITION AND RELATED WORK

Several research activities are related to this work. One of the most recent research methods is extracting summary sentences

based on the document semantic graph representation. This method generates semantic representation from the input document

by a machine learning technique to extract full sentences suitable for creating summaries. It starts with deep syntactic analysis

of the whole text, then for each sentence extracts logical form triples (subject-predicate-object). After that, it applies cross

sentence pronoun resolution, co-reference resolution, and semantic normalization to refine the set of triples and merge them into

a semantic graph. This procedure is applied to both document and corresponding summary extracts. Finally, linear support

vector machine will be trained on the logical form triples to learn how to extract triples that belong to sentences in document

summaries. The classifier is then used for automatic creation of document summaries of test documents [6] - [11].

On the other hand, another approach incorporates the object-orientation techniques in knowledge representation. This approach

supports data abstraction and hence increases the modularity of natural language processing applications. It organizes

knowledge into classes of objects (subclasses and super classes), which is an important issue in knowledge representation to

avoid redundant declarations or specifications. This approach assumes the presence of an object-oriented lexicon where

language words represent objects, and their semantic characteristics are expressed in terms of attributes and behaviors. For a

given sentence, set of words, the model instantiates the word objects using some lexicon program. These word objects search

for their suitable partners to come up with a semantically consistent structure that reflects the meaning of the sentence. At the

end, the model gives an output of some weighted representations of the input sentence. These weights reflect the most likely

meanings of the sentence [12], [13].

Finally, an Interlingua is proposed to represent and exchange information called "Universal Networking Language (UNL)".

UNL is equipped with lexical, grammatical, and semantic components as any natural language. Therefore, it can describe the

entire world of natural language. UNL system consists of Universal Words (UW), relations, attributes, and the UNL knowledge

base (UNLKB). In the UNL approach, information conveyed by natural language is represented by a hyper graph. This hyper

graph is composed of a set of hyper nodes (UWs) and directed binary labeled links (relations) between these nodes. The process

of representing natural language sentences in UNL graphs is called "the enconverting process", while the process of generating

natural language sentences out of UNL graphs is called "the deconverting process" [14], [15], [21] - [23].

Nevertheless, semantic graph representation in its traditional form is incomplete due to the limitation of explicit operational or

procedural knowledge, so it needs to assign more structure to nodes as well as to links [3]. On the other hand, object-oriented

(OO) modeling reflects the structure of data and the software's object behavior not the world concepts and its structure.

Therefore, only traditional object-oriented technique is not enough for a good knowledge representation. It is difficult to build

large coherent and complete knowledge representation [16], [17]. Finally, the granularity is an important issue in knowledge

representation. It concerns with the level of knowledge details that should be represented and what are the primitives

(fundamental concepts) needed to be constructed [3]. UWs primitives in UNL consider most natural language elements: nouns,

verbs, adjectives, and adverbs. However, the UNL hyper graph generated to represent a short document will be a very huge due

to the low granularity of UNL system concepts.

In this paper, a system prototype is presented to transform an input document to a Rich Semantic Graph (RSG) which is based

upon ontology. The ontology primitives (concepts) are language nouns and verbs only. It preserves words hierarchies and their

semantic constraints and ontological relations among each other. Therefore, the output graph is not complex, and not huge, but

rich, because each concept has its own linguistic and semantic attributes and relations that can be deduced from the analyzed

input text. This prototype is the implementation for previous proposed model [5].

3 RSG GENERATION MODEL

Figure 1: RSG Generating Model Architecture

Fig. 1 illustrates the overall model architecture of the proposed model [5]. It shows four main components: the input text, the

system model, the ontology, and the rich semantic graph. The model ontology represents natural language concepts in a

System model

Concepts Validation

Sentences Ranking

Word Senses Instantiation

Ontology

2. Rich semantic

sub-graphs phase

Input Text

Preprocessing

1. Preprocessing
phase

RSGs

Inferencing & RSG

generation

 3. RSG generation
Phase

hierarchical structure. Each concept has its own attributes and relations which describe its semantics and syntax constraints.

Also, inference rules are applied on the whole ontology to reason out more advanced representations. In this ontology, Wordnet

lexicon has been exploited [18], [19]. As the case with any natural language, any word may have more than one sense

(meaning). Therefore, there is a word concept to each sense. The word senses are classified according to their attributes which

are chosen in a way to handle various semantics and linguistics issues. The rich semantic graph generation model involves three

phases:

▪ Preprocessing phase - It is responsible to accept the input text, and converts it to preprocessed sentences. This phase includes

one module called "Preprocessing Module", which consists of four main steps: named entity recognition, morphological and

syntactic analysis, cross-reference resolution, and pronominal resolution. The main objective of this phase is to resolve the

syntactic ambiguity and retrieve both set of tags (syntactic and morphological). It also retrieves typed dependency relations

between words for the input text.

▪ Rich semantic sub-graphs generation phase - It is responsible to transform the input preprocessed sentences to set of ranked

rich semantic sub-graphs. This phase includes three modules which are repeated for each input preprocessed sentence:

o "Word Senses Instantiation" - This module instantiates a set of word concepts for both nouns and verbs based on the used

ontology. According to the input word syntactic category tag (e.g.: verb, or noun), the ontology is accessed to instantiate a

concept for each word sense that is corresponding to the word syntactic category.

o "Concepts Validation" – The sentence concepts instantiated in previous module are interconnected and validated through

the semantic and syntactic constraints and relationships using the ontology and the input preprocessed tags.

o "Semantic Sentences Ranking" - This module aims to rank and to threshold the highest ranked rich semantic sub-graphs for

each sentence.

▪ RSG generation phase - It is responsible to generate all possible rich semantic graphs of the whole input document. It consists

of a module called "Inferencing & RSG Generation Module" that generates all possible combinations of the sentence rich

semantic sub-graphs for the input document after applying inferencing rules in the ontology. These rules conclude more

similarities and advanced relations between concepts in the final representation.

4 RSG GENERATION SYSTEM PROTOTYPE

Figure 2: Overall RSG Generation System Activity Diagram

Rich Semantic Graph (RSG) system prototype is the implementation of the RSG generation model shown in figure 1. Protégé-

OWL editor is used as a platform for building ontologies and knowledge-based systems with support for the Ontology Web

Language (OWL). OWL is a standard ontology language to generate a common and unified text representation that can be used

by different natural language applications [20], [23]. Fig. 2 shows an overall activity diagram of the RSG generation system

prototype. The input is the document sentences preprocessed. Subsequently, each preprocessed sentence passes through three

modules: Instantiating, validating, and ranking modules respectively. In the instantiating module, sentence concepts are

instantiated from the system's ontology, and the sentence concepts are combined and validated to form different sentence rich

semantic sub-graphs in the validating module. Then, the sentence rich semantic sub-graphs are ranked and threshold to get most

semantically accepted sub-graphs in the ranking module. In the final stage, inference is applied to reason out the enhanced

document RSG representations.

As the case with any natural language, any word may have more than one sense (meaning). Therefore, there is a word concept

to each sense. The word senses are classified according to their attributes which are chosen in a way to handle various semantics

and syntactic issues. One of the semantic issues is that different word meanings may lead to reason out different semantic

representations. On the other hand, syntactic issues include sentences and words structures which may need special treatment

and may lead to different sentence semantic representations. According to these issues, the RSG generation system uses

ontology which is supplied with different rules to reserve concepts semantic and syntactic representation. Fig. 3 shows a partial

noun ontology hierarchy. During RSG generation process, there are variant semantic representation cases can be met. In this

system ontology, different rules and constraints are supplied to handle these cases. These cases are categorized as direct cases,

indirect cases, and error detection cases. These cases are discussed briefly below:

Figure 3: Partial Noun Ontology Hierarchy in Protégé

A. Direct Cases

In direct cases, no special action or rule needs to be applied to get RSG representation from the input sentences. In these cases,

the RSG output of the system is not affected by the ontology inference rules. The sentences have direct semantic and syntactic

relationships between sentence's words. For example, the sentence "Chris eats an apple" is a direct case. Semantically, each

word in this sentence has more than one sense in the system ontology, but the highest familiar senses to each is the most

accurate to relate sentence's words with each other. In the instantiation module, each noun and verb word in the example

sentence instantiates its senses from the system ontology. If this word is referred in a previous sentence before, then the

instantiated word senses are used, else the system ontology is searched and the word sense is instantiated. The detailed activity

diagram of instantiating word senses is shown in Fig. 4.

Figure 4: Detailed Activity Diagram of Instantiating Module

The output of this module is as follow: the subject "Chris" is a kind of person and it has three instances, the verb "eats" has six

instances, and the object "apple" has two senses. In the validation and ranking modules, the instantiated instances are

interconnected and validated to form different semantic representations to the same sentence, then the validated sentences

representations are ranked and threshold to conclude most highest RSG representation. According to the output of instantiating

module, there will be 36 possible semantic representations to the example sentence. After validation and ranking, the final

output will be only one representation. Fig. 5 shows the final RSG output of the above sentence, where instances' names are

formed of word lemma, number of sense, and automatic generated instance number. For example,

"Person_S1_I1285833693833" is the first sense of word "Person" and represents the sentence's subject "Chris",

"Eat_S1_I128583364328" is the first sense of word "eat" and represents the sentence's verb "eats", and

"Apple_S1_I1285833694871" is the first sense of word "apple" and represents the sentence's object. At the end, the RSG

system composes the sentence RSG directly without any inference rules.

Figure 5: Sentence "Chris eats an apple" Final RSG

B. Indirect Cases

These cases represent sentences where concepts are related with more complicated semantics and syntactic relations than direct

cases. In these cases, the output of RSG system is affected by ontology inference rules. These rules are applied to detect

similarities between concepts, so redundant relations and concepts are deleted and merged. For example, the sentence "Chris is

a graduate Student" is an indirect case, where it includes the copular verb "is". The copular verbs are verbs that connect the

subject to their complements, which are adjectives or nouns for the subject. In this sentence, the verb "is" links between noun to

noun, where the subject is "Chris" and its complement is "student". After passing the sentence through the rich semantic sub-

graph phase, the intermediate sentence RSG is generated as shown in Fig. 6. This RSG needs to be enhanced by applying

inference rules. Fig. 7 shows a sample of the copular verb inference rules. Finally, the RSG generation phase will apply "Rule

1" to infer an enhanced RSG representation as shown in Fig. 8. It shows that "Chris" and "student" are similar instances.

Therefore, these concepts have been merged in the final RSG representation output as shown in Fig. 9.

Figure 6: The "Chris is a graduate student" RSG Output before applying Inference

Figure 7: Sample of Copular Verb "Be" Inference Rules in Ontology

Figure 8: Intermediate RSG of the "Chris is a graduate student" Sentence

Rule 1: " If some noun (x), and some noun (y), and some copluar verb (z), and y is subclass x, and y is subject to x, and y

has copular z then x is same as y".
Rule 2: "If some noun (x), and some copular verb (z), and some thing (y), and y is copular z, and y is adjective subject to x

then x has adjective y"

Figure 9: Final RSG of the "Chris is a graduate student" sentence

The sentence "Sally is beautiful" is another indirect case. The verb "is" links the subject "Sally" and its adjective "beautiful".

Firstly, if direct case is applied, the output will be like the shown Fig. 10. Then, "Rule 2" in Fig. 7 needs to be applied to

improve representation output (see Fig. 11). Finally, the final RSG graph will be like the shown Fig. 12.

Figure 10: RSG Output of the "Sally is beautiful" sentence

Figure 11: Inference Rule 2 output of the "Sally is beautiful" sentence

Figure 12: Final RSG of Sentence "Sally is beautiful"

C. Error Detection Cases

C.A.1 Syntactically Rejected Cases

The error detection cases have an empty list or error message output. This message describes that there is no available RSG

output. In syntactically rejected cases, the parser and syntactic analyzer reject the sentence, and then the input to RSG system

will be an empty list. This list means that a syntactic error found and the representation must overcome. For example, "Chris

eating apple", this sentence has a syntactic error in verb "eating", and then parser sends an empty message to the system. The

system handles it by displaying this message "No RSG available for the input system sentence".

C.A.2 Rejected and Low Semantically Cases

Figure 13: Detailed Activity Diagram of the Validation Module

These cases include unaccepted and weakly related semantic input sentences. The system ontology states some ontological rules

and constraints on word senses and linking properties and attributes, these rules preserve the correct semantic relations between

sentences' concepts. If the input sentence is rejected or low semantically related, it will be rejected in the validation module due

to absence of acceptable relations between sentence's senses, where the instantiated sentence concepts are combined to form

sentence rich semantic sub-graphs. For each concept combination, the system ontology is checked to confirm combination

consistency. The inconsistent combination is rejected. The validation module detailed activity diagram is shown in Fig. 13. On

the other hand, the input sentence may also be rejected in ranking module due to its low rank value. For example, "Chris eats

wood", "Chris" is a kind of person which has three senses, "eats" is a verb and has six different senses, and "wood" is a noun

and has eight different senses. Finally, there will be 144 different combinations between the sentence's concepts. Some of these

combinations can be rejected in validation phase or in ranking phase. In validation phase, if verb "eats" means to swallow and

noun "wood" means a plant material, it will be rejected because "eats" object must be an edible food. On the other hand, if verb

"eats" means to use up or to exhaust and "wood" means a musical instrument, it will be rejected due to low semantically

relatedness. The RSG system shows the log of each representation combination, it displays accepted and rejected combinations

and rejection reasons.

5 CONCLUSION

This paper presented Rich Semantic Graph (RSG) generation system prototype. It transformed the input text to a graph called

"Rich Semantic Graph" (RSG). In RSG, verbs and nouns of a document are represented as nodes along with edges

corresponding to semantic and linguistic relations between them. "Rich Semantic Graph" (RSG) is a common rich semantic

representation to be exploited in different natural language processing applications such as report abstraction and machine

translation. The RSG has the following features:

▪ Each node corresponds to a concept verb or noun in the input text.

▪ Each node is associated with semantic and linguistic issues which reserves concepts' meaning.

▪ Each node has additional attributes which are supplied from the input preprocessing tags.

▪ Relations between nodes are semantic or syntactic connections between concepts to reserve text coherence and

sequence.

The RSG generation system prototype discusses different cases with some examples. These examples reflect some natural

language ambiguity and the solutions are suggested to overcome it. The RSG system has the following capabilities:

▪ The RSG represents simple and unambiguous semantic texts without any special rule or constraint.

▪ The RSG uses inferencing rules and constraints to reason out more acceptable text semantic representations.

▪ The RSG detects and rejects unsemantically related or low semantically related concepts.

On the other hand, the RSG generation system has some limitations:

▪ Some input sentences haven't any output due to small semantic rank values. If some sentence's concept replaces

with any of its synonym and this synonym has better rank value, then some representation can be deduced to this

sentence better than nothing.

▪ Some RSG sentences output need to be smaller or condensed with reserving context meaning. It can be achieved

through more semantic inferencing rules.

▪ Other input sentences haven't any output due to syntactic errors. These errors can be autocorrected, and then

some RSG representation output can be reached.

These limitations may be considered as the following future work.

REFERENCES

[1] Mostafa Aref, “A Multi-Agent System for Natural Language Understanding”, Proceedings of the International Conference

on Integration of Knowledge Intensive Multi-Agent Systems, 1-3, Cambridge MA, PP 36-40, 2003.

[2] Elaine Rich, Kevin Knight, "Artificial Intelligence", Second Edition, McGrawHill Inc, Chapter 4-11, 1991.

[3] Robert Stevens, Carole A. Goble and Sean Bechhofe, "Ontology-based Knowledge Representation for Bioinformatics",

IBM Systems Journal, volume 40, issue 2, February 2001.

[4] Ibrahim F. Moawad & Mostafa Aref, “A Semantic Graph Reduction Approach for Abstractive Text Summarization”, the

Ninth Conference on Language Engineering, Cairo, Egypt, December 6-7, 2009,

[5] Ibrahim F. Moawad, Mostafa Aref, Soha Said, “ONTOLOGY-BASED MODEL FOR GENERATING TEXT SEMANTIC

REPRESENTATION”, to be published in International Journal on Intelligent Computing and Information Sciences

(IJCICIS), Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

[6] D. Rusu, B. Fortuna, M. Grobelnik, D. Mladenić , "SEMANTIC GRAPHS DERIVED FROM TRIPLETS WITH

APPLICATION IN DOCUMENT SUMMARIZATION", an international journal of Computing and Informatics , Volume

33, Number 3, 2009.

[7] Lorand Dali, Delia Rusu, Blaž Fortuna, Dunja Mladenić, Marko Grobelnik, "Question Answering Based on Semantic

Graphs", Semantic Search 2009 Workshop, 18th International World Wide Web Conference WWW2009, Madrid, Spain,

April 21st, 2009.

[8] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling , "Extracting Summary Sentences Based on the Document

Semantic Graph", Microsoft Research, Technical Report No. MSR-TR-2005-07, January 2005.

[9] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Impact of Linguistic Analysis on the Semantic Graph

Coverage and Learning of Document Extracts", Proceeding of the 20th National Conference on Artificial Intelligence

(AAAI), vol. 3, Pittsburgh, Pennsylvania, 2005.

[10] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Learning Semantic Sub-graphs for Document

Summarization", Proceedings of the 7th International Multi-Conference INFORMATION SOCIETY IS, Jozef Stefan

Institute, Ljubljana, Slovenia, Volume B, 2004.

[11] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Learning Sub-structures of Document Semantic Graphs for

Document Summarization", Workshop on Link Analysis and Group Detection (LinkKDD), 2004.

[12] M. Aref, "Object-Oriented Approach For Morphological Analysis", Proceeding of the 15th National Computer Conference,

Dhahran, Saudi Arabia, pp. 5-11, 1997.

[13] Mostafa Aref, "Object Orientation in Natural Language Processing”, Proceedings of the 13th International Conference

on IEA/AIE 2000, New Orleans, PP. 591-600, June 19-22, 2000.

[14] UNDL Foundation, "The Universal Networking Language (UNL) Specifications", Version 3, Edition 3, UNL Center,

UNDL Foundation, Geneva, Switzerland, December 2004.

[15] Luis iraola ,"Using Wordnet for linking UWs to the UNL UW System", International conference on the convergence of

knowledge, culture, language and information technologies, December 2- 6, 2003.

[16] Dr. Waralak V. Siricharoen, "Ontologies and Object models in Object Oriented Software Engineering", IAENG

International Journal of Computer Science, 33:1, IJCS_33_1_4, 2005.

[17] Lisiane Goffaux and Robert Mathonet, "A technique for customizing object-oriented knowledge representation systems,

with an application to network problem management", Proceedings of the Eleventh International Joint Conference, vol. 1,

August 20-25, 1989.

[18] Fellbaum, C." WordNet: An Electronic Lexical Database", MIT Press, May 1998.

[19] Miller,G., Beckwith,R., Fellbaum,C., Gross,D., and Miller,K, Five Papers on WordNet. Cognitive Science Laboratory,

Princeton University, Princeton, 1990.

[20] Michael K. Smith, Chris Welty, Deborah L. McGuinness (10 February 2004), “OWL Web Ontology Language Guide”,

W3C Recommendation, Available from: www.w3.org/TR/owl-guide, (accesses 1 November 2010)

[21] UNL Specification Web Site: http://www.undl.org/unlsys/unl/unl2005/, (accessed 1 November 2010)

[22] UNL Universal Words Ontology Web Site: http://www.undl.org/unlsys/uw/unlontology.htm, (accessed 1 November 2010)

[23] Protégé Web Site: http://protege.stanford.edu, (accessed 1 November 2010)

http://www.w3.org/TR/owl-guide
http://www.undl.org/unlsys/unl/unl2005/
http://www.undl.org/unlsys/uw/unlontology.htm
http://protege.stanford.edu/

ON THE MODELING OF NON-KEYWORD INTERVALS

FOR SPOKEN-TERM DETECTION IN ARABIC
M. Hesham*1, M. F. Abu-EL-Yazeed**, and A. Toulan**

*Engineering Math. & Physics Dept., Faculty of Engineering, Cairo University
1* mhesham@eng.cu.edu.eg

** Electronics & Communications Engineering Dept.,

Faculty of Engineering, Cairo University, 12613, Egypt

Abstract— There are two approaches followed in searching/indexing an audio stream, namely; key word spotting and spoken term

detection. First one is the keyword spotting approach based on searching through the acoustical-features domain while the other is

the spoken-term detection (STD) where the searching is through string domain. The task of spoken term detection is defined as being

a two-stage process in which the audio stream is, firstly, indexed according to word or sub-word units (e.g. phonemes), and then

search is performed over the indexed audio. One major problem of searching, through audio streams, is the presence of

unpredictable or unexpected words in incoming utterances. For resolving this problem, a direct approach is to split the training data

into keyword and non-keyword data. The keywords are represented by models trained using the keyword speech, and the non-

keyword models are trained using non-keyword data. Two problems arise in this approach that it may overly detect keywords, or

misrecognize non-keyword in the sentence as keywords. In order to overcome these problems, we propose a method for modeling the

non-keyword intervals or out-of-vocabulary (OOV) for Arabic. In the proposed method, the OOV models are defined based on

pattern structure in Arabic phonology.

 Firstly, a hidden-Markov modeling (HMM) approach is used in the training of an automatic-speech recognition (ASR)

engine for modern standard Arabic (MSA). The phoneme-based ASR engine is, then, employed in the keyword spotting system. The

acoustic features of the pattern structure of Arabic is exploited in a distributed a model to cover non-keyword intervals in a task-

independent manner. The distributed structure models are used to capture out-of-vocabulary words belonging to all possible patterns

in Arabic, while keyword models are built based on exact phonemic structure of significant words or words combination. This

improves the system’s ability to detect non-keyword vocabularies independently. Additional class of fillers associated with different

word classes reduces false alarm of keyword detection.

The system is trained to detect about 20 Arabic keywords using both techniques; keyword spotting and STD approaches. The

keyword spotting approach is built based on HMM models concatenation for phonemes while the STD employed 1-best lattice-search

approach. The obtained results for the spotting system, achieves 90% precision rate for keyword spotting approach while the recall

rate is smaller. The other approach of spoken-term detection reached the 80% in recalling and smaller rate for precision.

Keywords: Keyword Spotting, Spoken-Term Detection, Arabic Speech Recognition, Hidden Markov Model (HMM).

1 INTRODUCTION

 The Searching for a keyword within a speech utterance is one of important applications of speech recognition

technology. Ability to perform such searching/indexing task, together with typical automatic speech recognition for speech

utterances whose underlying word sequences follow fully-defined syntaxes, effectively is crucial to the development of human-

machine spoken dialog systems. There are two approaches followed in searching/indexing an audio stream, namely; key word

spotting and spoken term detection, as discussed recently in [1][2][3] and [4]. One major problem with using speech recognizer

for delivering sequence of words to other modules in spoken dialog systems is its robustness [3]. Another problem is the

presence of unpredictable or unexpected words in incoming utterances. Therefore, a speech recognizer must cover a large

number of vocabularies, as well as grammars, in order to support every sentence possibly spoken by the users. This also

includes un-precedently-used words and non-speech sounds, such as fillers, that are rather common in spoken languages.

 The techniques of key-word searching try to detect of all occurrences of any given word in a speech signal. Trying to

uncover these keywords, it may overly detect keywords, or misrecognize non-keyword in the sentence as keywords. The

misrecognition may be called false alarm. One factor contributing to a high false alarm rate is that there are some non-keyword

elements (or may be called out-of-vocabulary(OOV)) that have similar pronunciation to some of the keywords in the system.

These elements may confuse the keyword spotting system to confirm the presence of a keyword, even though none of them

exist[3].

 Although several approaches exist for modeling of keyword spotting system, the most common ones are based on

HMMs. In such approaches, a set of HMMs (nonkeywords or filler models) is chosen to represent the OOV intervals and

another one for the keywords [4]. The performance of an HMM-based keyword spotter strongly depends on the ability of the

OOV models to represent non-speech intervals without rejecting the correct keywords (false rejections). Therefore, the choice

mailto:mhesham@eng.cu.edu.eg

of an appropriate OOV model set is a critical issue. A survey on the topic can be found in [4]. The most common approaches

are as follows:

• The training corpus for a specific task is split into keyword and non-keyword (extraneous) data. The keywords are

represented by HMMs trained using the keyword speech and the OOV models are trained using the extraneous speech.

The main disadvantage of such approaches is the task dependence. Model retraining is required when the vocabulary

changes. Moreover, the training data must include a large number of keyword occurrences to achieve robust training.

• The OOV models are selected from a set of common acoustic models. In this case, a speech corpus for a separate task is

used to train only one common acoustic set. A subset of this set is used for OOV models. A typical case is to represent the

keywords by context-dependent HMMs, and the non-keyword portions by context-independent HMMs. In some works, a

subset of context-dependent models is also used as OOV models. The main disadvantage of such methods is the high rate

of false rejections (percentage of keywords rejected). The higher local likelihood of the OOV models causes the OOV

entries to be decoded instead of keywords. Most keyword spotters use two sets of acoustic models trained using keyword

and non-keyword speech. The performance of a keyword spotter may be increased by training phonemic OOV models

using a large corpus of non-keyword speech [4]

• Modeling the non-keyword intervals based on the use of bilingual HMMs. In this case, the OOV models may be trained

using a speech corpus of a language other than the target one. This can introduce a task-independent keyword spotter, and

to overcome the problem of the high rate of false rejections[4].

• The work in [3] illustrates the use of acoustic modeling of three different structures, including syllables, fillers and

keywords. Filler models and syllable models are applied to capture OOV words, while keyword models extract significant

words from speech utterances. Filler models associated with syllable models reduce false alarm of keyword detection.

Three kinds of filler models were described in [3].

 As most keyword spotters use a set of Hidden Markov Models (HMM) for their components (keywords and non-

keywords), many HMM parameters still need to be re-estimated and tested for Arabic speech via different applications.

 On the other hand, the task of spoken term detection is defined as being a two-stage process in which the audio stream

is, firstly, indexed according to word or sub-word units (e.g. phonemes), and then search is performed over the indexed audio.

The indexing may be as a 1-best string, or as an N-best lattice. Lattice-based methods offer significantly faster search, as the

speech is processed just once by a speech-recognition engine. Some works adopt the approach of searching for terms in the

output of a large-vocabulary speech recognition (LVCSR) system, though a common finding is that these approaches yield high

miss rates (i.e., low recall). Hybrid methods based on the combination of keyword-spotting (which gives high recall) and sub-

word lattice search have proven successful in combining the strengths of both methods [1].

 In this work, a new model is defined for building linguistic structures which can cover an efficient OOV set for Arabic. We

propose a method for modeling the non-keyword intervals or (OOV) for Arabic. In the proposed method, the OOV models are

defined based on pattern structure in Arabic phonology.

 The HMM phoneme models along with the proposed OOV structure are used to build a task-independent system for

spoken-term detection of Arabic. Experiments are conducted through an audio content of ELRA database [5]. The results are,

then, compared to elicit the efficacy of both searching approaches and the proposed OOV structure for Arabic.

2 PATTERN STRUCTURE OF ARABIC MORPHOLOGY

 Arabic is marked by a limited vocalic system and a rich consonantal system. There are typically three basic vowels /a i

u/ which are attested in both their short and long forms [6] ch1. Arabic operates by what is known as the root and pattern system

[7]. The root is a semantic abstraction consisting of two, three or (less commonly) four consonants from which words are

derived through their superimposition of template patterns. Roots may be used in association with a particular vowel pattern

which determines phonological structure and specifies lexical and syntactic function.

 Basic noun and verb stems in Arabic comprise a consonantal root and pattern. The pattern can be further divided into

two elements: a prosodic template and a vocalic melody. [6]. The consonantal root is always fully independent of the prosodic

template, the vocalic melody by contrast shows independence for relatively few morphological categories. For verbal noun, the

prosodic template CVCVVC, and the vocalic melody i-a, comprises the combination of both [8]. These separate out the

linguistic information carried by the word pattern into two components labeled the vocalic melody – the sequence of vowels

specified by the word pattern – and the CV-Skeleton – the overall abstract pattern of consonants (C) and vowels (V) that it also

specifies. The vocalic melody conveys syntactic meaning such as voice (active/passive). The CV-Skeleton contributes a rich

variety of other syntactic information, as well as specifying the phonological shape of the word. [9].

The root-and-pattern morphology of Arabic is most commonly described using examples of derivational verbs. One form of

trilateral verb has the stem pattern CVCCVC with a geminate middle radical. In standard Arabic, the imperfect is formed by

changing the quality of the right most stem vowel and adding an imperfect prefix. The passive is formed by a change in the

vocalic melody [6].

 Another example, one of these patterns may take the form C1aC2aC3VC4 where C1, C2, C3 represent three consonants of the

root in relation to the sounding vowel. Many patterns are the result of a series of derivations. Accordingly, some of these

patterns are, totally, predictable, and if the form does not already exist, will be given predictable meaning when coined [6].

 In general, Arabic has a limited number of patterns which are pronounced according to similar acoustical configuration

(parameters). This pronunciation follows the same phonological pattern which has close resemblance to acoustical features of

the utterance. Specifically, we can propose that they share same spectral characteristics. This property results in some sort of

clustering in vector-quantization space of related features. The mel-frequency cepstarl coefficients (MFCC) are the used

features in most of speech recognition algorithms [10]. These feature are of spectral-type, accordingly, we expect that the words,

sharing the same pattern, may easily tend to group to the same cluster in feature space. This fact is also attested by the

conceptual basis of MFCC which, closely, manifests the source-excitation state of vowel production. This concept can help in

proposing a comprehensive model for OOV. This pattern-based model can be a better candidate for the minimum OOV set of

words due to a limited number of patterns in Arabic.

3 A DISTRIBUTIVE MODEL OF OOV

 The problem in defining OOV models is the trade-off between false alarm and miss-detection rates. Using OOV

models with less acoustic details introduces high false alarm rate, while using models with more acoustic details raises the miss-

detection rate. A survey on this topic was presented in [4].

 In this work, the non-keyword domain is divided into two main classes namely; non-keywords and fillers. Each class is,

then, divided in distributive subdomains. Each subdomain is restricted by closer acoustic features. This distribution is proposed

to solve the problem of biased decision on nonkeyword class. This condition is ensured by choosing closer pronunciation of the

elements of any subdomain. The pronunciation condition is based on pattern structure of Arabic –discussed in the previous

section- for non-keyword subdmoain.

 Another subclass; filler models are acoustic models trained on phonemes that is not repeated frequently in Arabic

words. These phonemes are used, even, if they were included in the targeted keywords. Filler elements also include words that

are rarely to be included in keywords like prepositions. This was done based on speech data in our training set.

 In the proposed model, two approaches are considered for choosing the nonkeyword elements; syllabic and shuffled

nonkeyword models.

A. Pattern-nonkeyword Model

 The pattern-nonkeyword model is built for the patterns known in Arabic. We used many words as examples for each

pattern. As mentioned above, any word is composed of two parts; the first part corresponds to a root consisting of two or three

syllables. The other part is the pattern or vocalic melody. They are aggregated in about 16 classes representing, approximately,

most of pattern structures which are frequently used in Arabic. This ensures the distributive nature of the model over the

language domain.

B. Shuffled-nonkeyword Model

 The other nonkeyword model is based on replacing the starting-consonant of syllable each word defined in the

previous section. These words did not have any meaning within Arabic. We denote them as having shuffled structure since we

shuffle the consonants through the used words. The inherent distribution is proposed to solve the problem of biased decision on

nonkeyword class. The keyword, the non-keyword and filler models are constructed from the acoustic models of phonemes.

 Examples on the shuffled nonkeyword are shown in TABLE I. The syllable /$a/ is replaced by /Fa/ and, then, the new

word has no meaning in Arabic. The idea is to construct OOV model from meaningless words that are acoustically different

from the keywords. This property prevents false alarms when the pronunciations of two words are close to each other.

TABLE I Shuffled nonkeyword Examples

Nonkeywords of

one class

Meaning in

English

Arabic

Transcription

Shuffled version

with no meaning
Arabic Transcription

$axS Person شخص FaxS ثـخص

$axSan A person شخصا FaxSan ثـخصا

$axSy personal شخصي FaxSy ثـخصي

* The words are transcribed in Roman of ELRA [5].

4 KEY WORD SPOTTING

 Several approaches exist for modeling both keywords and non keywords in a keyword spotting, the most common ones

are based on HMMs. Keyword spotting systems generally use HMMs of phone-based sub-word units [11]. In such approaches,

a set of HMMs is chosen to represent both the keywords and the non-keyword intervals [4]. In this keyword spotter, the

keywords and OOV units are modeled through a concatenation of monophone HMMs [12]. The system usually consists of

several steps. The first step is to train an HMM based speech recognition engine. Secondly, a dictionary is built for the

keywords models and the OOV models. OOV words are built the same way as the keyword models, but are used to represent

non-keywords in our recognition network. Finally, to detect the keywords in an audio stream, the file is passed through the

speech recognizer. The output should define which words were detected and the places where they were detected in the stream.

 The speech recognition network for this method consists of a number of paths from the beginning node to the end node.

Each of the paths passes through a model corresponding to a sound segment from the set of all possible non-keywords, possible

keywords, and the set of all possible outputs from the filler models [3]. This network is shown in Fig. 2. In this network, nonkwi

means one of the non-keyword classes. Also, fili represents a filler model while KWi is the model of ith element.

Fig. 2 Keyword spotting network.

5 SPOKEN TERM DETECTION

 For the spoken term detection system [1], lattice-search approach is used. The lattice-search system provides the

flexibility that we don’t need to refer to the original audio streams each time the streams are searched, which can increase the

system speed when searching large amount of data.

nonkw1

:

:

:

nonkwm

fil1

:

:

:

filk
KW1

:

:

:

KWn

 In N-best lattice search, Viterbi algorithm [12] is known to provide all path fragments that matches a certain model. The

method is based on confidence measure calculation for a certain keyword from a Viterbi network. Equation (1) illustrates how

the confidence measure is calculated,

phn
best

phn
betaphn

phn
alpha

phn
KW L)KW(L)KW(L)KW(LC −++= (1)

where)KW(Lphn
 is the log likelihood of the keyword, computed from the summation of the acoustic log likelihood of its

constituent phonemes.)KW(Lphn
alpha

 is the forward likelihood of the best path from the beginning of the lattice to the keyword.

)KW(L
phn
beta

 is the backward likelihood from the end of lattice to the keyword. phn
bestL is the 1-best likelihood path over the

complete lattice. In 1-best lattice search method [1], also called lexical access. It involves the calculation of costs for recognizer

errors. The distance between two strings is defined as the minimum number of error transformations used to derive one from

the other [17] when the error transformations are defined in terms of substitution, deletion and insertions errors as defined by

Levenshtein metric [18]. A threshold on the confidence score is calculated on a training portion of the database to give the

required system performance [1]. We consider another error type for continuation as in [1] beside deletion, insertion and

substitution errors. Continuation error simply indicates that the character inserted is the same as the character preceding it.

Levenshtein distance is, then, calculated between the recognized string and targeted keyword string using Dynamic

Programming Algorithm. Dynamic programming solves small, constrained versions of the problem. When the constraints are

tight, the function is simple to compute, and then the constraints are systematically relaxed until finally they yield the value of

the desired answer [19]. The algorithm uses an effective yet rather brute-force approach that essentially looks at every possible

way of transforming the source string to the target string to find the least number of changes.

 Later in the testing phase we use these costs as defined in equation (2) to spot the actual keywords. We start by

selecting a small window referred to as min
kW , calculate the total cost from this window. The window cost is based on

individual errors costs calculated previously from the training phase. Then we grow linearly by a single phoneme and redo the

process until we reach max
kW then we shift by one phoneme and repeat till the whole utterance is finished. We remove any

overlaps, by selecting the window with the least cost between intersecting windows. Finally, we decide whether or not we

detected a keyword by a threshold, also calculated from the training phase. We repeat this procedure for every keyword defined

in our dictionary.

)k,h(N

)k,h(N
logC

tot

sub
sub −= ,

)k,h(N

)k,h(N
logC

tot

ins
ins −= ,

)k,h(N

)k,h(N
logC

tot

delb
del −= and

)k,h(N

)k,h(N
logC

tot

con
con −= (2)

 Where Csub is the subsititution cost and Nsub(h, k) is defined as the total number of substitutions of test symbol k for

reference symbol h, Nins (h, k) is defined as the total number of insertion of test symbol k for reference symbol h, Ndel (h) is the

total number of deletions of reference symbol h, Ncon (h, k) is the total continuation of test symbol k for reference symbol h and

Ntot is the total number of occurrences of reference symbol h.

 The dynamic programming algorithm is used again to calculate the overall cost of matching keyword against

recognizer output.

For example, consider the following recognizer output EwzirHFax.... So we will start with min
kW =3 and end with max

kW =8.

So we will have the following windows sequence [Ewz, Ewzi, Ewzir, EwzirH, EwzirHF, EwzirHFa, wzi, wzir, wzirH,]

The cost comparison of 2 of these windows is shown in the tables TABLE II and TABLE III

TABLE II Costs of min
kW window

Searched

Keyword

 w z

 0 0.6310 0.9335

w 0.4662 0 1.3998

a 0.8023 0.3361 1.7359

z 1.5839 1.1176 0.3361

E 2.0794 1.6131 0.8316

r 2.6218 2.1555 1.3740

TABLE III Costs of max
kW window

Searched

Keyword

 w z i r

 0 0.6310 0.9335 2.0938 2.6674

w 0.4662 0 1.3998 2.5601 3.1337

a 0.8023 0.3361 1.7359 2.7086 3.4698

z 1.5839 1.1176 0.3361 1.9898 4.1663

E 2.0794 1.6131 0.8316 1.2854 3.4216

r 2.6218 2.1555 1.3740 1.8278 1.2854

So the cost for the window wz is 1.3740 and for the window wzir is 1.2854 . The window wzir will be considered as the window

with minimum cost and if it's below the threshold calculated on the training database it will be considered a match or spotted.

6 EXPERIMENTS AND RESULTS:

 The automatic speech recognition (ASR) engine is trained using an Arabic Globalphone database from ELRA [5]. The

provided database has approximately 4908 speech sentences from about 84 speakers. The recording sampling frequency is 16

ks/s with 16 bits quantization.

 The database is divided into two subsets; one for training and the remaining part is preserved for testing. The training

set is composed of about 3069 recorded waves. Each recording is associated with an Arabic transcription composed from about

35 phonemes. The HTK toolkit [12] is used. The frame size is 25 ms with overlapping of 15 ms. The feature vector is taken of

length 39 including 12 mel frequency cepstrum coefficients (MFCC), and the zero MFCC coefficient, which is proportional to

the total energy in the frame and their corresponding delta and acceleration coefficients. Each phoneme is modeled with 3 states

with 16 gauss-mixture model (GMM). The accuracy of phoneme recognition approaches the order of 65%. A word recognizer

is built based on concatenations of phoneme HMM models.

 The keyword searching is conducted through the structures described in section II. The first one is the syllabic non-

keyword (OOV) model. The second structure has both syllabic OOV with interchanged and shuffled consonant in syllables.

The third considers different variants of keyword transcription besides the shuffled syllables in OOV word classes.

 According to pattern structure and variations in pronouncing vocalic melody of different words, we used more than one

transcription for each keyword. Examples on keyword variants are listed in TABLE IV according to different pronunciations of

vowels according to neighboring phonemes.

Table IV KEY-WORD variants

Keyword الاتحاد الأوروبي

Meaning in English European Union

Variants of Keyword transcription

CilCitiHAd CilCUrUbE

CalCitiHAd CilCUrUbE

CalCittiHAd lCalCUrUbE

CilCitiHAd lCalCUrUbE

CalCitiHAd CalCUrUbE

CalCittiHAd CalCUrUbbE

 TABLE V KEY-WORD SEARCHING FOR 20 KWS

CONDITION RECALL PRECISION

SYLLABIC OOV MODEL FOR NONKEYWORDS 70.39% 86.9%

SHUFFLED OOV MODEL FOR NONKEYWORDS 64.25% 82.14%

SHUFFLED OOV MODEL CONTAINED IN ONE SET

(NONDISTRIBUTED)
45.25% 93.10%

SHUFFLED OOV MODEL AND KW VARIANTS 74.3% 82.61%

SYLLABIC OOV MODEL AND KW VARIANTS 75.42% 83.85%

 The results presented in TABLE V are summarized from many experiments using sufficiently-repeated words through

the used database. The results shows the effect of replacing the consonant of original words used in non-keyword models, these

results ensure that the vocalic melody is not sufficient to model the OOV. Despite that the shuffling of syllables in OOV model

did not, significantly, reduce the false alarms, it will help for more generic spotting system.

 For spoken term detection system using Lattice search method, the correct detection depends on the ability to correct

recognizer output. To do that we calculate all the recognizer errors on a portion of the database, associate costs to different

errors, store them and consider this as the training phase. This portion should be big enough to represent all expected errors

from the system. We use the 3069 utterances of our speech database for the training purpose [5]. HResults is a tool provided by

the HTK toolkit [12]. It provides a good implementation for Levenshtein distance. It mainly calculates insertion, substitution

and deletion errors, but no continuation errors. So, a modified version of HResults was made to provide all the results we need

from Levenshtein algorithm.

 For the spoken term detection system, we, applied the 1-best lattice search approach. In this trial, we used a general

rule for window lengths, and the rule was applied on all keywords. TABLE VI shows the results from spoken term detection

experiment where min
kW = NK/2 + 1, NK is defined as the number of phonemes in dictionary entry for keyword K, and max

kW =

min
kW + NK and min

kW and max
kW defined for each keyword where Nk is the length of keyword k. The recall rate was 79.33%

and the precision rate was 64.84%. After trying several experiments we chose specific window lengths for each keyword, the

recall rate reached 75.98% and precision rate reached 75.14%. We also experienced a great enhancement in system speed by

reducing the number of used windows.

TABLE VI STD searching for 20 KWs

Condition Recall Precision

Fixed widow length 79.33% 64.84%

Variable window length 76.54% 75.69%

7 DISCUSSIONS AND CONCLUSIONS

 This work considers the problem of keyword searching through Arabic speech. Two approaches are tested through this

work for keyword spotting in Arabic. First one is the keyword spotting approach based on searching through the acoustical-

features domain while the other is the spoken-term detection where the searching is through string domain. One essential

problem in building this searching system is the definition of out-of-vocabulary (OOV) words beside the searched keywords.

To solve this problem for Arabic, the pattern structure of Arabic is exploited in building a model for OOV part of the system.

The OOV model is chosen acoustically homogenous and distributed over a wide range of frequently used words in Arabic. The

elements of OOV were chosen in a distributive manner according to pattern structure of Arabic.

 The proposed OOV model is tested in two versions; one of them is based on words covering most of Arabic patterns

which are limited. The other is called shuffled nonkeyword model in which the consonants are interchanged between training

non-keywords. This concept is partially tested due to lack of data. Also, we include different transcriptions for a keyword as

pronounced in practice. This model of keyword-spotting helps in improving the spotting accuracy. The obtained results for the

proposed systems, achieve more than 90% precision rate for keyword spotting approach while the recall rate is smaller. The

other approach of spoken-term detection approaches 80% in recalling and smaller rate for precision.

 The obtained results show the efficacy of employing the pattern structure of Arabic in defining OOV words. Also it is

proved that hybrid methods based on the combination of keyword-spotting and sub-word lattice search is needed for Arabic as

reported for other languages [1].

Acknowledgement

 The authors would like to thank ITIDA, Egypt (Information Technology Industry Development Agency) for its support

via provided fund. They are, also, fully indebted for the valuable discussions and help provided by Prof. Dr. Waleed Fakhr,

Arab Academy of Sciences & Maritime.

References:

[1] J. Tejedor, D. Wang, J. Frankel, S. King and J. Colas, “ A comparison of grapheme and phoneme-based unitsfor Spanish

spoken term detection”, speech comm, 50 (2008) 980–991.

[2] J. Keshet, D. Grangier, S. Bengio, “Discriminative keyword spotting”, Speech Communication 51 (2009) 317–329

[3] S. Tangruamsub, P. Punyabukkana, and A. Suchato, “Thai speech keyword spotting using Heterogeneous acoustic

modeling”, Research innovation and Vision for the future, IEEE International Conference, 2007.

[4] P. Heracleous , T. Shimizu, “ A novel approach for modeling non-keyword intervals in a keyword spotter exploiting

acoustic similarities of languages”, Speech Communication 45 (2005) 373–386.

[5] ELRA, ELRA-S0193, GlobalPhone Arabic, ELDA S.A., 2006.

[6] J. C. E. Watson, The Phonology and Morphology of Arabic, Oxford university press Inc., NewYork, ch.6, 2002.

[7] M. C. Bateson, Arabic Language Handbook, Gorgetown university press, Washington D. C., ch.1, 2003. Washington D. C.,

ch.1, 2003.

[8] K. Brown and S. Ogilive, (edited by), Concise Encyclopedia of Languages, J. C. E., Watson, Arabic as an Inflecting

Language, Elssevier, pp. 431-434, 2006.

[9] S. Boudelaa, and W. D. Marslen-Wilson, “Abstract morphemes and lexical representation: the CV-Skeleton in Arabic”,

Cognition, International Journal of Cognitive Science, vol. 92, pp. 271–303, 2004.

[10] J. Benesty, M. Sondhi, and Y. Huang (EDs), Springer Handbook of Speech Processing, Springer Berlin-Heidelberg,

2008.

[11]Y. Ling, “Keyword spotting in continuous speech utterances,” Master’s thesis, McGill University, Montreal, 1999.

[12] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, “The HTK Book” (for HTK Version 4.30),

Cambridge University Engineering Department, England, 2006.

[13] K. Schulz and S. Mihov, “Fast string correction with levenshtein-automata,” International Journal of Document Analysis

and Recognition, vol. 5, pp. 67–85, 2002.

[14] Z. Su, B.-R. Ahn, K.-Y. Eom, M.-K. Kang, J.-P. Kim, and M.-K. Kim, “Plagiarism detection using the levenshtein distance

and smith-waterman algorithm,” in Proceedings of the 2008 3rd International Conference on Innovative Computing

Information and Control (ICICIC ’08), (Washington, DC, USA), p. 569, IEEE Computer Society, 2008.

[15] A. A. Kanso, “An efficient cryptosystem delta for stream cipher applications,” Comput. Electr. Eng., vol. 35, no. 1, pp.

126–140, 2009.

[16] P. Caballero-Gil and A. F´uster-Sabater, “A simple attack on some clock controlled generators,” Comput. Math. Appl.,

vol. 58, no. 1, pp. 179–188, 2009.

[17] A. V. Aho and T. G. Peterson, “A minimum distance error-correcting parser for context-free languages,” SIAM Journal

on Computing, vol. 1, no. 4, pp. 305–312, 1972.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet Physics Doklady, vol.

10, no. 8, pp. 707–710, 1966.

[19] G. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell. O’Reilly, 1st. ed., 2009.

1

Designing and Implementing Arabic Text-To-Speech

(ArTTS)
Hassanin M. Al-Barhamtoshy*1, Fahd Al-Hiedary*, Mansour Al-Johany* and Wajdi H. Al-Jedaibi*

Faculty of Computing and Information Technology, King Abdulaziz University, SA

1hassanin@kau.edu.sa

Abstract - This article presents a new approach to analyze mixed-text that includes Arabic words

and numeral texts. Therefore, Arabic digits and numbers pronunciation included in this article with

the associated related rules. Also, the different rules of Arabic graphemes pronounced letters are

presented, designed and implemented in ArTTS.

ArTTS concatenated these pronounced graphemes and produced sounded Arabic words. The result

that produced from numbers matches the Arabic pronouncing of numbers. The result produced

from letters is accepted and understood to the listener. ArTTS deals with about 90 rules of numbers

and diactrize rules.

This approach centers on a modular, mixed-lingual morphological and syntactic analyzer, which

additionally provides accurate language identification on morpheme level, word and sentence

boundary identification in mixed-lingual texts. This approach can also be applied to word

identification in languages without a designated word boundary.

1 INTRODUCION

Speech refers to the processes associated with the production and perception of sounds used in spoken

language [1]. In recent years, the massive development of information and technology provides a special

technique for speech that is used in applications and used by the computer to implement some of the tasks

that need to be voted.

Speech technology relates to the technologies designed to duplicate and respond to the human voice. They

have many uses: to aid the voice-disabled, to communicate with computers without a keyboard, to market

goods or services by telephone and to enhance game software [2]. Speech technology uses several

processes that study speech signals and the processing methods of these signals. These signals are usually

processed in a digital representation, whereby speech processing can be seen as the intersection of digital

signal processing and natural language processing.

1.1. Speech Recognition (SR)

Speech recognition, also known as automatic speech recognition or computer speech recognition [3].

Where the computer utilizes audio input for entering data rather than a keyboard. Speaking into a

microphone, for example, produces the same result as typing words manually with a keyboard. Simply

stated, voice recognition software is designed with an internal database of recognizable words or phrases.

The program matches the audio signature of speech with corresponding entries in the database. Though

turning speech into text might sound easy, it is an extremely difficult task [4]. The problem lies in the

virtually infinite array of individual speech patterns and accents, compounded by the natural human

tendency to run words together. Some Speech recognition systems, called discrete speech systems, require

the user to speak clearly, slowly and to separate words [4]. Speech recognition is especially useful in

business where it can replace a live operator to funnel calls, disseminate information, take orders and

perform other highly useful functions.

http://en.wikipedia.org/wiki/Speech_production%20/%20Speech%20production
http://en.wikipedia.org/wiki/Speech_perception%20/%20Speech%20perception
http://en.wikipedia.org/wiki/Sounds%20/%20Sounds
http://en.wikipedia.org/wiki/Spoken_language%20/%20Spoken%20language
http://en.wikipedia.org/wiki/Spoken_language%20/%20Spoken%20language

2

1.2. Text To Speech (TTS)

TTS, or Text-To-Speech, is the digitized audio rendering of computer text into speech, synthesized speech

through computer's speakers; Figure (1). TTS programs can be useful for a variety of applications. For

example, proofreading with TTS allows the author to catch awkward phrases, missing words or pacing

problems. TTS can also convert text files into audio MP3 files that can then be transferred to a portable

MP3 player or CD-ROM [5]. This can save time by allowing the user to listen to reports or background

materials in bed or while performing other tasks [5]. The quality of a speech synthesizer is judged by its

similarity to the human voice, and by its ability to be understood.

1.3. Speech Properties

1.3.1. Phoneme

In human language, a phoneme is the smallest posited linguistically distinctive unit of sound. Phonemes

carry no semantic content themselves [6, 7]. An example of a phoneme is the /ق / sound in the words (قارب)

and (قيعاا). (In transcription, phonemes are placed between slashes). Even though, most native speakers

don't notice the different of speech [6].

An example of different phoneme that would cause a change in meaning, producing words like (عابب)

(substituting //ع In many languages, each letter in the spelling system represents .(/غ/ substituting) (غابب) ,(

one phoneme [6, 8].

1.3.2. Allophone

Allophone is one of several similar speech sounds (phones) that belong to the same phoneme [9]. An

example of allophone /ت/ and /ط/ sound in the words (ةمتابعا) and (ةمطالعا), the two letters have different

phoneme but they have the same sounds. Changing the allophone won't change the meaning of a word, the

result may sound non-native [7, 8, 9].

1.3.3. Morpheme

Morpheme is the smallest linguistic unit that has semantic meaning. In spoken language, morphemes are

composed of phonemes and in written language, morphemes are composed of graphemes (the smallest

units of written language) [9, 10]. The word "unbreakable" has three morphemes: "un-", a bound

morpheme; "break", a free morpheme; and "-able", a bound morpheme. Different morphs representing the

same morpheme are Allomorph [7, 10].

1.3.4. Syllable

Syllable is defined as a unit of organization for a sequence of speech sounds. Syllables are often considered

the phonological (building blocks) of words [7, 11]. An example of syllable is the word (قواعا) the two

syllables here are (قوا) and (ع), Figure (2).

Figure 1: Text To Speech (TTS) Digitizing

1

http://www.wisegeek.com/what-is-a-computer.htm
http://www.wisegeek.com/what-is-an-mp3.htm
http://www.wisegeek.com/what-is-an-mp3-player.htm
http://en.wikipedia.org/wiki/Phone_(phonetics)
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Meaning_(linguistics)
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Grapheme
http://en.wikipedia.org/wiki/Speech_communication
http://en.wikipedia.org/wiki/Phonology
http://en.wikipedia.org/wiki/Word

3

1.4. Research Scope and Background

The scope of the research project converts Arabic text to speech, by analyzing the input text and using

special characteristics of Arabic language, generate Arabic phonemes, match between the Arabic

phonemes and the stored ones in the computer, then produce digitized audio of Arabic text. Consequently,

a study of Arabic grammars and properties of speech will be included.

TTS has many benefits, including scientific and journalized texts, automated reader, telephone response,

searching in web, online audio player, music and media player.

1.4.1. Acapela TTS Program

The first model is provided by Acapela Group using high quality TTS [12]. The Acapela voice solutions

speak 25 languages using over 50 characters voices. It allows any company to acquire its own exclusive

voice at an affordable price. See Figure (3).

1.4.2. Sakhr TTS Program

The second model is presented by Sakhr TTS [13]. Such demo works on Arabic language only. The

Figure 2: Example of Arabic Syllable

 قواع

 ع قوا

Figure 3: Acapela TTS demo [12]

2

special characters of Arabic language like (ً _, ً _, ً _) are used (Figure 4). The model has two male

voices and two female voices. Such program has different pitch.

Most attempts to provide text-to-speech for Modern Standard Arabic (MSA) have concentrated on solving

the problem of diacritic assignment. The paper [14] described an approach to the task of generating speech

from MSA text, which provides the information required for imposing an appropriate intonation contour

in Arabic text.
Voice conversion, i.e., modification of a speech signal to sound as if spoken by a different speaker, finds

its use in speech synthesis with a new voice without the necessity of a new database. The paper of [15]

introduces two new simple non-linear methods of frequency scale mapping for transformation of voice

characteristics between male and female or childish. The frequency scale mapping methods were

developed primarily for use in Czech and Slovak text-to-speech (TTS) system designed for the blind and

based on the Pocket PC device platform. It uses cepstral description of the diphone speech inventory of

the male speaker, using the harmonic speech model. Three new diphone speech inventories corresponding

to female, childish and young male voices are created from the original male speech inventory. Listening

tests are used for evaluating voice transformation and quality of synthetic speech [15].

Text-to-speech synthesis systems have to deal with texts containing inclusions of multiple other languages

in the form of phrases, words or parts of words in multilingual countries. In such multilingual cultural

settings, listeners expect a high-quality text-to-speech synthesis system to read such texts in a way that the

origin of the inclusions is heard. The challenge for a text analysis component of a text-to-speech synthesis

system is to derive, from mixed lingual sentences, the correct polyglot phone sequence and all information

necessary to generate natural sounding polyglot prosody [16]. The article [16] presents a new approach to

analyze mixed-lingual sentences. This approach centers on a modular, mixed-lingual morphological and

syntactic analyzer, which additionally provides accurate language identification on morpheme level and

word and sentence boundary identification in mixed-lingual texts. To date, this mixed-lingual text analysis

supports any mixture of English, French, German, Italian and Spanish. Because of its modular design, it is

easily extensible to additional languages.

2 ArTTS ANALYSES AND ORGANIZATION

2.1. Object-Oriented Analysis and Design - UML Diagrams

UML consists of nine different diagram types, each focused on a different way to analyze and define the

system. These diagrams are summarized briefly here [18]:

Figure 4: Sakhr TTS demo [13]

3

▪ Use Case Diagrams show the externally visible behavior of the system.

▪ Activity Diagrams show an elaboration of the behavior of the system.

▪ Component Diagrams show architecture of the system.

▪ Sequence Diagrams show object interactions over time.

▪ Collaboration Diagrams show object interactions with emphasis on relations between objects.

▪ Class Diagrams show class definition and relations.

▪ Statechart Diagrams show state changes in response to events.

▪ Deployment Diagrams show physical architecture of the system.

▪ Package Diagrams show the design hierarchical.

2.2. Requirement Scenario of ArTTS Design Screen

1. Type a text into the “Text box”

2. Press on “Speak" button to listen to the text words.

3. Copy a text from anywhere and paste it in the “Text box”.

4. Clear the “Text box”.

5. Cut a text from anywhere and paste it in the “Text box”.

6. Import a text file and export the text.

2.3. Use Case Model

Figures (5) and (6) show the use case model and screen design of the ArTTS. User deals with the system

by using User Screen, which includes many operations of the ArTTS.

2.4. Description of “User Screen” Use Case

1. “User Screen” is created and displays the following screen

Figure 5: ArTTS Use Case Diagram

4

Figure 6: ArTTS Screen Design

2. If (Speak) button is selected, text in text box will be split into words.

2.1. Each word will be split into graphemes.

2.2. If grapheme is a letter, each letter in Arabic format will call its phoneme path from “Phoneme

Path Table” that has the following structure:

2.3 If grapheme is a number, each number will call its number path from “Numbers Path Table ” that

has the following structure:

2.4. ArTTS will play the paths- stream of phonemes (the process of speak button).

3. If (Copy) button is selected, the system will make a copy of the selected text in computer memory.

4. If (Paste) button is selected, the copied text in memory will be pasted in the “TEXT BOX”, where the

pointer is.

5. If (Clear) button is selected, all text in “TEXT BOX” will be selected and deleted.

6. If (Export) button is selected, the file will be saved in the selected location as text format.

7. If (Import) button is selected, the imported text file will be shown in the “TEXT BOX”.

2.5. Analysis Model

The analysis model is specified as an initial object structure in the form of class and object diagrams,

which is able to realize the behavior specified in the use cases. Therefore, many UML diagrams are

created to describe the proposed system and the main interface of ArTTS.

 Sequence diagram is the most popular UML artifact for dynamic modeling, which focuses on

identifying the behavior within the proposed system. Such diagram describes the user sequence diagram of

the ArTTS.

3. STRUCTURE OF ArTTS ENGINE

The proposed ArTTS engine is a model that synchronizes Arabic speech output by:

1. Breaking down Arabic text into orthographic words, by the scanner/parser module.

2. The orthographic words are analyzed and then broken down into phonemes, using the following sub-

steps:

a. Analyze the input of numerals of text that require conversion to pronounced phonemes, using

Arabic numeral conversion rules.

b. Analyze the input orthography words and convert this stream into phonemes, using Arabic

phonological rules.

5

Figure 7: ArTTS Engine Structure

3. Concatenate the stream of phones via concatenation module, using the builder module.

4. Generate the digital audio.

3.1. ArTTs Layout Architecture

ArTTS Engine is a concatenative engine that uses linguistic rules to generate artificial sounds. The ArTTS

produces output by concatenating recordings of units of real human speech. These units are phonemes that

have been extracted from larger units of recorded speech, but may also include words. Figure (7) shows

the proposed engine of ArTTS model using several steps.

3.1.1. Text Input

In this step input, text box is needed to enter Arabic text. This entered text is used as input to the second

step of speech synthesizer.

3.1.2. Speech Synthesizer

The description of speech synthesizer of ArTTS is illustrated in the following. Figure (11) shows 5 phases,

including Scanner (Tokenizer) which contains Stream of words, Generation Rules and Builder. This step

includes entire 4 phases:

Phase 1 (Scanner) or (Tokenizer)

 In this phase, text will break down into words (tokens).

Phase 2 (Splitter)

 The splitter will break words into graphemes.

Phase 3 (Generation Rules)

These rules are used to determine the most special cases of the pronunciation of Arabic text [8] that ensure

the appropriate representation of the text with the rules of Arabic pronunciation. To do this phase, ArTTS

Engine will use two sum phases each phase will use 3 sequential processes for words and numbers.

A. Diactrize Rules

1. Process Using Fags

This process is to check each rule if it will be applied or not.

2. Process Look Ahead

This process is for checking forwards for next grapheme.

3. Process Phoneme Sound Path

 Connect to database to get the phonetic grapheme path.

B. Numbers Rules

6

1. Process Using Fags

This process is to check each rule if it will be applied or not.

2. Process Look Ahead

This process is for checking forwards for next letters.

3. Process Phoneme Sound Path Generator

 Connect to database to get the phonetic letters path.

Phase 4 (Builder)

A complete phonetic word will be generated, therefore full phonetic words will be ready to be sent to the

sound card. Consequently, sound card converts digital audio (sound file) to acoustical signal and amplifies

through speaker. Therefore, users hear these spoken words.

The ArTTS system is based on the source-filter speech model or the diphone and allophones description is

shown in Figure (8). Arabic text to be synthesized is entered as an input sequence of characters. It is

converted to the combination of diphones and phone units, through the prosody generator. Each of these

units has its collection description in the speech database.

According to Arabic language, prosody rules are applied. The resulting synthetic speech is generated

pitch-synchronously. We have used the original male voice database and two derived databases with given

formant modification factors according to: (1) Allophones knowledge base, (2) Diphone knowledge base

and (3) mapping methods. The basic pitch frequency and the corresponding description of the speech

database are selected and attached for synthesis by the choice of a voice.

The synthetic speech is generated as a sum of sine waves with given frequencies, amplitudes, and phases.

The frequencies are multiples of pitch frequency, amplitudes and phases that are given by sampling the

frequency response of the vocal tract model, given by the default stored voices.

Arabic Text Arabic Speech

Figure 8: The Proposed Model Structure of ArTTS

Figure (11): ArTTS Algorithm of " ً "

Allophones

Knowledge Base

Diphones

Knowledge Base

Arabic Facts Arabic Facts

ArTTS Engine

Arabic Numerals

Knowledge Base
Prosody

Knowledge Base

Arabic Numeral

Facts
Arabic Prosody

Facts

7

Speech (Voice) Independent

Speech (Voice) Dependent

This architecture of the ArTTS strictly separates language-independent algorithms from language-

dependent linguistic and acoustic data. Furthermore, voice-independent and voice-dependent parts are

separated. The voice-independent part includes text analysis and phonological processing. It transforms

the Arabic input text into the so-called phonological representation, i.e., a minimal, voice-independent

abstract description of the speech to be synthesized. On the other hand, the phonological representation

includes the phonetic symbols and the abstract descript on of stream of sentence to be uttered. The voice-

dependent part, composed of concatenation control and speech signal generation, produces the speech

signal from phonological representation.

The ArTTS engine transforms a text paragraph by paragraph in four steps into speech. Figure (9)

illustrates these steps. The applied methods of the four corresponding system components are as follows:

1. Arabic text analysis derives the morphological structure of Arabic words and delivers the phonetic

transcription and language identification of each morpheme. For Arabic text analysis, strictly rule-

based processing is applied, which uses word and sentence grammars and two-level rules for lexicon-

to-surface mapping implemented: Allophones and Numerals knowledge bases.

2. Phonological processing applies phonological transformations, which are formulated using the so-

called multi context rules. It also assigns sentence stress and phrase boundaries, based on the

syntactic structure of a sentence. This abstract description, together with the phonetic transcription of

each word, constitute the phonological representation.

3. Concatenation control generates, from the phonological representation, the physical stream sequence

parameters. These are the stream values of all phones and the equivalent waves files of a sentence.

Phone duration and wave file control are realized by means of stored models, which directly map the

symbols of the phonological representation onto wave file index and fundamental frequency values.

4. Speech signal generation is based on concatenation of diphone units extracted from natural speech

(files stream). Prior to concatenation, the diphones have to be modified such that they match the

specified phone duration and fundamental frequency values.

Figure 9: The Architecture of the ArTTS

3.3. ArTTS Knowledge Base

Arabic Text Analysis

Phonological Processing

Concatenation Processing

Speech Signal Generation

8

3.3.1. Look up Database

A database is used in ArTTS to store all paths of letters and numbers. To get the path of letters or

numbers, ArTTS will (Look up to Database) by using two classes.

1- Letters path class: for letters paths.

2- Numbers path class: for numbers paths.

3.3.2. Numbers Path Table

The numbers Path Table contains 3 columns (ID, Number, Number Path). Although, the number path

column contains the paths of sounded numbers files (.wav files). So, the goal of this table is to call the

paths of numbers to play it as a sound. This table contains two sections, these sections will be described in

the following.

A. Needed Sounds

Start from ID (0-9) containing the paths of the most used sounds in numbers system in Arabic language

such as follow

ID Word in English Word in Arabic Word pronounce in English

0 And و Waa

1 Ten عشب Ashar

2 1 hundred مئه Me'aa

3 1 thousand ألف Alf

4 thousands آلاف Aalaf

5 1 thousand ألفا Alfan

6 2 hundreds مئتا Me'atan

7 2 thousands ألفا Alfan

8 One اح ى Ehda

9 two اثنا Ethna

So, when the input text is a number, those paths will be called and stored in an array to use them directly

when ArTTS needs to use these sounds.

B. Numbers Sounds

Start from ID (10 to the end of table's rows), containing the paths of sounded numbers from (1-9) in

two types:

1. First Type

For Individual numbers such as (1, 2, 3)

2. Second Type

For tens, hundreds and thousands numbers, this type is divided into two modes :

2.1. First mode

Numbers needed to be spoken as individuals in a stream of numbers ("133" last 3 will be

spoken " ثلاثة" not "ثلاثه")

2.2. Second mode

For tens numbers (20, 50, 80)

Now, all sounds of numbers and sounds of words used in Arabic numbers speech are ready to create the

sound of any stream of numbers in the range of (1 – 99999). As an example, (53082) will be structured in

ArTTS as follows:

9

 (from left to right) ثمانو +و+اثنا +و+ألفا +خمسو +و+ثلاثة

Thalathato waa Khamsoon Aalfan waa Ethnan waa Thamanoon.

All special cases of Arabic numbers speech are included in Numbers Rules at Speech Synthesizer level.

3.3.3. Letters Path Table

This table also includes 3 columns (ID, Letters, Path), and each letter has 8 different types of sounds (اَ ا اِ ا

 So, the received grapheme that is sent by (Diactrize Rules) will be compared inside the table to get .(ا ا اٌ ا

the path, not inside the code. Then, the path will be sent to (Mapping Phase) to play it.

4 ArTTS IMPLEMENATION AND TESTING

As mentioned, the ArTTS structure is composed of 4 stages. The second stage is the very important one.

Therefore, the following section describes the C# code to operate with speech synthesizer mechanism.

4.1. ArTTS Implementation

C Sharpe language is used to implement ArTTS, including scanner, splitter, generation rules and builder

modules. The scanner is used to break down into words (Tokens). The splitter will break words into

graphemes. Figures (10-a) and (10-b) include two examples to test ArTTS.

Figure (10-a) Figure (10-b)

In Figure (13-a), input text will be represented by ArTTS as follow: صو+لِ+ +سبعة +و+عشبو+ +ف عَ+دَ+د + +ا +ل

5 RELATED WORKS

An ARABTTS system was judged, well acceptability and visually impaired listener has accepted the

system very well [17]. The intonation lacks naturalness that is explained by the fact why the prosodic

model does not take yet counts the micro-prosodic phenomena. The pauses are well located and perceived

well. The objective was to conceive and carry out a system of voice synthesis starting from diacritized

Arab texts as understandable and naturalness as possible. The first criterion of intelligibility is reached by

to the linguistic module of treatment, which makes it possible to carry out the pre-treatments necessary on

the chain of entry to be synthesized and to carry out conversion graphemes to phonemes.

A new technology of VoiceXML as a markup language has presented among human speech over the

network. Some suggestions to add Arabic support to this technology [18]. They introduce this technology

and its methodology (how to work). Since that this technology requires the user to own some major

10

components such as VoiceXML browser, Arabic TTS and Arabic ASR, the paper describes these

components in some details. It firstly introduces the VoiceXML, then it explains the architecture of the

VoiceXML browser in details, after that it discusses the specifications of Arabic language, next it

discusses the method of building Arabic TTS and Arabic ASR and their architecture.

A rule-based hybrid synthesis Arabic TTS system was developed in [19]. Phonemes were the essential

elements of the synthesizer, the proposed Arabic TTS system is vocabulary independent with intelligible

output speech, so it can handle all types of input text. It has the flexibility of changing the speaker from

male to female and other sound variants like whispering. The standard Arabic text is mostly unvowelized;

hence the need of vowelization (Tashkeel), the proposed system omits the need to some of the

vowelization symbols like sukoon and has the ability to enrich the exception dictionary by listing the exact

pronunciation of the common words, there, no need to vowelize them. Comparing with other available

Arabic TTS systems, the proposed Hybrid TTS has small size, high accuracy, and vocabulary

independence features which make it in general more reliable than other TTS systems. The system is free

for distribution and for development.

The objectives in the work of [20] consisted in improving the naturalness of an Arabic Text To Speech

Synthesis system (ARAVOICE). To reach this result, a proposed approach for the automatic generation of

the stress presented. The rules used in the phonological module are founded primarily on an algorithm of

stressing. Its represents the core of the tonal rules which are employed in the phonetic module. The

proposed model adapted, in another point, diagrams generated for the text processing and that while acting

on the size of the sentences of the text to reading.

In the paper of [21], a proposed mini-transliteration system for Arabic-numeral expressions is presented. It

can efficiently and correctly convert Arabic numeral expressions found in Korean text into phonemes for

embedded TTS systems. For the purpose of building grapheme-to-phoneme rules, components of ANEs

are deduced, and investigated their pattern and arithmetic features based on the analyzed corpus. A word

sense disambiguation was developed to resolve ambiguities and minimized the amount of memory used. It

reduced the process time without any serious loss of accuracy, and showed high accuracy, [21].

6 CONCLUSIONS

The project analyzed, designed, implemented and tested an Arabic Text-to-Speech (ArTTS) model to be

used in Arabic text pronunciation. Introduction to speech is introduced, includs speech recognition and

speech synthesizer. The analysis and design models are described, taken in our consideration the object

oriented analysis and design, using UML diagrams. Also, the layout structure of ArTTS is designed and

implemented using C sharp language in visual studio .Net 2008.

Arabic digits and numbers pronunciation included in ArTTS are associated with related rules. Also, the

different rules of Arabic graphemes pronounced letters are included and designed in ArTTS.

ArTTS concatenates these pronounced graphemes and produced sounded Arabic words. The result that

produced from numbers matches Arabic pronouncing of numbers.

The result produced from letters is accepted and understood by the listener. ArTTS is dealing with about

90 rules of numbers and diactrize rules. ArTTS can deal with more rules by putting the new rules in (Rule

Phase) for both numbers and letters. Using more rules will enhance the output and make it more similar to

Arabic pronunciation. Also, ArTTS will be enhanced using prosody technology.

ACKNOLEDGEMENS

I would like to thank IT department, faculty of computing and IT deanship for their support and guidance

and insights that contributed tremendously to this paper. Also, I would like to acknowledge Fahd Al-

Hiedary, Mansour AlJohany Seef Al-Harthi for their programming efforts.

11

REFERENCES

[1] Ahmed Mokhtar Omar, (2006). " دراسة الصوت اللغوي". Publisher: Alam Alkotob, Cairo, Egypt.

[2] Mansour Mohammed ALghamdi, (2006). "قوانين الفونولوجيا العببيه", Publisher: King Abdulaziz City for

Science and Technology (KACST), Saudi Arabia.

[3] Wikipedia "speech", (15/3/2009): http://en.wikipedia.org/wiki/Speech

[4] Wikipedia "speech technology", (16/3/2009) http://en.wikipedia.org/wiki/Speech_technology

[5] Wisegeek "speech recognition", (17/3/2009) http://www.wisegeek.com/what-is-voice-recognition.htm

[6] Wisegeek "text to speech", (20/3/2009) http://www.wisegeek.com/what-is-tts.htm

[7] Wikipedia "Phoneme", (29/3/2009) http://en.wikipedia.org/wiki/Phoneme

[8] Wikipedia " Allophone", (30/3/2009) http://en.wikipedia.org/wiki/Allophone

[9] Wikipedia " Morpheme ", (19/3/2009) http://en.wikipedia.org/wiki/Morpheme

[10] Wikipedia " syllable", (19/3/2009) http://en.wikipedia.org/wiki/Syllable

[11] Acapela TTS: http://www.acapela-group.com/text-to-speech-interactive-demo.html

[12] Sakhr TTS : http://www.sakhr.com/TTS/TTS.asp

[13] Site Pal TTS: http://www.oddcast.com/home /demos/tts/tts_example.php?

[14] Allan Ramsay and Hanady Mansour (2008). Towards including prosody in a text-to-speech system

for modern standard Arabic, Computer Speech and Language 22 (2008) 84–103.

[15] Anna Prˇibilova, and Jirˇı´ Prˇibil, (2006). Non-linear frequency scale mapping for voice conversion

in text-to-speech system with cepstral description, Speech Communication 48 (2006) 1691–1703.

[16] Harald Romsdorfer and Beat Pfister, (2007). Text analysis and language identification for polyglot

text-to-speech synthesis, Speech Communication 49 (2007) 697–724.

[17] Zemirli, Z. (2006). ARAB_TTS: An Arabic Text To Speech Synthesis. Computer Systems and

Applications, 2006. IEEE International Conference.

[18] Kosayba, B.; Alkhedr, H.; Jdeed, F.; Shriedi, A.; Al-mozaien, E. (2008). Arabic Phonetic Web Sites

Platform Using VoiceXML, Information and Communication Technologies: From Theory to

Applications, 2008. ICTTA 2008. 3rd International Conference.

[19] Mustafa Zeki, Othman O. Khalifa, A. W. Naji, (2010). Development of An Arabic Text-To-Speech

System, International Conference on Computer and Communication Engineering (ICCCE 2010), 11-

13 May 2010, Kuala Lumpur, Malaysia, IEEE.

[20] Zouhir ZEMIRLI, Salima KHABET, M'hamed MOSTEGHANEM, (2007). An effective model of

stressing in an Arabic Text To Speech System. IEEE

[21] Youngim Jung, Aesun Yoon, and Hyuk-Chul Kwon, (2007). Grapheme-to-Phoneme Conversion of

Arabic Numeral Expressions for Embedded TTS Systems. IEEE TRANSACTIONS ON AUDIO,

SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2007.

http://en.wikipedia.org/wiki/Speech
http://en.wikipedia.org/wiki/Speech_technology
http://www.wisegeek.com/what-is-voice-recognition.htm
http://en.wikipedia.org/wiki/Allophone
http://www.acapela-group.com/text-to-speech-interactive-demo.html
http://www.sakhr.com/TTS/TTS.asp
http://www.oddcast.com/home%20/demos/tts/tts_example.php

 1

Ontology and its Methodology
Susan Fisal Ellakwah *1, Passent El-Kafrawy**2, Mohamed Amin**3, El-Sayed El-Azhary*4

*Central Lab for Agricultural Expert Systems (CLAES)

Agricultural Research Center (ARC)

Giza, Egypt
1fisalsusan@yahoo.com

4sayed@claes.sci.eg

**Mathematics and CS Department, Faculty of Science,

Menoufia University, Egypt
2passentmk@gmail.com

Abstract— Ontology is used for communication between people and organizations by providing a common terminology over a

domain. This work presents a method of establishing ontology from existing ontologies. Establishing ontology from scratch is hard

and expensive. This work establishes ontology by matching and merging existing ontologies. Ontologies can be matched and merged

to produce a single integrated ontology. Integrated ontology has consistent and coherent information rather than using multiple

ontologies, which may be heterogeneous and inconsistent. Heterogeneity between different ontologies in the same domain is the

primary obstacle for interoperation between systems. Heterogeneity leads to the absence of a standard terminology for any given

domain that may cause problems when an agent, service, or application uses information from two different ontologies. Integrating

ontologies is a very important process to enable applications, agents and services to communicate and understand each other.

1 INTRODUCTION

The term ontology refers to a wide range of formal representations, including taxonomies, hierarchical terminology vocabularies

or detailed logical theories describing a domain [1]. For this reason, a precise definition of the term is rather difficult whereas

different definitions have appeared in the literature. One commonly used definition is based on the original use of the term in

philosophy, where ontology is a systematic account of Existence. For artificial intelligence (AI) systems, what “exists” is that

what can be represented [2]; therefore, an ontology in the AI context is a structure that specifies a conceptualization, or, more

accurately, a specification of a shared conceptualization of a domain [3]. "An Ontology is a formal, explicit specification of a

shared conceptualization [4]. Conceptualization refers to an abstract model of some phenomenon in the world by having

identified the relevant concepts of that phenomenon. Explicit means that the type of concepts used, and the constraints on their

use, are explicitly defined. Formal refers to the fact that the ontology should be machine-readable. Shared reflects the notion

that an ontology captures consensual knowledge, that is, it is not private of some individual, but accepted by a group.

In recent years, the AI community has borrowed that term and used it to refer to a set of concepts or terms that are useful in

describing or modeling a certain area of knowledge. It provides a source of precisely defined terms and relations. The role of

ontologies is to capture domain knowledge in a generic way, provide a commonly agreed upon understanding of a domain and

transform the implicit into the explicit knowledge.

Two important challenges facing current communities of researchers and practitioners in the field of software engineering and

technology (SET) are knowledge integration and computer-based automatic support. The first challenge implies wasting a lot of

time and effort and this is due to one of the difficulties in human relationships, namely the lack of explicit knowledge shared

among members of a group/project, with other groups and with other stakeholders. The second challenge arises as many

projects include the design and/or construction of advanced tools for supporting different software engineering activities. These

tools should provide as much functionality as possible with the smallest cost of development. Both challenges can be solved and

more easily approached by using ontologies.

Ontologies provide a shared and common understanding of a domain that can be communicated between people and across

application systems. Ontologies play a major role in supporting information exchange processes in various areas. Informally,

ontology specifies common vocabulary between different systems. It tries to identify and overcome the barriers for sharing and

reusing knowledge represented by AI programs. Ontology is used for knowledge sharing and reuse. It improves information

organization, management and understanding.

The starting point for creating ontology could arise from different situations. An ontology can be created from scratch; from

existing ontologies (whether global or local ontologies); from a corpus of information sources; or a combination of the latter two

approaches. Various degrees of automation could be used to build ontology, ranging from fully manual, semi-automated, to

mailto:fisalsusan@yaoo.com

 2

fully-automated. At present, the fully automated method only functions well for very light weight ontologies under very limited

circumstances. This work presents semi-automated method for establishing ontology.

Currently, ontologies are widely used in knowledge engineering, artificial intelligence and computer science, in applications

related to knowledge management, natural language processing, e-commerce, intelligent integration information, information

retrieval, database design and integration, bio-informatics, education, etc.

There are several reasons for developing ontology. First of all, sharing common understanding of the structure of information

among people or software agents. Second, enabling the reuse of knowledge. Third, making domain assumptions explicit.

Fourth, separating domain knowledge from the operational knowledge. Fifth, analyzing domain knowledge. Sixth, increasing

interoperability among various domain of knowledge. Seventh, enhancing scalability of new knowledge into the existing

domain. Finally, searching and reasoning a specific knowledge in domain knowledge can be done using ontology.

This section introduces the notion of ontology and the benefits of developing ontologies. Next section defines the main two

processes for merging an ontology from preexisting ontologies. In section 3 the related work is reviewed. Section 4 presents the

proposed semi-automated technique for developing ontology. Finally, in section 5 the conclusion and future work.

2 ONTOLOGY MATCHING AND MERGING

Ontologies, which are used in order to support interoperability and common understanding between the different parties, are a

key component in solving the problem of semantic heterogeneity, thus enabling semantic interoperability between different web

applications and services. Recently, ontologies have become a popular research topic in many areas, including electronic

commerce, knowledge management, knowledge engineering and natural language processing. Ontologies provide a common

understanding of a domain that can be communicated between people, and of heterogeneous and widely spread application

systems. In fact, they have been developed in Artificial Intelligence (AI) research communities to facilitate knowledge sharing

and reuse. The goal of an ontology is to achieve a common and shared knowledge that can be transmitted between people and

between application systems. Thus, ontologies play an important role in achieving interoperability across organizations and on

the Semantic Web because they aim to capture domain knowledge and their role to create semantics explicitly in a generic way

and provide the basis for agreement within a domain. Ontology is used to enable interoperation between Web applications from

different areas or from different views on one area. For that reason, it is necessary to establish mappings among concepts of

different ontologies to capture the semantic correspondence between them. However, establishing such a correspondence is not

an easy task.

Multiple ontologies need to be accessed from different systems; the distributed nature of ontology development has led to

dissimilar ontologies for the same or overlapping domains. Thus, various parties with different ontologies do not fully

understand each other. To solve these problems, it is necessary to use ontology matching and geared for interoperability.

Ontology matching aims at finding correspondences between entities of different ontologies, these correspondences may stand

for equivalence as well as other relations between ontology entities. Matching is an essential aspect of merging and could also

be used to initiate merging. Ontology merging is a first natural use of ontology matching. Ontology merging is the process of

creating a new single coherent ontology from two or more existing source ontologies related to the same domain, the new

ontology replaces the source ontologies. This paper presents a system to establish global ontology in specific domain from

existing ontologies by matching and merging techniques to obtain a high quality result. Global ontology allows users to avoid

querying the local ontologies one by one, and to obtain a result from them just by querying a global ontology. Global ontology

has standard and shared terminology. It is consistent and coherent. It has no redundancy. This section presents some of the basic

matching methods for assessing the similarity or the relations between ontology entities. These basic techniques that can be used

for building correspondences based on terminological, conceptual, extensional and semantic arguments. The following basic

techniques are the building blocks on which a matching solution is built, these techniques cannot be used in isolation, but that

each of them can take advantage of the results provided by the others. Another part of the art of ontology matching relies on

selecting and combining these methods (matchers).

a. Name-based techniques

Name-based techniques compare strings. They can be applied to the name, the label or the comments of entities in order to find

those which are similar. This can be used for comparing class names and/or URIs.

• String-based methods

String-based methods are often used in order to match names and name descriptions of ontology entities. These techniques

consider strings as sequences of letters in an alphabet. They are typically based on the following intuition: the more similar

the strings, the more likely they are to denote the same concepts. Usually, distance functions map a pair of strings to a real

number, where a smaller value of the real number indicates a greater similarity between the strings. Some examples of

string-based methods which are extensively used in matching systems are prefix, suffix, edit, and n-gram distances.

• Language-based methods

 3

Language-based methods rely on using natural language processing techniques to help extract the meaningful terms from a text.

Terms are phrases that identify concepts; they are often used for labeling concepts in ontologies. Comparing these terms and

their relations should help to assess the similarity of the ontology entities they name and comment upon. These are based on

linguistic knowledge; indeed, there are two general techniques, one relying on algorithms only, while the other can use external

lexicon-based resources such as dictionaries. As a consequence, ontology matching can take great advantage of recognizing and

identifying them in strings; in other words, it uses the internal linguistic properties of the instances, such as their syntactic

properties. In general, extrinsic linguistic methods are used for finding extra similarities between terms; external linguistic

resources such as dictionaries and lexicons increase the chances of finding matching terms. Lexical information (e.g. names,

definitions and distance between strings) can help with reclassification of matching results. Auxiliary information (e.g.

WorldNet) provides semantics for the elements in ontologies.

b. Structure-based techniques

In this method of matching, instead of comparing their names or identifiers, the structures of entities that can be found in an

ontology are compared. In this kind of matcher, information is used about the structure, such as subclass and super-class

relationships, domain and range of properties, and the graph structure of ontologies. In fact, this information provides insight

into ontologies. This kind of comparison can be divided into the following:

• Internal Structure: this method is comparing the internal structure of entities, in other the words, the

similarities between the names of their properties (e.g., the value range or cardinality of their attributes).

• External Structure: this method is comparing the relations of the classes with other classes like compute

the similarity the super-classes of the two classes.

c. Extensional techniques

In a case where two ontologies have similar instances, finding corresponding concepts based on checking similarities between

the individuals is required. If the similarity level of two instances reaches a threshold, then the two individuals can be

considered as matched. The matching can be based on instance comparisons. To identify the similarity level of two instances,

string similarity methods may be used.

d. Semantic-based techniques

The key characteristics of semantic methods are that model-theoretic semantics is used to justify their results. They are

deductive methods. Of course, pure deductive methods do not perform very well alone for an essentially inductive task like

ontology matching. They hence need a preprocessing phase which provides ‘anchors’, i.e., entities which are declared, for

example, to be equivalent (based on the identity of their names or user input for instance).The semantic methods act as

amplifiers of these seeding alignments.

3 RELATED WORK

Several tools exists for ontology establishment, ranging from fully manual to fully automated. Many of the semi-automated

ontology merging and alignment tools are listed in this section. PROMPT [5] begins with the linguistic-similarity matches for

the initial comparison, but generates a list of suggestions for the user based on linguistic and structural knowledge and then

points the user to possible effects of these changes. SMART [22] looks for linguistically similar class names through class-name

matches, creates a list of initial linguistic similarity (synonym, shared substring, common suffix, and common prefix) based on

class-name similarity, studies the structures of relation in merged concepts, and matches slot names and slot value types. It

makes suggestions for users, checks for conflicts, and provides solutions to these conflicts.

OntoMorph [6] provides a powerful rule language for specifying mappings, and facilitates ontology merging and the rapid

generation of knowledge-base translators. It combines two powerful mechanisms for knowledge-base transformations such as

syntactic rewriting and semantic rewriting. Syntactic rewriting is done through pattern-directed rewrite rules for sentence-level

transformation based on pattern matching. Semantic rewriting is done through semantic models and logical inference. A concept

hierarchy management for ontology alignment and merging is provided in Hierarchical Concept Alignment system [7] (HICAL),

where one concept hierarchy is aligned with another concept in another concept hierarchy. HICAL uses a machine-learning

method for aligning multiple concept hierarchies, and exploits the data instances in the overlap between the two taxonomies to

infer mappings. It uses hierarchies for categorization and syntactical information, not similarity between words, so that it is

capable of categorizing different words under the same concept.

Another system that employs machine learning techniques to find ontology mappings is GLUE [8]. If given two ontologies, for

each concept in one of the ontologies, GLUE finds the most similar concept in the other one. GLUE works with several

similarity measures that are defined with probabilistic definitions. Multiple learning strategies exploit different types of

information from instances or taxonomy structures. GLUE can also use common sense knowledge and domain constraints

instead of relaxation labeling. It is a well-known constraint optimization technique adapted to work efficiently. Quick Ontology

Mapping (QOM)[9] is based on the hypothesis that mapping algorithms can be streamlined so that the loss of quality is

 4

marginal, but the improvement of efficiency is tremendous for the ad-hoc mapping of large-size light-weight ontologies. The

process model shown in Figure 1 defines QOM in steps.

A generic ontology mapping system, called LILY [10], is based on the extraction of semantic subgraph. LILY exploits both

linguistic and structural information in semantic subgraphs to generate initial alignments. After that, a subsequent similarity

propagation strategy is applied to produce more alignments if necessary. Finally, LILY uses the classic image threshold

selection algorithm to automatically select the threshold, and then extracts final results based on the stable marriage strategy.

LILY has different functions for different kinds of tasks: for example, Generic Ontology Matching method (GOM) is used for

common matching tasks with small size ontologies; Large scale Ontology Matching method (LOM) is used for matching tasks

with large size ontologies; and Semantic Ontology Matching method (SOM) is used for discovering the semantic relations

between ontologies. The two limitations of LILY are that it requests the user to manually set the size of subgraph according to

different mapping tasks and the efficiency of semantic subgraph is very low in large-scale ontologies.

A multi-strategy learning approach is employed in Learning Source Description (LSD) [12]. In the training phase, LSD chooses

one learner among several base learners, such as Name Learner, Content Learner, and XML Learner, based on their confidence

score. In the matching phase, ontology matching is performed using the learner chosen in the training phase, in order to improve

matching accuracy.

Mediator Environment for Multiple Information Source (MOMIS) [13] creates a lexical matrix using WordNet. A lexical matrix

consists of rows storing word forms and columns storing word meanings. Relations between words such as SYN (synonyms),

BT (broader terms), NT (narrower terms), and RT (related terms) can be represented using the developed lexical matrix.

LOM (Lexicon-based Ontology Mapping) [14] LOM is a semi-automatic lexicon-based ontology-mapping tool that supports a

human mapping engineer with a first-cut comparison of ontological terms between the ontologies to be mapped, based on their

lexical similarity. It proposes four phases of a lexical similarity measurement in ontology matching: (1) Whole term matching,

(2) Word constituent matching, (3) Synset matching, and (4) Type matching.

Combining match algorithms (COMA++) [15] is a well-known ontology-matching tool providing a graphical user interface.

COMA++ adopts multi-match strategies to perform matching of relational schemas, W3C XSD, and OWL. The implemented

multi-match strategies utilize fragment-based matching and reuse-oriented matching. Unlike the previous ontology matching

methods focusing on 1:1 mapping. Risk Minimization based Ontology Mapping (RiMOM) [16] automates the process of

discoveries on 1:1, n:1, 1:null and null:1 mappings. Besides, RiMOM solves the problem of name conflicts in mapping process

using thesaurus and statistical techniques. Integrated Learning In Alignment of Data and Schema (ILIADS) [17] proposes an

ontology matching algorithm based on logical inference. ILIADS integrates the previous ontology matching approach and the

logical inference similarity measure to achieve better matching of ontologies. ONtology compositION system (ONION) [18]

resolves terminological heterogeneity in ontologies and produces articulation rules for mappings. The linguistic matcher

identifies all possible pairs of terms in ontologies and assigns a similarity score to each pair. If the similarity score is above the

threshold, then the match is accepted and an articulation rule is generated. After the matches generated by a linguistic matcher

are available, a structure-based matcher looks for further matches. An inference-based matcher generates matches based on

rules available with ontologies or any seed rules provided by experts.

Multiple iterations are required for generating semantic matches between ontologies. A human expert chooses, deletes, or

modifies suggested matches using a GUI tool. A linguistic matcher fails when semantics should be considered. CROSI Mapping

System (CMS) [19] is an ontology alignment system. It is a structure matching system on the rich semantics of the OWL

constructs. Its modular architecture allows the system to consult external linguistic resources and consists of feature generation,

feature selection, multi-strategy similarity aggregator, and similarity evaluator. FCA-Merge [20] is a method for ontology

merging based on Ganter and Wille’s formal concept analysis-28, lattice exploration, and instances of ontologies to be merged.

The overall process of ontology merging consists of three steps: 1) instance extraction and generation of the formal context for

each ontology, 2) the computation of the pruned concept lattice by algorithm TITANIC29, and 3) the non automatic generation

 Figure 1: Quick ontology mapping

 5

of the merged ontology with human interaction based on the concept lattice. CHIMAERA [21] is an interactive ontology

merging tool based on the Ontolingual ontology editor. It makes users affect merging process at any point during merge process,

analyzes ontologies to be merged, and if linguistic matches are found, the merge is processed automatically, otherwise, further

action can be made by the use. It uses subclass and super-class relationship. Ontology Mapping Enhancer (OMEN) [23] is a

probabilistic ontology mapping tool which enhances the quality of existing ontology mappings using a Bayesian Net. The

Bayesian Net uses a set of meta-rules that represents how much each ontology mapping affects other related mappings based on

ontology structure and the semantics of ontology relations. Existing mappings between two concepts can be used for inferring

other mappings between related concepts. P2P ontology mapping [24] proposes a framework that allows agents to interact with

other agents efficiently based

 on the dynamic mapping of only the portion of ontologies relevant to the interaction. The framework executes three steps: 1)

Generates the hypotheses; 2) Filters the hypotheses; and 3) Selects the best hypothesis.

4 METHODOLOGY OF ESTABLISHING ONTOLOGY

This section presents a new semi-automated method for establishing global ontology by merging pre-existing ontologies. This

technique consists of two main components: matching process and merging process.

A. System Structure

The structure of the two main components, matching process and merging process, are shown in figure 2. Ontology matching

tries to identify similarities between heterogeneous ontologies and to automatically create suitable mappings for transformation.

Matching is an essential aspect of merging and could also be used to initiate merging. Ontology merging is the process that will

create a single global coherent ontology by unifying two or more existing ontologies.

B. System Components

As mentioned before the system is composed of two main components: the matching process component and the merging

component.

1) Matching Process: Matching process component receives source ontologies and computes similarities between the

ontological entities. A matching process uses an algorithm or matchers. This allows selection of the matchers depending on the

application domain and schema types. The ontological entities in an ontology consists of concepts, properties and values [25].

Matching process consists of two parts: The first part (I) computes alignment suggestions and the second part (II) interacts with

the user to decide on the final alignments as shown in figure 3.

An alignment algorithm includes several matchers. 'Matchers' calculate similarities between the ontological entities from the

different source ontologies. The matchers implement the strategies based on linguistic or structure techniques. 'Combination'

Source

ontologies

I

I I

Combination

 Filter

Suggestion

Accepted

Suggestion

Conflict

checker

Matchers

User
Alignments

Figure 3 matching process components

 6

combines matchers' similarities and derive the correspondences between the entities. 'Filter' filters out the matched pairs.

'Suggestions' are determined by combining and filtering the results generated by one or more matchers. The interactive

component of the alignment algorithm presents the suggestions to the user who accepts or rejects them. The acceptance and

rejection of a suggestion may influence further suggestions. Conflict checker is used to avoid conflicts introduced by the

alignment relationships. The output of the alignment algorithm is a set of alignment relationships between terms from the source

ontologies. Alignments are a set of correspondences between two or more ontologies. The 'alignments' is the output of the

matching process.

2) Merging Process: a global merged ontology is to be established from the source ontologies and their identified alignments,

as shown in figure 4. 'Checker' is used to avoid conflicts as well as to detect non-satisfying concepts and, if so desired by the

user, to remove redundancies.

5 CONCLUSIONS

This paper presents a system to build a global ontology from different ontologies in the same domain. The process of

building ontology is a high-cost process. Building global ontology from scratch is hard, cost and time-consuming. This work

presents a method for reusing and sharing existing ontologies by matching and merging them.

In the future work, we will apply this method on the agricultural domain to obtain a global agricultural domain. The

algorithms of matching and merging will be established and implemented. The agricultural domain will be established by using

not only existing ontologies but also we will establish a tool to help in building the not existing ontologies and integrating them

together.

ACKNOWLEDGMENT

 I would like to thank Dr. Passent El-Kafrawy and Dr. Mohamed Amin. Special thanks to Dr. El-Sayed El-Azhary. Many thanks

to my friends at CLAES.

REFERENCES

[1] Noy, N. & Klein, M. "Ontology Evolution: Not the Same as Schema Evolution" Knowledge and Information

Systems, 6 (4), pp. 428-440, 2004. also available as SMI technical report SMI-2002-0926.

[2] Gruber, T.R. "A Translation Approach to Portable Ontology Specifications" Knowledge Acquisition, 5 (2),

pp.199-220, 1993.

[3] Gruber, T.R. "Toward Principles for the Design of Ontologies Used for Knowledge Sharing," Formal Ontology

in Conceptual Analysis and Knowledge Representation" 1993, also available as Technical Report KSL-93-04,

Knowledge Systems Laboratory, Stanford University

[4] Borst P, Akkermans H, Top J. "Engineering ontologies," International Journal of Human-Computer Studies

46:pp.365–406,1997.

[5] N. Noy and M. Musen, "PROMPT: Algorithm and Tool for Automated Ontology Merging and Align,ment," in

Proc.of17th National Conference on Artificial Intelligence,(AAAI,), pp. 450–455, Austin, Texas 2000.

Alignments

User

Merging

computation

Global merged ontology

Checker

Computed ontology

Source ontologies

Figure 4 merging process components

 7

[6] H. Chalupsky. "Ontomorph: A Translation System for Symbolic Knowledge", Principles of Knowledge

Representation and Reasoning, 2000.

[7] R. Ichise, H. Takeda, and S. Honiden. "Rule Induction for Concept Hierarchy Alignment", Proceedings of the

Workshop on Ontology Learning at the 17th International Joint Conference on Artificial Intelligence (IJCAI),

2001.

[8] An-Hai Doan, J. Madhavan, Pedro Domingos, and Alon Halevy. "Learning to map ontologies on the semantic

web,". In Proceedings of the International World Wide Web Conference (WWW), pages 662–673, 2003.

[9] Marc Ehrig and Steffen Staab. "QOM: Quick ontology mapping,". In Proceedings of the 3rd International

Semantic Web Conference (ISWC), pages 683–697, 2004.

[10] Peng Wang and Baowen Xu."Lily: Ontology alignment results for oaei 2009.In Shvaiko et al. [11].

[11] Pavel Shvaiko, J´erˆome Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt, Natalya Fridman Noy, and

Arnon Rosenthal, editors. Proceedings of the 4th International Workshop on Ontology Matching (OM-2009)

collocated with the 8th International Semantic Web Conference (ISWC-2009) Chantilly,USA, October 25, 2009,

volume 551 of CEUR Workshop Proceedings.CEUR-WS.org, 2009.

[12] AnHai Doan, Pedro Domingos, and Alon Halevy, "Learning to Match the Schemas of Data Sources: A

Multistrategy Approach," Machine Learning, Vol. 50, No.3, pp 279-301(2003)

[13] Domenico Beneventano, Sonia Bergamaschi, Francesco Guerra, and Maurizio, (2003) "Synthesizing an

Integrated Ontology,"IEEE Internet Computing, pp 42-51.

[14] John Li, "LOM: A Lexicon-based Ontology Mapping Tool," Proc. of the Performance Metrics for Intelligent

Systems Workshop (PerMIS. ’04), pp 1-5, 2004. and Erhard Rahm, (2005) “Schema and ontology matching

[15] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm, "Schema and ontology matching with

COMA++ ,"Proc. of the ACM SIGMOD International Conference on Management of Data, pp 906-908, 2005
[16] Jie Tang, Juan-Zi Li, Bangyong Liang, Xiaotong Huang, Yi Li and Kehong Wang,"Using Bayesian decision for

ontology mapping," Journal of Web Semantics, Vol. 4, No. 4, pp 243-262 (2006).

[17] Octavian Udrea, Lise Getoor, and Renée J. Miller, "Leveraging data and structure in ontology integration," Proc.

Of ACMSIGMOD International Conference on Management of Data, pp 449-460, 2007.

[18] Mitra, P and Wiederhold, G, "Resolving Terminological Heterogeneity in Ontologies", Proceedings of the

ECAI’02 workshop on Ontologies and Semantic Interoperability, 2002.

[19] Yannis Kalfoglou, Bo Hu, “CROSI Mapping System(CMS) Results of the 2005 Ontology Alignment

Contest”,K-CAP Integrating Ontologies Workshop 2005, Banff, Alberta, Canada, 2005.

[20] Gerd Stumme, Alexander Maedche, "FCA-Merge: Bottom-Up Merging of Ontologies," In proceeding of the

International Joint Conference on Artificial Intelligence IJCA101, Seattle, USA, 2001.

[21] D. McGuinness, R. Fikes, J. Rice, and S.Wilder,"The Chimaera Ontology Environment", In Proceedings of the

17th National Conferenceon Artificial Intelligence (AAAI), 2000.

[22] Natalya Fridman Noy and Mark A. Musen,"Smart:Automated Support for Oontology Merging andAlignment",

Proceedings of the Twelfth Banff Workshopon Knowledge Acquistion, Modeling, and Management,Banff

Algeberta, 1999.

[23] Prasenjit Mitra, Natasha F. Noy, Anju Jaiswals, “OMEN: A Probabilistic Ontology Mapping Tool”,

International Semantic Web Conference 2005: 537-547.

[24] 32. Paolo Besana, Dave Robertson, and MichaelRovatsos, "Exploiting interaction contexts in P2P ontology

mapping", P2PKM 2005.

[25] Bon J. Wielinga, Expertise Model Definition Document, University of Amsterdam, 1994.

Improving YamCha Tool Performance
Salwa Hamada

Electronics Research Institute (ERl)

hesalwa@hotmail.com

Abstract---NE involves identification of proper names in texts, and classification into a set of predefined categories of interest. Three

universally accepted categories: person, location and organization. Other common tasks: recognition of date/time expressions, measures

(percent, money, weight etc), email addresses etc. YamCha is a Named Entity Recognition (NER) tool available as an open source to help

the researchers [1]. Unfortunately the YamCha tool cannot deal with words that are preceded by Arabic prepositions or conjunctions if

there is no space between the word and any of them [2]. This is because YamCha’s model cannot detect that the preposition or

conjunction character is not a part of the word. This paper presents a hypothesis that improves the YamCha’s tool performance. It

assumed that we can improve the performance of YamCha by using the RDI-POST in the preprocessing phase. It claims that it is possible

to raise the accuracy rate of YamCha by applying some preprocessing steps to YamCha’s input text. The paper also presents an

experiment that shows that by applying this preprocessing step, the accuracy rate of the YamCha tool increased from 57% to 88%.

1 INTRODUCTION

The YamCha tool is based on making a training phase and generating a model to test the corpus. It is created as generic,

customizable, open source text chunker. It can be adapted to a lot of other tag-oriented NLP tasks. It uses state-of-the-art machine

learning algorithm called Support Vector Machines (SVMs), first introduced by Vapnik in 1995[3]. YamCha tool takes the model

and data in Roman format as inputs. In this paper Yassine Benajiba model had been used for training data. The RDI Part-Of-Speech

(POS) tagger RPOST tool has been used to tag parts of speech before using YamCha tool. Then some devolved program had been

applied to YamCha’s input text after that. To use YamCha first we use the RPOST. Second a converter program to convert from

Arabic to Roman format. YamCha generates it output in Roman format, so we used a program to convert Roman characters to

Arabic ones so that the output will de readable as shown in section4.
The rest of this paper is divided as follows: section two descibes RPOST, section three presents that proposed steps for improving

the YamCha tool. YamCha tool in processing is discussed in section four. Section five shows how to change YamCha output to a

user readable format. A case study has been applied in section six and followed by an Evaluation to YamCha performance. Section

seven introduces the final conclusion.

2 THE TAGGER YAMCHA TOOL

The NER task is one of the most important subtasks in Information Extraction. It is defined as the identification and classification of

Named Entities (NE's) within an open-domain text. YamCha is a generic, customizable, and open source text chunker-oriented

towards a lot of NLP tasks, such as POS tagging, Named Entity Recognition, base NP chunking, and Text Chunking. YamCha uses

SVM a state-of-the-art machine learning algorithm.

In this paper Yamcha is used to tag named entities. As we mention before YamCha cannot deal with word preceded with a

preposition or a conjunction [2].

 for example:

 مصر والاردن وايران والصين

YamCha succeeded to tag the first word “مصر” as a location but it fails to tag the rest of locations “ايران“ , ”الاردن” and “الصين”

because it considers the preceding “و” as a part of the word“. RPOST can help in that as it can define the conjunctions and the

prepositions as separate characters.

mailto:hesalwa@hotmail.com

This paper focuses on improving YamCha’s performance with conjunctions and preposition characters. Let us take the و

/AlwAw/ (‘and’) as a case example. The /AlwAw/ ('and') is the most commonly used coordinating conjunction in Arabic and a

common source of morphological ambiguity. According to a manual evaluation of a random sample of 100k Arabic tokens from

newswire articles [4], it has been found that /AlwAw/ (‘and’) alone accounts for approximately 8.6% of any written text (i.e. every

100 words include و and 8.6 /wAw/ (‘and’)).

3 RDI POS TAGGER TOOL (RDI-POST) [5]

RDI’s NLP core engine can carry out Arabic morphological analysis, Arabic POS tagging, and Arabic Lexical Semantic

Analysis. Arabic POS tagging is a fundamental linguistic analysis process where POS tags that convey the basic context-free

syntactic features of input surface text words are extracted. POS tags are the most essential input features for all kinds of natural

language computational syntax parsers which are a step towards language understanding and machine translation as well. Based on

that definition the position of POS tagging is obviously a middle sub layer between the two fundamental lexical and syntactic ones

on the NLP ladder

Appendix (1) below shows a sample of Arabic POS tags set along with the meaning of each tag verbalized in both English

and Arabic. The RDI-POST tagger tool tags each word with its appropriate features tag as shown in the below example.

Example:

The input sentence is “إحالة الجنود”

The output:

 {Definit Noun NullSuffix}الجنود{ NullPrefix Noun NounInfinit Femin Single }إحالة

4 STEPS TO IMPROVE YAMCHA PERFORMANCE:

A. Collecting the data: Steps has been mentioned in details in [1].

B. YamCha tool features:

1) Moderately high performance chunker based on Support Vector Machines (SVM).

2) Independent from the given task, training/testing with any data which can be seen as a "generic" text chunking task.

3) Use PKE/ PKI, which make the classification (chunking) speed faster than the original SVMs.

4) Can redefine feature sets (window-size), parsing-direction (forward/backward) and algorithms of multi-class problem (pair

wise/one vs. rest).

5) Practical chunking time (1 or 2 sec. /sentence. it highly depends on the task).

6) Can perform partial chunking.

C. Input

The input of YamCha tool is two parameters. The first is the model, this model represent the training data. In this case use Yassine

Benajiba Model. The second input is the data file in roman format.

D. The Proposed steps

E. Filtering Data

1) We use a java program to change RPOST output format to YamCha format which need Roman letters

The RPOST output produces in the form:

{اسم معرف} اليمن مصر { اسم معرف }و { حرف عطف }

2) Then we need to split conjunction and the following word in different lines to be accepted in YamCha tool as shown

below:

 مصر

 و

 اليمن

3) We use a java language program to remove the arches and put each word in a different line.

F. Character Converter (Convert from Arabic to roman):

YamCha can only process Roman characters, so we’ve implemented a java program to convert Arabic characters to roman

characters. Appendix (2) presents a table that shows each Arabic character with its corresponding Roman one.

1) Program input file format: (Plain Arabic text)

 جثة مجهولة الهوية في العاصمة بغداد 50أفاد مصدر مسؤول في وزارة الداخلية امس بالعثور على

2) Program output file format:

The Roman

transliteration

(file output)

The Arabic

word

>fAd أفاد

mSdr مصدر

ms&wl مسؤول

fy في

wzArp وزارة

AldAxlyp الداخلية

Ams امس

bAlEvwr بالعثور

ElY على

50 50

Hvp جثة

mHhwlp مجهولة

Alhwyp الهوية

Fy في

AlEASmp العاصمة

bgdAd. بغداد

G. Test file formats [2]:

Generally speaking, training and test files must consist of multiple tokens. In addition, a token consists of multiple (but fixed-

numbers) columns. The definition of tokens depends on tasks; however, in most of typical cases, they simply correspond to words.

Each token must be represented in one line, with the columns separated by white space (spaces or tabular characters). A sequence of

token becomes a sentence. To identify the boundary between sentences, just put an empty line (or just put 'EOS'). However the

number of columns must be fixed through all tokens. Furthermore, there are some kinds of "semantics" among the columns. For

example, 1st column is ‘word’; second column is 'POS tag' third column is 'sub-category of POS' and so on.

Symbols of the output:

o B-ORG: represents the beginning of an organization’s name

o I-ORG: represents the middle Intermediate of an organization’s name

o B-PER: represents beginning of a person’s name

o I-PER: represents the middle of a person’s name

o B-LOC: represents beginning of a location’s name

5 A CASE STUDY APPLYING PAPER APPROACH YAMCHA TOOL

A. The input:

As mentioned before the input represents each word in a single line and the file must be in roman format (output of the program in

section 4.2).

B. The output:

The word The tagging symbol

>fAd O

MSdr O

ms&wl O

fy O

wzArp B-ORG

AldAxlyp I-ORG

Ams O

BAlEvwr

O

ElY

O

50

O

Hvp

O

MHhwlp

O

Alhwyp

O

Fy

O

AlEASmp

O

bgdAd. B-LOC

C. Support Vector Machines (SVM) and Tagging scheme in the IOB format[4]

The NER task in Arabic is relatively different from performing the task in English due to the inherent characteristic linguistic

differences of Arabic, most notably, the lack of a direct signal such as capitalization in Arabic orthography to mark a named entity.

This tool solves the problem of NER for Arabic. We adopt a discriminative approach to the NER problem. SVMs have yielded the

best results when compared to other machine learning approaches to the problem. SVMs are robust to noise in the data and they

have powerful generalization ability especially in the presence of a large number of features. Moreover, SVMs have been used

successfully in many NLP areas of research in general, and for the NER task in particular YamCha is one of them that converts the

NER task to a chunking task using the Inside-Outside-Beginning (IOB) tagging scheme.

Tagging scheme in the IOB format:

Arabic Roman English Trans. Tag

 Wfy And in O وفي

 Byrwt Beirut B-LOC بيروت

, , , O

 wSf Described O وصف

 F&Ad Fouad B-PER فؤاد

 Alsnywrp Siniora I-PER السنيورة

 R}ys president O رئيس

 AlwzrA’ The ministers O الوزراء

 AllbnAny Lebanese O اللبناني

D. Changing YamCha output to a user readable format

Now after the NER task to the input file using YamCha tool, we need to change the output format in a form that the user can read

and understand. This is done by what we called a format adaptor program which returns the Arabic character and put the file in

XML format.

The Input of program is the output of the program in section 4.4.

The output of program:

<\O>مسؤل <O> <\O> مصدر<O> <\O>افاد <O>

<\O>امس<O> <\ORG>وزارة الداخليه<ORG> <\O>فى <O>

<\O>على<O> <\O>بالعثور<O> <\O>مجهولة<O> <\O>جثه<O> <\O>50<O>

<LOC>بغداد<LOC> <\O>العاصمه<O> <\O>فى<O> <\O> الهويه<O>

6 A CASE STUDY AND EVALUATION

Our hypothesis has been tested using a random sample of 2000 tokens from newswire articles (1998), among which one finds 353

instances of /AlwAw/. This sample has been manually evaluated. Table1 shows the results of using our preprocessing task by

comparing output of YamCha before and after applying our preprocessing. Improving tokenization has reduced error rate in POS

tagging by approximately 90%. Examining errors in our output, we have found that they are due to a problem related to the training

data. May be it does not cover all names.

1) A sample of the output before improving the YamCha tool’s performance:

Words Output from YamCha before

improving

 O رحبت

 B-LOC مصر

 O بالتعاون

 O مع

 B-LOC سوريا

 O والاردن

 O ولبنان

 O والعراق

 O لمساعدة

 O الفلسطنين

. O

2) The same sample of the output after improving the YamCha’s tool performance:

Words Output of YamCha after

improvement

 O رحبت

 B-LOC مصر

 O ب

 O التعاون

 O مع

 B-LOC سوريا

 O و

 O الاردن

 O و

 B-LOC لبنان

 O و

 B-LOC العراق

 O ل

 O مساعدة

 O الفلسطنين

. O

7 FINAL RESULTS:

 Precision Recall F-measure

YamCha before our

preprocessing

100 40 57

YamCha after our preprocessing 100 80 88

Table1: Experimental Results

8 CONCLUSION:

 We believe that incremental development where existing tools are built upon and improved is a much better approach than -

inventing tools to address limitations of existing ones. In this paper, we assumed that we can improve the performance of YamCha

by using the RDI-POST in the preprocessing phase. This can be applied to all clitics, such as coordinating conjunctions,

prepositions; pronouns, etc. Testing and the results it had been found that the preprocessing task succeeded in raising the accuracy

rate from 57% to 88%.

ACKNOWLEDGMENT

Thanks a lot to the programmers Gada Mohamed Fathi and Maii Gad who helped in writing the programs code.

REFERENCES

[1] YamCha: Yet Another Multipurpose CHunk Annotator,

http://chasen.org/~taku/software/yamcha/

[2] Dina Mostafa Mahmoud Nassif, Ghada Mohamed Fathy Mohamed, Rowan Tarek Ahd El-Hamed, Shimaa Hassan

Mohamoud, Zeinab Fayez Ahmed, “Search Engine For Emotions In Arabic”, Graduation project, Cairo university,2010.

[3] Yassine Benajiba, Mona Diab, Paolo Rosso, “ARABIC NAMED ENTITY RECOGNITION: AN SVM-BASED

APPROACH”, ,2008

[4] Alahram Newspaper: http://www.ahram.org.eg

[5] RDI POS tagger tool on:

 http://www.rdi-eg.com/technologies/papers.htm ,not available for free.

http://www.ahram.org.eg/
http://www.rdi-eg.com/technologies/papers.htm

Appendix(1): A part of RDI Features Table:

Appendix (2) : Arabic-Roman characters table.

UNL+3: The Gateway to a Fully Operational UNL System
Sameh Alansary†*1, Magdy Nagi†**2, Noha Adly†**3

† Bibliotheca Alexandrina, P.O. Box 138 El Shatby, Alexandria 21526, Egypt.

* Department of Phonetics and Linguistics, Faculty of Arts, University of Alexandria

El Shatby, Alexandria, Egypt
1sameh.alansary@bibalex.org

**Computer and Engineering Department, Faculty of Engineering, University of Alexandria, Alexandria, Egypt
2magdy.nagi@bibalex.org
3noha.adly@bibalex.org

Abstract— In this paper we present the UNL+3 program; the latest phase of development in the UNL project. UNL+3 has been

introduced in order to cure the limitations and problems encountered in the 15-year life of UNL. UNL+3 proposes new components to

the system in addition to introducing enhancements and improvements to the existing ones. Enhancements encompass the general

linguistic infrastructure of the system as well as the specific technicalities of its components. The paper, consequently, compares and

contrasts the earlier UNL specifications to the ones proposed by UNL+3, highlighting how they would drastically improve the

adequacy and efficiency of the system. More importantly, by putting its propositions into effect, UNL+3 would finally render the UNL

system fully operational by the end of 2011, ending by that a long phase of experimentation and research, and starting a new phase of

development and evolvement. UNL+3 is designed and implemented by the UNDL foundation in Geneva, Switzerland and Bibliotheca

Alexandrina in Alexandria, Egypt.

1 INTRODUCTION

The UNL project was launched in 1996 in the Institute of Advanced Studies in the United Nations University (UNU), Tokyo,

Japan under the auspices of the UNESCO. In January 2001, the United Nations University set up an autonomous non- profit

organization in Geneva, Switzerland to be responsible for the development and management of the UNL Program; the

Universal Networking Digital Language (UNDL) Foundation1. 15 different languages joined the project, with each responsible

for the development and maintenance of the components of its respective language module.

 Since 1996, the UNL program has passed through many phases of development and enhancement and crossed

important milestones (More information about the earlier system can be found in [3]; [5]; [7] and [12]. However, after 15 years

of development, and after the massive project of converting parts of the Encyclopedia of Life Support Systems2 into UNL [9]

[14], many problems have surfaced and several questions about the construction and components of the UNL system have been

raised.

 Solutions to these problems as well as other enhancements are proposed in a comprehensive renovation project called

the UNL+3. UNL+3 does not only offer improvements to the existing infrastructure, it changes some of the core fundamentals of

UNL. The change encompasses the linguistic components (Universal Words, Relations, Attributes and Features) as well as the

non-linguistic ones (tools, engines and applications). Also, the structure of the linguistic resources (grammars, dictionaries,

corpora..etc.) that handle these components has been drastically changed.

 This paper examines the UNL+3 program; its ideology and architecture, and the changes and innovations it introduced

to the UNL system. The scope of the program is divided into five main areas; and, thus, the paper is arranged in accordance

with this division, but first, section 2 briefly introduces the UNL+3 program and these five areas. Then, section 3 of the paper

tackles the first area; that of UNL philosophy and specifications, emphasizing the changes UNL+3 entailed in the linguistic

components of the UNL system, starting with Universal Words (UWs), then, Relations and Attributes, and ending by discussing

the Universal Tagset proposed in UNL+3. Section 4 discusses the change within the second area; the linguistic resources

employed by the system; the dictionaries, analysis and generation grammars, ontologies and corpora, all of which have

witnessed drastic change in their ideology, structure and components and ends by introducing the new environment used to

produce all of these resources; the UNLarium. Section 5 approaches the third area; the engines and tools employed in analyzing

and generating natural language. This section also presents the wrapper environment used to produce, develop and utilize these

1 More information can be found at http://www.undl.org
2 http://www.eolss.net/

mailto:sameh.alansary@bibalex.org
mailto:3noha.adly@bibalex.org
http://www.undl.org/
http://www.eolss.net/

tools as well as the applications that are to be based on UNL technology; the UNLdev. In section 6, the paper explores the fourth

area; UNL applications. UNL-based applications include the machine translation system LILY, the digital library of texts, TUT,

and the knowledge extraction system, KEYS. Section 7 of the paper discusses the fifth area of interest in the UNL+3 program,

the UNL strategy for promoting the UNL system; the UNL world. Finally, having explored the five areas of change, section 8

briefly examines some of the projects that are being carried out according to the specifications of UNL+3.

2 UNL+3

The UNL+3 is a three-year (2009-2011) plan to fulfill the initial goals of the program that previous versions failed to completely

achieve and to make the UNL infrastructure fully operational by the 15th anniversary of UNL to be celebrated in 2011. UNL+3

should be able to advance the long-term mission of the UNDL foundation as mandated by the United Nations: to provide the

UNL system world-wide for the benefit of all peoples.

The main enhancements brought about by the UNL+3 program can be summarized in making the UNL system more

linguistic than pure engineering. As will be explained later in the paper, the older structure of the system’s components -

especially the tools (analysis and generation engines) and the language resources (dictionaries, grammars, etc.)- was too

inflexible to accommodate the linguistic complexity of natural languages. Numerous linguistic phenomena had no place to fit in

this rigid structure, and, therefore, many problems were left unsolved.

 Thus, the first and most significant step in resolving such issues was the provision of the set of tools employed in the

system as open-source software. Before, the source codes of the component engines and tools were protected by copyrights and,

therefore, were not open for adjustments to suit the individual requirements of different languages. Hence, this new

improvement allows developers to make the best use of the available tools in a way that facilitates the processing of the

particular language they are working on. Similarly, the language resources (lexicons, grammars and corpora) are now also

available for exporting and importing for free at the UNLarium (discussed in section 4 E), a fact that allows the different UNL

developers to share their resources and experience for the benefit of the UNL system as a whole, and, thus, facilitates the

integration of new languages into the system.

 A different improvement that has to do with the promotion of the UNL system is encouraging the participation of the

general public in the development the system. The UNLwiki is introduced, it is a collaborative website for providing and

exchanging information and experience related to the UNL system. It contains all the specifications and documentation that new

participants need to know about the UNL system. Browsing the UNLwiki does not require any registration or certification; it is

freely accessible at (http://www.unlweb.net/wiki/index.php/Main_Page). In addition to the UNLwiki, the VALERIE (VirtuAl

LEaRnIng Environment) is also introduced to teach those wishing to be part of the project how to deal with natural language

phenomena -especially in connection with the Universal Networking Language- in order to be actual certified developers and

contribute in the construction of the system. VALERIE is free and open for the general public at

(http://www.unlweb.net/valerie/).

The UNL+3 program is divided into five main scopes of interest, each of them covering a specific area of projects. They are:

• UNL Philosophy and Specifications: It is devoted to defining the formalisms of the linguistic components used by the

UNL system such as the syntax of Universal Words; the structure of UNL documents and UNL sentences; and the set of

Relations and Attributes…etc.

• UNL Resources: These are the set of linguistic and knowledge resources necessary for the analysis of natural language

texts in order to form the UNL documents, and the generation of natural language out of UNL documents. The UNL

system comprises four different types of language resources: lexica, grammars, ontologies and corpora.

• UNL Engines and Tools: These are the back-end software developed to perform UNL-based tasks such as analysis,

generation, knowledge extraction, etc. and to assist linguists in producing UNL resources.

• UNL Applications: These are the front-end software based on UNL technology. They are designed to allow end users to

accomplish natural language processing tasks, such as translating, summarizing, rephrasing, retrieving or extracting

information.

• UNL World: This category involves the overall strategy for disseminating the knowledge on UNL, and for UNL

promotion.

Figure 1 shows the general architecture of the UNL system according to the new specifications of UNL+3, and the stages and

tools involved in transforming a natural language text into a UNL document, and then into a natural language text in a different

language. Each of the components shown will be subsequently discussed in the paper.

http://www.unlweb.net/wiki/index.php/Main_Page
http://www.unlweb.net/valerie/

Figure 1: The overall architecture and components of the UNL system according to the specifications of UNL+3

3 UNL PHILOSOPHY AND SPECIFICATIONS

This area of the UNL system has been subject to drastic change at the hands of the UNL+3 plan. The change encompassed the

logic and structure of the Universal Words, and the set of Relations and Attributes. Innovations, on the other hand, include

introducing a universal tagset of the linguistic features to be utilized in the language resources of the system.

A. Universal Words (UWs)

Universal Words, or UWs, constitute the vocabulary of the Universal Networking Language. They are labels that stand for

abstract language-independent units of knowledge (concepts) belonging to any of the open lexical categories (nouns, verbs,

adjectives and adverbs). However, unlike natural language vocabulary, UWs should be free from any form of ambiguity, and -

as implied by their nomenclature- universal and not biased to any particular language or culture. And for processing purposes,

UWs should also be as efficient as possible.

 Unfortunately, these criteria were not sufficiently fulfilled in the previous versions of UNL. In earlier versions, UWs

were composed of an English headword written in Latin characters, and a constraint list that indicates the intended meaning of

the headword, also written using English words. On the other hand, the new representation of UWs as specified in the UNL+3

program is a numerical ID that stands for the exact sense of the concept. Figure 2 shows the old and new UW representations of

the concept “a writing implement with a point from which ink flows”. In the figure “poor” is the headword while “(aoj>thing)”

is the constraint list.

Figure 2: The older UW representation of the above concept (left) and the new UW representation (right)

 Clearly, the older representation did not fulfill the unambiguity criteria; for example, it could not differentiate between

"poor" the adjective describing lack of money or wealth, "poor" meaning miserable or sad, or even “poor” meaning

unsatisfactory since all would have the same adjectival representation “poor(aoj>thing)”. As unambiguity is the main

characteristic of UWs that sets the Universal Networking Language apart from natural languages, UNL+3 has set out to confront

this problem with the help of the English WordNet 3.0. The WordNet is a large lexical database of English developed at the

Cognitive Science Laboratory of Princeton University, it is widely used in the fields of computational linguistics and natural

language processing [16]. In the WordNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct universal concept and each assigned a distinct ID number, a gloss, examples and a

frequency number. The new representation, thus, has used these synsets, glosses and, more importantly, IDs to differentiate

between even the slightest nuances in meaning. Thus, “poor” with the three previous meanings would be represented by the

following three IDs in table 1, respectively.

TABLE I

TWO WORDNET IDS REPRESENTING THREE DIFFERENT SENSES OF THE WORD "POOR"

ID Number: Synset: Gloss: Examples: Frequency: Part of Speech:

302022953 Poor having little
money or few
possessions

"deplored the gap
between rich and poor
countries", "the
proverbial poor artist
living in a garret"

12 ADJ

301050890 hapless, miserable,
misfortunate,
pathetic, piteous,
pitiable, pitiful,
poor, wretched

deserving or
inciting pity

"piteous appeals for
help", "pitiable
homeless children", "a
pitiful fate", "Oh, you
poor thing", "his poor
distorted limbs", "a
wretched life"

24 ADJ

301128719 Poor unsatisfactory "a poor light for
reading", "poor
morale", "expectations
were poor"

0 ADJ

 As for Universality, in the older phase of UNL development, UWs were represented in the form of an English

headword modified by an English constraint list that restricted its meaning to a particular universal sense. Evidently, this

representation with its use of English words to stand for a universal concept severely undermined the supposed universality of

UWs and, consequently, of UNL. Luckily, UNL+3 has put an end to this issue by employing a representation made entirely of

numbers, and, hence, free from any bias to one language or another. Using such a representation, the concept referring to “solid-

hoofed herbivorous quadruped domesticated since prehistoric times” that would have been previously defined using English

words as “horse(icl>mammal)” is now represented as “102374451”

 We then come to the third criteria of efficiency. The older UW representation suffered from many redundancies that

rendered it inadequate. One form of redundancy was due to the fact that synonymous words had to be defined independently.

For example, the words “execution”, “carrying out” and “implementation” were represented by three distinct UWs, although, in

fact, they share a single abstract conceptual sense equivalent to the gloss “the act of accomplishing some aim or executing some

order”. In UNL+3, this redundancy has been eliminated since -as mentioned earlier- each ID extracted from the WordNet is

assigned to a set of Headwords (a synset) that this ID as well as the gloss and examples apply to. Hence, the three UWs that

were previously used to define this concept are now unified into a single UW as shown in figure 3.

Figure 3: The older three UWs previously used to represent the above concept (left) and the new combined representation (right)

 Another form of redundancy also remedied by WordNet IDs was a result of the lack of consistency and conformity in

the definition of UWs. Different developers would define the same exact concept differently, and, thus, the same concept would

be listed in the dictionary multiple times. For example, the concept “a writing implement with a point from which ink flows”

referred to above could have been defined using any of the equivalent UWs shown in figure 4 (left). On the contrary, adopting

the new form of UW representation, only one ID would be applicable to this sense and, thus, such redundancy would be

eliminated.

Figure 4: The older three equivalent UWs previously used to represent the above concept (left) and the new unified representation (right)

 This form of inconsistency, at any rate, can be ascribed to personal differences in opinion and the lack of clear rules for

defining UWs. However, due to the numerous problems with the older UW representation, a more systematic kind of

inconsistency started to take shape. Some of the language centers spread around the world decided to come up with solutions to

these problems and devised new ways to define their UWs. For instance, the Russian center proposed to resolve the ambiguity

of Universal Words by adding an extra piece of information to the constraint list. For example, it suggested defining the

adjective poor as “poor(aoj>thing, ant>rich)” to stand for the antonym of rich or the first sense in table 1. On the other hand,

following the same strategy, the second sense in table 1 would be defined as “poor(aoj>thing, syn>miserable)” which is the

synonym of “miserable”. The proposition of the Russian center was declined, however, it warned against the looming

emergence of UNL dialects. Therefore, it was crucial that UNL+3 formulate an approach for defining UWs that is both efficient

to suppress any redundancies, and consistent to guarantee that it be easily followed by the participant individuals and

institutions; hence was the adoption of WordNet-based Universal Words.

 More information about the older representation of Universal Words is found in [2] and at

(http://www.undl.org/publications/UW%20and%20UNLKB.htm). However, [4], [6], [10] and [15] discuss using the WordNet

in developing UNL lexicons. Further explanation of the new UW format adopted in UNL+3 can be reached at

(http://www.unlweb.net/wiki/index.php/Universal_Words).

B. Relations

Relations are the semantic tags used to determine the kind of relationship between two-and only two- UWs in the UNL graph.

They may represent semantic cases or thematic roles such as agent, object, instrument, etc. Although UNL Relations might

occasionally coincide with syntactic relations, UNL Relations -as they were first invented in 1996- are never meant to denote

syntactic or grammatical categories; they rather stand for the abstract conceptual one-way link between the words in the source

natural language sentence and, consequently, the UWs in the UNL graph. This, of course, has made the choice of the

appropriate Relations one of the greatest challenges in constructing semantic networks in case of analysis, and generating

intelligible sentences out of a semantic network in case of generation.

 The set of Relations to be used in UNL grammars is defined in the UNL specifications and is not open to frequent

additions. It did not undergo as drastic a change as the UWs; UNL+3 mainly adopted the set of Relations defined in the latest

version of UNL specifications [2]. However, the UNL+3 program has organized Relations into a hierarchy where lower nodes

inherit the properties of upper ones. The hierarchy includes four general categories: participant (ptp) for the necessary

arguments of verbal concepts such as subjects and complements; attribute (aoj) for the necessary arguments of nominal

predicates such as subjects and complements; specifier (mod), for general specifiers; and adjunct (adj), for general adjuncts,

including time, location and manner. Figure 5 shows the hierarchy of adjunct relations as organized in UNL+3 specifications.

http://www.undl.org/publications/UW%20and%20UNLKB.htm
http://www.unlweb.net/wiki/index.php/Universal_Words

Figure 5: The hierarchy of adjunct (adj) Relations as set in the UNL+3 specifications

 Another change brought about by UNL+3 to the set of Relations is bringing back into use some Relations that had been

suspended in older specifications. For example, the Relation “DUR” for “duration” has been re-employed as it proved essential

in sentences such as “He wanted a rope to tie the horse during the day” where the two concepts [tie] and [day] must be linked

via a Relation that denotes the period of time in which the main entry existed or persisted. On the other hand, UNL+3 has

dispensed with some Relations that proved redundant such as the relation “PPL” for Physical Place which was found to be

useless in the presence of the relations “PLC” for “place” and “SCN” for “scene”, where the first is used for physical places

and the second for immaterial places. The specifications of 2005 still apply in UNL+3 [2], however, more explanation of

Relations within the framework of UNL+3 can be found at (http://www.unlweb.net/wiki/index.php/Relation).

C. Attributes

Attributes are additional tags that encode the contextual and/or subjective knowledge present in the original sentence into the

UNL graph. They are used to further modify the semantic network and add information that is not expressed via UWs or

Relations. The main drawback in the older set of Attributes was its insufficiency to represent all the information conveyed in the

natural language sentence. Hence, the UNL+3 program has augmented the set of Attributes and classified them into three

different categories:

• Attributes conveying information on the role of the node in the UNL graph such as the Attribute “@entry” that

indicates the main node in a UNL graph;

• Attributes conveying information on the original co-text of the node it modifies such as the Attribute “@parenthesis”

that indicates that the node was originally put between parentheses; and

• Attributes conveying information on the (external) context of the utterance such as the attribute “@past” that indicates

that the node was used in a time before the time of the utterance.

 The set of Attributes is defined in the UNL tagset and is not open to further additions. Similar to UWs, Attributes have

undergone rigorous changes, both in quality and quantity. Concerning quantity, the number of Attributes has quadrupled as

UNL+3 tried to remedy the deficiencies in earlier UNL specifications. UNL+3 introduced some indispensible Attributes, such as

those denoting gender. Before, such a crucial piece of information was lost in the conversion of natural language into UNL. For

example, the UNL semantic network for the French phrase “Mémoires d'un médecin” “Diaries of a physician” did not indicate

whether the concept [médecin] is masculine or feminine although in the French original it is clearly masculine (preceded by the

French masculine indefinite article “un”). Thus, on trying to generate the Arabic equivalent of such a network, it was not clear

whether it should be “ طبيب مذكرات ” or “ ةطبيب مذكرات ”.

 In addition to those of Gender, many other categories of Attributes such as those denoting animacy (@person and

@thing), degree (@more, @equal, @least, etc.), figures of speech (@ellipsis, @metonymy, @euphemism, etc.) and many

others that are crucial in representing the full meaning of natural language utterances have also been introduced in the UNL+3

program. The uppermost categories (old and new) in the Attribute hierarchy are shown in figure 6.

http://www.unlweb.net/wiki/index.php/Relation

Figure 6: The uppermost categories of Attributes as specified in the UNL+3 tagset

 In addition to these novel categories, UNL+3 has also augmented the older categories with new Attributes. For example,

the attributes “@inceptive”, “@prospective” have been added to the category of Aspect and the Attributes “@paucal” and

“@multal” have been added to the category of Number. Moreover, some of the existing categories have been divided into a

finer classification such as the category of Degree which is now divided into the subcategories: negative, positive, comparative

and superlative as shown in figure 7.

Figure 7: The finer classification of the Attribute category of degree in UNL+3

 On the other hand, the quality of older Attributes have been enhanced by classifying the set of Attributes into the

taxonomic hierarchy shown in figures 6 and 7 so that lower values may assume upper ones.

 Another reason behind this substantial increase in the set of Attributes is that many natural language words that were

previously treated as distinct concepts are now reconsidered. For instance, all closed classes of lexical items (demonstratives,

adposition, conjunctions, pronouns, etc.) are now represented as Attributes rather than concepts since, in reality, they do not

identify an abstract universal concept, they simply link between concepts or refer to ones previously identified. Demonstratives

are now represented via the Attributes “@proximal”, “@medial”, etc. while adpositions are represented by Attributes such as

“@under”, “@along”, “@after”, etc. Similarly, the Attributes “@before”, “@and”, “@since” and many others represent the set

of conjunctions. As for pronouns, they are denoted by the Attributes “@1” for first person, “@2” for second person or “@3” for

third person while their gender is denoted by the Attributes “@male” or “@female” and their number is denoted by the

Attributes “@singular”, “@dual”, “@plural”, etc. For example, the pronoun “they” is represented by the attributes “@3”,

“@male” and “@plural”.

 Other words that were previously identified as concepts include the words “each other” in a sentence like “They

comforted each other” which is now denoted by the Attributes “@each” and “@other”. Another example is the interrogative

word “which” in the question “which book are you reading?”, this too is signified by the attribute “@wh”.

More examination of the set of Attributes in older UNL versions is available at the UNL Specifications 2005 [2] while

the UNL+3 set of Attributes and their uses can be found at (http://www.unlweb.net/wiki/index.php/Attribute).

D. Tagset

Besides UWs, Relations and Attributes, UNL-based dictionaries and grammars also require a metalanguage capable of

accurately describing the linguistic behavior of words and structures. This metalanguage is composed of a diverse set of

linguistic attributes and values that are either inserted in the dictionary along with the entries to indicate a word’s part of speech,

number, valency, etc.; or used in analysis and generation rules to indicate a sentence’s agreement, voice, distribution, etc.

However, the required linguistic features and their values may vary drastically from one language to another depending on the

nature and the structure of the language under consideration and, in fact, they did in earlier versions of UNL. There was no

fixed set of linguistic features, or values; each language center created its own list of features and values, and chose how to use

it in defining their UWs and building their grammars, a fact that hampered the exchange of language resources among the

participant language centers, and undermined their understadability.

 Hence, in order to better standardize the language resources inside the UNL framework (dictionaries, grammars,

corpora, etc.), UNL+3 laid down a sole universal tagset capable of describing the pervasive morphological, semantic, syntactic

and even pragmatic phenomena, as well as the specific ones peculiar to only a handful of languages. Each language center can,

then, choose the set of values applicable to the phenomena the language manifests. For instance, the UNL tagset covers all

possible values of countability; singular, dual, trial and quadral, paucal, multal, plural, singulare tantum, plurale tantum and

invariant although the value of “dual”, for example, would never be used in languages such as English or French; however, it

will definitely be used in the Arabic language.

 The UNL+3 tagset was designed in order to be as comprehensive, few, short and mnemonic as possible in order to

ensure comprehensibility and consistency. It standardizes both: the tags of the linguistic attributes, and the tags of the values

they may assume. For example, UNL+3 postulates that the linguistic attribute of “number” must be signified by the tag “NUM”

and that its value may only be represented by one of the tags shown in figure 8. Figure 8 also shows that the set of linguistic

attributes and their values are arranged in a taxonomic hierarchy so that upper level values could be inferred from lower ones.

Figure 8: The linguistic attribute of "number" and its possible values as set by the UNL+3 unified tagset

 Such standardization is crucial in ensuring full translatability across the languages participant in the UNL program;

generation grammars can consult the universal tagset whenever they come across a value that does not exist in their native

language. In addition, standardizing the set of tags across the UNL community facilitates understanding and exchanging the

available language resources of different languages among the various UNL language centers. Figure 9 shows the linguistic

attributes (uppermost level) in the tagset hierarchy introduced in UNL+3. The UNL+3 tagset can be reached at

(http://www.unlweb.net/wiki/index.php/Tagset).

4 UNL RESOURCES

Not only have the linguistic components employed in the UNL infrastructure been subject to change, the structure of the

language resources that organize and employ such components have also been the subject of dramatic improvements on the

hands of UNL+3. Language resources are required to perform the various UNL-based tasks such as translation, summarization,

knowledge extraction, etc. They include dictionaries, analysis and generation grammars, ontologies and corpora.

A. Dictionaries

UNL-NL and NL-UNL dictionaries are bilingual dictionaries where lexical items of a given natural language are matched with

their corresponding abstract language-independent Universal Words (UWs). They are the cornerstone of any UNL-based

application as they contain all the information required to perform successful analysis (UNLization) and generation (NLization)

processes. Unfortunately, in the older UNL version, dictionaries suffered from numerous problems that prevented it from

playing its role in fulfilling the ultimate goals of UNL. The problems were mainly related to the structure of the dictionaries and

the way entries are stored in them. Therefore, it was only natural that UNL+3 introduce some drastic changes to the structure of

dictionaries, all of which are meant to improve their efficacy and potential.

 Probably the most significant change introduced by UNL+3 was disuniting the generation (UNL-NL) and analysis (NL-

UNL) dictionaries. Although at first sight this modification might seem to reduce efficiency rather than boost it, in reality, it is a

major improvement. This disunion came as a result of changing the way natural language headwords are stored in the

generation dictionary, which is another modification brought about by UNL+3. Following the specifications of UNL+3,

generation dictionaries should (i.e. UNL-NL) only store a single base form for the lexical item. This is because UNL+3

specifications now allow dictionary developers to write the linguistic rules capable of generating all the possible word forms of

the stored base form along with each entry in the generation dictionary. These rules can be affixation rules (A-rules) used for

prefixation, suffixation and infixation, or linear rules (L-rules) used for applying transformations over ordered sequences of

isolated words such as generating spelling changes (contraction, elision, assimilation, etc.), the use of capital letters and

punctuation marks.

 However, this strategy is not applicable to the analysis dictionaries as it would be quite time-consuming to predict the

base form of the incoming source language word forms. Hence, analysis dictionaries must still independently store the stems

representing all the word forms of a lexical item, thus, the analysis and generation dictionaries had to be disunited. This

composite amendment has improved the dictionary efficiency by eliminating the redundancy of storing the same concept in

several forms when they are not needed; i.e. in generation, and, thus, has speeded up the processing time in both the analysis

and generation processes.

 In addition to inflectional rules, UNL+3 has also allowed the insertion of subcategorization rules along with the entries

in generation dictionaries. Subcategorization rules describe the syntactic behavior of the word and are responsible for

determining the number and types of the necessary syntactic arguments (specifiers, complements and adjuncts) that co-occur

with the entry in order to form a multi-word expression or a phrase; i.e., its maximal projection. The verb "give", for instance,

generally requires at least one specifier (the subject) and two objects (a direct and an indirect), even if in several contexts they

are not explicit.

 Generally, both Analysis and Generation dictionaries follow the format shown in figure 9.

Figure 9: The general format of generation and analysis dictionary entries

Where:

NLW is the headword of the natural language lexical item.

ID is the unique identifier of the entry.

UW is the abstract concept representing the natural language word.

ATTR is the list of linguistic features of the NLW; these are set according to the UNL tagset. It also includes the

 affixation, linear and subcategorization rules in the generation dictionary.

FLG is the three-character language code according to ISO 639-33.

FRE is the frequency of NLW in natural texts. It is used in natural language analysis (NL-UNL).

PRI is the priority of the NLW. It is used in natural language generation (UNL-NL).

COMMENT is any comment necessary to clarify the mapping between NL and UNL entries.

The format of dictionary entries is not different from the one used in earlier UNL versions, however, the structure of

the NLW, UW, ATTR components has witnessed some change. The UW change has been discussed before in section 3A, and

the change in ATTR component is the integration of affixation, linear and subcategorization rules in the generation dictionary

discussed earlier in this section. The remaining change is the one involving the NLW. The change has to do with the types of

3 http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

headwords (NLWs) that can be stored in the dictionary. Before, a natural language entry could either be stored in the form of a

simple headword such as “book”, a multiword headword such “The United States of America”, a compound headword such as

“socio-economic or even a simple morpheme. Although there were several options, they all entailed serious limitations; all of

the previous forms were treated as a single unit and infixation was by all means impossible. Therefore, UNL+3 introduced two

new forms of NLWs; namely, complex structures and regular expressions.

 Complex structures are introduced in order to deal with discontinuous multiword lexical items such as “take into

account”. Using a complex structure, the natural language NLW can be represented as a complex structure made of several sub-

NLWs, each sub NLW can have a different part of speech and a distinct set of linguistic attributes. Thus, in the previous

example, [[take] [into][account]] is the NLW while [take], [into] and [account] are the sub-NLWs. This new form allows for the

very crucial option of inserting a lexical element between the constituents of a discontinuous lexical item to generate, for

example, “taking the previous into account”. Previously, dictionary developers did not have that option, they could either

consider the discontinuous concept a compound, in which case it would be treated as single unit and inserting any lexical unit

between its constituents would be unfeasible, or only choose a part of the concept to be the NLW and try to attach the other part

to it by means of some features and attributes; both options were quite inefficient and impractical. The general format of

complex structures is shown in figure 10:

Figure 10: The general format for complex structure NLWs

Where:

[sub-NLW] is a part of the NLW;

#01(ATTR, ...) are the specific features for the first sub-NLW to appear in the NLW;

#02(ATTR, ...) are the specific features for the second sub-NLW to appear in the NLW; and so on.

The features outside the sub-NLW feature lists are shared by all sub-NLWs.

 The second type of NLW introduced by UNL+3 is that of Regular Expressions. Both the NLW and the UW fields may

be represented in the form of regular expressions. In both cases, regular expressions must be included between a pair of "/" and

should comply with the PCRE – Perl Compatible Regular Expressions4. In the field of NLW, Regular expressions are useful in

eliminating redundancy. For example, rather than including two entries in the dictionaries to represent “color” and “colour”

which are different spelling conventions for the exact same concept, the NLW can be represented as the regular expression

[/colo(u)?r/] which means that the NLW is either equal to the string "color" or "colour". Similarly, according to the UNL+3

specifications for regular expressions, the regular expression [/(\d){4}/] means that the NLW is any sequence of four digits

(quite useful in indicating years).Figure 11 shows the genera format for a dictionary entry in which the NLW is a regular

expression.

Figure 11: The general format of regular expressions in the NLW field

In the similar manner, UWs can be represented as regular expressions; for example, the regular expression

"/(.)+\(iof\>city\)/" means that the UW is any one ending by the string "(iof>city)". This is especially useful in the generation

process. The general forma for a dictionary entry in which the UW is a regular expression is shown in figure 12.

Figure 12: The general format of regular expressions in the UW field

 Further discussion of the structure of dictionaries in older UNL versions is found in [2] while detailed examination of

the dictionary specifications according to the UNL+3 program is found at

(http://www.unlweb.net/wiki/index.php/Dictionary_Specs).

B. Analysis and Generation Grammars

UNL grammars are the set of rules responsible for analyzing or composing natural language sentences and ensuring their well-

formedness. They govern the composition of sentences, phrases and words in any given natural language. They are generally

4 http://www.pcre.org/

http://www.unlweb.net/wiki/index.php/Dictionary_Specs

unidirectional; from natural language into UNL (UNLization or analysis grammars) and from UNL into natural language

(NLization or generation grammars).

 The UNL+3 program did not only change the components and structure of the UNL grammars, it drastically altered the

ideology and linguistic infrastructure on which these grammars are based. As mentioned earlier, the design of the grammars in

previous UNL versions was mainly engineering rather than linguistic and the various linguistic phenomena were forced to fit

into that engineering design. As a result, the older UNL grammars did not employ a particular linguistic theory in defining their

components and devising their processes. Thus, in order to maintain consistency and comprehensibility across the grammars of

all languages, UNL+3 chose as a linguistic foundation an internationally-acknowledged linguistic theory; namely, the X-bar

theory [8] and [11].

 Another drastic change is in the processes of analysis and generation themselves. In the older generation of UNL, the

original grammar design was not broken up to accommodate the different categories of linguistic phenomena; instead, only one

module was provided by the system. In this module, grammar developers (computational linguists) organized their grammars in

a way that facilitates handling the language they aim to process. This, of course, undermined the modularity of the system, and

reduced the efficiency of the rules and accuracy of the output. Therefore, UNL+3 opted for a more linguistic approach by

dividing the grammar into seven types of rules, each devoted for resolving a specific type of linguistic issues. Three of these

types are common between analysis and generation, the other four are more specific; two for analysis and two for generation.

These types of rules and their functions will be discussed thoroughly in the following subsections 1 and 2 of this section.

 These seven types constitute the main body of rules that are responsible for analyzing natural language into UNL

semantic networks (the UNL graph) and generating natural language out of them; i.e. transformation rules. However, another

equally important category of rules are those devoted to disambiguation. Previously, disambiguation was handled by a type of

rules called backtrack rules. Backtrack rules constituted one of the most deep-seated shortcomings in former UNL versions.

First, they were only meant to handle lexical ambiguity; they could not resolve syntactic or structural ambiguity. Second, they

were not efficient in resolving lexical ambiguity and never fully performed their task. Hence, in UNL+3, backtrack rules are

replaced by disambiguation rules. Disambiguation rules are used to restrict the applicability of transformation rules by assigning

priorities in order to prevent wrong lexical choices, to prompt best matches or to check the consistency of the graphs, trees and

lists. There are three types of disambiguation rules that can handle ambiguity on the level of semantic networks, syntactic trees

and natural language lists. These too will be discussed in more detail in the following subsections 1 and 2.

 1) Analysis grammar: as mentioned earlier, in the older version of UNL, analysis rules were bundled up in a single

module. Thus, the process of analyzing natural language into semantic networks was done over a single leap. Later on, it

became clear that such a non-linguistic approach will not be sufficient in dealing with the complex phenomena manifested by

natural languages, and will not be enough to disengage the interweaving of syntax, semantics and morphology in natural

language sentences. Therefore, according to the specifications of UNL+3, analysis grammar is to be more modular. It uses five

of the seven types of transformation rules mentioned above. These five rule types represent the five stages through which input

sentences pass starting from natural language sentences passing through syntactic trees and finally forming the semantic

network. Figure 13 illustrates the older design of analysis grammar showing the one-step process. By contrast, figure 14

illustrates the more elaborate design of the analysis grammar as postulated by the UNL+3 program showing the five stages of

analysis.

Figure 93: The analysis grammar design in the older UNL system

Figure 14: The new analysis grammar design according to the specifications of UNL+3

 The five analysis phases are:

1) LL - List Processing (List-to-List)

2) LT - Surface-Structure Formation (List-to-Tree)

3) TT - Syntactic Processing (Tree-to-Tree)

4) TN - Deep-Structure Formation (Tree-to-Network)

5) NN - Semantic Processing (Network-to-Network)

 The List to List (LL) rules are responsible for preprocessing the natural language input by analyzing it morphologically

in order to match the input words with the dictionary entries and assign each stem to the concept it conveys. For example, in this

stage, the word “boys” is analyzed into “boy” + “s”. Consequently, “boy” is matched with the concept “110285313” while the

suffix “s” is deleted and replaced by the attribute “@def” which is attached to the stem of the word.

 Then, List-to-Tree Rules (LT) parse the resulting list structure into a surface tree structure. This type of rules is only

employed in the analysis process. They specify the syntactic relations between the words of the input sentence to form a surface

tree structures.

 Third, Tree-to-Tree Rules (TT) are used for revealing the deep structure underlying the previously formed surface

structure. In this phase, bottom-up parsing takes place to form a higher level of linguistic description. The process starts by

composing higher constituents from lower ones going from right to left. Because rules are recursive, they will pass again from

right to left to form any possible larger constituent.

 Fourth, Tree- to – Network Rules (TN), these form the initial semantic representation out of the deep syntactic

structure. In this stage, each syntactic relation is replaced by an appropriate semantic relation; in other words, syntactic

arguments are mapped with their semantic counterparts [1].

 Fifth, and finally, Network-to-Network Rules (NN) are used for post-editing the semantic network structure derived

from the syntactic module in order to generate the final UNL graph.

Parallel to the work of the previous transformation rules is the application of analysis disambiguation rules. When

analyzing a natural language sentence, disambiguation is needed to determine which universal concept (UW) is intended by the

natural language word. Naturally, many UWs are possible candidates for the same input word. The older system was

deterministic, thus, backtrack rules could only choose a single UW at a time and try to constitute the semantic network using it.

Backtrack rules used to match the longest string possible of the input word with dictionary entries and choose the first one it

meets. The chosen candidate is then tested and, if it failed to fit into its linguistic context, backtrack rules would then go back

and choose the next possible candidate in the dictionary, and so on and so forth. At many times backtrack rules would go

through hundreds of candidates before reaching the suitable one, if it did. This, of course, constituted a massive processing load

and, hence, had to be changed.

This issue of lexical ambiguity is, fortunately, resolved by the new disambiguation rules introduced in the UNL+3

program. Three types of disambiguation rules are used in analysis; network disambiguation rules, tree disambiguation rules and

list disambiguation rules. List Disambiguation Rules is the type devoted to resolving lexical ambiguity; it applies over natural

language list structures to constrain the application of Tree-to-List (TL) rules and select the most appropriate UW as shown in

table 2.
TABLE 2

THE APPLICATION OF LIST DISAMBIGUATION RULES IN RESOLVING LEXICAL AMBIGUITY

INPUT
DICTIONARY DISAMBIGUATION RULES OUTPUT

the book
[book] "22222" (POS=VER); (higher priority)
[book] "11111" (POS=NOU); (lower priority)

(ART)(BLK)(VER)=0; [book] "1111" (POS=NOU);

Aside from lexical ambiguity, the other two types of disambiguation rules can also handle structural ambiguity. Tree

Disambiguation Rules apply over the intermediate syntactic trees to restrict the application of List-to-Tree (LT) rules in the

analysis process. For Example, the rule (VS(VER;ADJ)=0;) postulates that An adjective (ADJ) may not be an specifier (VS) of

a verb (VER).

 Finally, Network Disambiguation Rules apply over the UNL semantic networks to constrain the application of Tree-to-

Network (TN) Transformation Rules in the process of analysis (UNLization). For example, the rule (agt(VER;ADJ)=0;) states

that an adjective (ADJ) may not be an agent (agt) of a verb (VER).

By applying the previous five transformation phases as well as disambiguation rules, the final UNL graph that

represents the abstract meaning of the natural language input is formed. Subsequently, this UNL graph can be translated into the

natural language of choice, with the help of the target language generation dictionary and generation grammar.

 For further information about the older format of rules see (http://www.undl.org/unlsys/ds.html). The new rule

specifications introduced by UNL+3 can be reached at (http://www.unlweb.net/wiki/index.php/Grammar_Specs).

 2) Generation Grammar: Similar to analysis, the previous UNL specifications did not categorize or classify grammar

rules and the process of generating natural language sentences out of UNL semantic networks was performed in a single step.

Figure 15 shows the older grammar design, and figure 16 shows the more linguistic design of the grammar according to the

UNL+3 specifications

Figure 10: The generation grammar design employed in the

 older UNL system

Figure 116: The new generation grammar design according to the specifications of UNL+3

Thus, generation grammars are also divided into five stages that utilize five of the seven rule types employed in the system.

These stages are:

1) NN - Semantic Processing (network-to-network)

2) NT - Deep-Structure Formation (network-to-tree)

3) TT - Syntactic Processing (tree-to-tree)

4) TL - Surface-Structure Formation (tree-to-list)

5) LL - List Processing (list-to-list)

 First, Network-to-Network Rules (NN) are used for pre-editing the incoming UNL graph, transforming it into a

semantic network that is more easily generated into the target language. For example, the English language distinguishes

between attributive adjectives (nice boy) and predicative adjectives (the boy is nice); attributive adjectives precede their nouns

unlike predicative ones. UNL is a universal formalism and, hence, acknowledges this distinction. It uses the "mod" semantic

relation to express attributive adjectives and the “aoj" semantic relation to express predictive adjectives. On the other hand, the

Arabic language does not make that distinction; adjectives always follow the modified nouns. Thus, the Arabic Network-to-

Network rules transform any "mod " between a noun and an adjective into "aoj".

 Second, Network-to-Tree Rules (NT) are the rules responsible for reorganizing the semantic network structure into a

deep tree syntactic structure by mapping the semantic relations with their corresponding syntactic roles.

 Third, Tree-to-Tree Rules are used for processing the resulting trees, transforming the deep syntactic structure from the

previous stage into a surface syntactic structure. These rules gather individual syntactic relations to form higher constituents in

the syntactic tree structure.

http://www.undl.org/unlsys/ds.html
http://www.unlweb.net/wiki/index.php/Grammar_Specs

 Fourth, Tree-to-List Rules are used to linearize the surface tree structure into a list structure and inserting the necessary

blank spaces.

 Fifth, and finally, List-to-List Rules are used for post-editing the output of the syntactic module and achieving the

morphological adjustments needed to generate the final natural language sentence. This phase comprises the morphological

rules that are responsible for two tasks; first, generating the final form of the target language words according to the linguistic

attributes and the rules attached to each word in the UNL-NL dictionary; for example, generating the plural form of nouns and

the past tense of verbs, etc. Second, these rules are responsible for achieving agreement between the nodes in the target

language list structure, such as verb-subject agreement, noun-adjective agreement, etc.

 Again, apart from transformation rules, disambiguation rules are used to replace backtrack rules. In the older UNL

version, the generation dictionary stored all the stems of the possible word forms of the lexical item; thus, each concept had

multiple natural language candidates. Backtrack rules chose the first possible candidate natural language word. Upon failure,

backtrack rules would go back and choose the next possible candidate and so on. Similar to its counterpart in the analysis

process, backtrack rules proved to be inadequate and inefficient.

 Surprisingly, this problem of disambiguating Universal Words was resolved, not by grammar rules, but by the new

specifications of the UNL-NL dictionary. Following the new specifications, the generation dictionary stores only the base form

of natural language words, thus, each concept will have only one equivalent entry in the dictionary. Aside from that form of

ambiguity, other forms are handled by the newly introduced disambiguation rules. Disambiguation rules provide a non-

deterministic approach to resolving ambiguities. Tree disambiguation rules are used to constrain the application of Network-to-

Tree (NT) rules in the NLization (generation) process, and List disambiguation rules are used to constrain the application of

Tree-to-List (TL) rules. Both apply in the same manner they do in the analysis process.

 After the five phases of generation and disambiguation, an output that is characterized by both accuracy and well-

formedness is finally generated. The exceedingly correct syntactic composition of the output sentence can be ascribed to the fact

that the system sets out from a semantic interpretation of the source language text, in the form of a semantic network, and then

passes through a stage of syntactic tree formation in which the syntactic constituents of the sentence is meticulously ordered and

adjusted before finally being transformed into the target language.

C. Ontologies

When world knowledge is needed to disambiguate or decipher a certain input, the UNL system refers to one of the system’s

Ontologies. Ontologies serve as the semantic component of the system and guarantee a more natural and accurate interpretation,

and hence representation, of the original meaning, in UNL format. Three ontologies are employed in the UNL system, the UNL

Ontology, the UNL Knowledge Base and the Concept Network. They are all tackled in the following two sub-sections.

1) UNL Ontology: The UNL Ontology is tree-like structures where UWs are interconnected through ontological relations

such as icl (is-a-kind-of), and pof (is-a-part-of). The UNL ontology is not a new component in the UNL system; it has been used

in earlier versions. However, in the UNL+3 program, a new ontology has been introduced in addition to the earlier one. The

earlier one is the UW system which is a hierarchy of the UWs provided by the UNDL Foundation. The new ontology, on the

other hand, is the UNL WordNet 2.1 which is a list of UWs extracted from the English WordNet 2.1.

 UNL Ontologies can improve the results of the analysis (UNLization) process by helping in word sense

disambiguation. As for the generation (NLization) process, the UNL Ontologies can make up for any deficiency in the UNL-

target language dictionary. Figures 17a and 17b show some nominal and verbal concepts extracted from the UW system,

respectively.

Figure 12: some nominal and verbal concepts extracted from the UW system

17a 17b

The UW system can be reached at (http://www.undl.org/unlsys/uw/UNLKB.htm).

2) UNL Knowledge Base: The UNL Knowledge Base, or simply the UNL KB, is a newly integrated component in the UNL

system. It is similar to the UNL ontology; a network structure where UWs are interlinked via any of the UNL’s semantic

Relations. However, the difference is that these Relations can be either ontological, or thematic such as agt (is the agent of), plc

(is the place where), etc. That is to say, the UNL KB encompasses and extends the UNL ontology. Moreover, the UNL KB also

attaches a degree of necessity. These and other extralinguistic information provided by the UNL KB would prove very helpful

for both natural language analysis and generation processes in issues such as deciphering ambiguities, resolving anaphora and

co-reference and others and, thus, enhance the capability of information retrieval and extraction through UNL.

 The UNL KB is expected to be dictionary-based; representing, in UNL, the definitions of each UW extracted from

several different ordinary dictionaries and from as many languages as possible, in order to best reveal the diversity and

complexity of each UW. The UNL KB should be provided as XML table, as shown in figure 18.

Figure 13: Example from the UNL KB

3) Concept Network: The Concept Network is a visual ontology of concepts. It shows the semantic hierarchical relations

between concepts and furnishes each with an illustrative figure, a description and other details. It is designed for creating,

browsing and editing concepts and their relations. In addition, by providing a user-friendly and visually interesting overview of

semantically related words, it facilitates the task of dictionary and grammar developers by putting the required concept into

perspective. Figure 16a shows the list of concepts containing the word “horse” in the synset. Figure 16b is the visual network

showing concepts that are semantically related to one chosen from the list.

Figure 16: The concept network for the synset "horse, Equus caballus"

16b

16a

http://www.undl.org/unlsys/uw/UNLKB.htm

D. UNL Corpora

Aside from the lexica, grammars and ontologies, a large corpus of the previously UNLized texts have been compiled. Corpora

is not a novel component in the system, they have always been part of the UNL infrastructure even in earlier versions. They are

a collection of documents written in UNL according to the UNL document structure. Corpora are mainly used for extracting

entries for the UNL Example Base (discussed in the subsection 2 of this section) and the UNL Memory Base (discussed later in

subsection 5 A). They are also used to set the standards of UNL and test the engines and tools as well as the applications to be

based on UNL technology. Figures 17a and 17b show two excerpts from Le Petit Prince corpus (discussed later in 8 D) and the

UNL-Encyclopedia of Life Support Systems corpora, respectively.

Figure 14: Excerpts from Le Petit Prince corpus and the UNL-EOLSS corpora, respectively

 The corpora of the ongoing projects can be reached via the development environment; the UNLarium, at

(http://www.unlweb.net/unlarium/index.php?corpus=new) for logged in users. Older corpora, however, are available at

(http://www.unlweb.net/wiki/index.php/Corpora).

4) UNL Example Base: The UNL Example Base (UNLeb), also known as the UNL Encyclopedia contains semantic

relations between UWs along with a degree of probability. It is built automatically by analyzing large corpora, thus, it

comprises information that is related to the probability of occurrence rather than the possibility of occurrence. It is the only

component in the UNLarium framework created by statistical approaches. The UNL Example Base is planned to serve for

disambiguation purposes, once large analyzed corpora are available.

E. The UNLarium

The UNLarium is the integrated development environment used for producing all of the previous language resources (dictionaries,

grammars, ontologies and corpora). It is a web-based collaborative database management system that allows registered users to

create, edit and export language resources that have been created according to the UNL standards for language engineering. The

UNLarium also allows users to search, browse, and download dictionaries, grammars and corpora that have been provided by

other users and in other languages.

 Furthermore, the UNLarium is considered a research workplace for exchanging information and testing the linguistic

constants that have been proposed for describing and predicting natural language phenomena. Its main goal is helping the UNL

system in devising a language-independent interlingua that would be as comprehensive and harmonized as required for NLP

tasks. The UNLarium comprises three main sections:

• Dictionary: for creating and editing dictionary entries;

• Grammar: for creating and editing inflectional paradigms, subcategorization frames, and other analysis and

 generation grammar rules; and

• Corpus: for adding, editing and exploring UNL documents.

 Figure 18 shows the home page of the UNLarium environment.

17a 17b

http://www.unlweb.net/unlarium/index.php?corpus=new
http://www.unlweb.net/wiki/index.php/Corpora

Figure 15: The home page of the UNLarium showing its different components (left)

 The UNLarium is free and open to any individual or institution wishing to participate in the furtherance of the UNL

program. It intends to be as linguist-friendly as possible, and targets language specialists rather than computer experts. The

UNLarium does not require any thorough knowledge in UNL, NLP or Computational linguistics. It, however, requires that

participants be of some acquaintance with descriptive Linguistics and have very good knowledge of the working language as

well as English which is (for the time being) the language of the interface and of all the documentation. They also have to be

certified in VALERIE, the Virtual Learning Environment of UNL (mentioned earlier in section 2). Non-certified users will,

nevertheless, still have access to several facilities of the UNLarium, but will not be allowed to add or edit entries or rules.

Participants can work in providing the required language resources for the projects and the languages hosted by the UNDLF

either as volunteers, or freelancers to be remunerated for their work, depending on the projects and on the languages. Being

such a collaborative project, the data stored in the UNLarium is available under an Attribution Share Alike (CC-BY-SA) Creative

Commons license5. The UNLarium can be accessed at (http://www.unlweb.net/unlarium/).

5 UNL ENGINES AND TOOLS

UNL engines and tools include all the non-linguistic components used in developing, editing and using the language resources

that are part of the UNL system. They include the main analysis tools and generation tools, as well as other supporting tools.

A. Analysis Tools

Of course, older UNL systems used analysis tools (Information about the older engines can be found at

(http://www.undl.org/unlsys/ds.htm); however, these tools suffered from many shortcomings and were, therefore, replaced

in the UNL+3 plan by more efficient ones. The tools used in analysis are the UNL editor, IAN, SEAN and the UNL memory

base.

1) The UNL Editor: One of the main motives behind implementing the UNL+3 program is that the older analysis system was

too inept to achieve the ambitious goals of UNL. The older system aimed for all analysis processes to take place in a semi-

automatic manner, this proved to be too ambitious especially that the UNL system was still in its infancy. Thus, in the UNL+3

system, a more realistic manual analysis engine is introduced; namely, the UNL editor. The UNL editor is supposed to take over

the analysis process until the disambiguation devices employed by the system mature enough for the semi-automatic engine

(IAN) to operate. Currently, decision-making in the analysis process is mostly human and is performed using the UNL editor.

The UNL editor is a graph-based UNL authoring tool that facilitates the work of developers by providing them with a

functionality to load/create UNL documents and manage their contents. The language specialist would upload the text to be

5 http://creativecommons.org/licenses/by-sa/2.5/ch/

http://www.unlweb.net/unlarium/
http://www.undl.org/unlsys/ds.htm);

analyzed, select the appropriate UWs (i.e., the nodes in the semantic network) from the UNL dictionary, choose the semantic

Relations that best represent the link between these nodes, and, finally, assign the nodes the required Attributes. The UNL editor

is especially crucial for tasks demanding meticulous interpretation in order to yield accurate translations. The system has been

recently improved with a base of successful past UNLizations to act as a translation memory (the UNL memory base to be

discussed in subsection 4 of this section). Figure 19 shows the UNL editor in action.

Figure 16: Creating a UNL graph (semantic network) using the UNL editor, with suggestions from the translation memory

1) IAN: IAN is the semi-automatic analysis engine that replaced the older one (the Enconverter). The main shortcoming of

the Enconverter was that it was designed with no respect to linguistic considerations. It did not employ any particular linguistic

theory, and, as mentioned before, had no room for the different categories of linguistic issues; analysis was performed in a

mostly automatic single leap. Inevitably, many problems arose; thus, the new engine, IAN, operated according to a more

linguistic and realistic design. It employs five different modules (the five stages stated in the section 4 B 1 above) that process

the input sentence step by step finally reaching the UNL semantic network.

IAN, the Interactive ANalyzer, is the natural language text analysis engine. It is the same for all languages, it simply

employs the analysis grammar rules and the NL-UNL dictionary of the source language to analyze input and finally generate its

corresponding UNL expressions. It operates semi-automatically; word sense disambiguation is still carried out by a language

specialist, nevertheless, the system can filter the candidates using an optional set of disambiguation rules. Syntactic processing,

on the other hand, is carried out automatically using the natural language analysis grammar, but syntactic ambiguities are

referred back to the user, who may choose to backtrack to a different syntactic path. Nevertheless, human interaction is always

optional, and is only used to improve the results. If no human intervention took place, the system would output the most likely

alternative, which is the one with the highest priority in the lexicon and in the grammar. At any rate, IAN would be fully

automatic as soon as the disambiguation devices it employs are perfected. Figure 20 shows a snapshot of the IAN engine in

action.

Figure 17: The IAN engine using a set of UNlization rules.

3) SEAN: SEAN is the acronym for Shallow Enhanced ANalyser. It is a fully automatic analysis engine introduced in

UNL+3. In SEAN, the analysis targets the surface structure of natural language sentences; hence, SEAN is not appropriate for

translation, but for information retrieval and extraction only since it only provides a rough and partial analysis of the natural

language input. Unlike IAN, SEAN does not allow for any human intervention. Another difference is that SEAN does not allow

a single document as an input (as in UNL editor and IAN), only a whole collection of documents. SEAN is also a word-driven

analyser; the unit of analysis is the word, unlike IAN and EUGENE where the unit of analysis is the sentence.

4) UNL Memory Base: The UNL Memory Base (UNLmb) is a sort of a translation memory used to facilitate the analysis

process by providing a repository of mappings between natural language structures and UNL graphs along with their frequency

of occurrence. Mappings can be of continuous structures (such as n-grams) or discontinuous ones and can be extracted out of

the UNL corpus or created by users. The UNLmb can also be serve in disambiguating input texts. The UNLmb will be populated

by the results of the first project to be accomplished according to the specifications of UNL+3; the iGLU project (to be discussed

in section 8 B)

B. Generation Tools

Generation tools are those ones responsible for generating well-formed natural language sentences out of UNL semantic

networks. Only one engine is used in the generation process; EUGENE.

1) EUGENE: The old generation engine, the DeConverter, has suffered from the same problem as the Encoverter, it did not

take linguistic issues into account and assumed that generation should take place over a single step. Thus, similarly, it is

replaced in the UNL+3 program by EUGENE (the dEep-to-sUrface natural language GENErator) that rather utilizes a five step

generation process (the five stages mentioned earlier in section 4 B 2).

 EUGENE, like the older engine, is a fully automatic engine; it does not involve any human intervention. Similar to

IAN, EUGENE is language-independent, it simply uses the target language grammar rules and UNL-NL dictionary in order to

decode the incoming UNL document and generate it in natural language format. Figure 21 shows a snapshot of EUGENE in

action.

Figure 18: The Eugene engine applying generation rules

C. Other Supporting Tools

Apart from the main analysis and generation engines, several other tools are introduced by the UNL+3 plan to facilitate the

handling of language resources and make better use of them.

1) Norma: a newly introduced tool is NORMA. Norma is a normalization tool developed to organize and consolidate raw

knowledge bases. Normalization involves suppressing redundancies (relations with the same source and target nodes),

suppressing tautologies (relations where the source node is the same as the target node), suppressing contradictions (opposite

relations between the same nodes, or the same relations between opposite nodes), generalization (replacing a node by a hyper-

node, or a relation by a hyper-relation), specification (replacing a hyper-node by a node or a set of nodes, or a hyper-relation by

a relation), merging (replacing two nodes by a single node), and division (replacing one node by two or more nodes).

2) EDGES: EDGES is the Entity Discovery and Graph Exploration System, a user-friendly visualization tool used for

exploring semantic networks by enabling node expansion, collapsing and navigation. It is expected to be embedded in several

UNL-based applications discussed in section 6 of the paper.

D. The UNLdev

In addition to enhancing the tools and engines, the UNL+3 program has also made the source codes for all tools open and their

use free. The tools and engines are all available in the UNL Integrated Development Environment; the UNLdev. The UNLdev is a

collective application containing the various UNL tools as well as the numerous applications to based on UNL infrastructure

(some application will be discussed in section 8 of the paper). The UNLdev can be reached at

(http://dev.undlfoundation.org/index.jsp).

6 APPLICATIONS

This section examines some of the UNL-based front-end applications proposed in the UNL+3 plan. Applications are the main

goal of developing the complex and intricate infrastructure discussed in all of the above. They should allow end users to perform

several natural language processing tasks without any linguistic background or previous knowledge on UNL.

http://dev.undlfoundation.org/index.jsp

A. LILY

LILY is the acronym for Language-to-Interlanguage-to-Language sYstem, a UNL-based machine translation web service

between the languages participant in UNL. LILY uses UNL as a pivot language; nonetheless, it has to be parameterized for each

source and target language. Human intervention during the analysis process is allowed, however, it is optional. If no human

intervention took place, the system chooses the results of the highest priorities in the dictionary and in the grammar. LILY can be

assisted by the use of some of the UNL system’s data banks such as the UNLeb, UNL KB and UNLmb. Thus, it may work either

as a knowledge-based MT system or as an example-based MT system; however, it is always rule-based.

B. TUT

TUT (Text-to-Text through UNL) is a digital library of texts represented in UNL. It provides links to the original version of

more than 30,000 titles and, the UNL version of the text (if available) along with three possible realizations (summarized,

simplified and rephrased), in any of the languages available in the UNL System.

 The main goal of TUT is to UNL-plicate texts. UNLplication involves generating several different versions of the same

input, using UNL. These versions can be transformations of language (a version different in language), of length (text

summarization, text extension), of structure (text, matrix, tree, graph) and of social adequacy (text simplification,

colloqualization, sociolectalisation). UNLplication can extend the semantic formation of source documents to serve a wide range

of uses that do not demand strict fidelity to the original. TUT is available at (http://www.unlweb.net/tut/).

C. KEYS

KEYS or the Knowledge Extraction sYStem is an information retrieval and extraction application that can search for information

inside UNL documents. Thus, the search and extraction are language-independent and semantically-oriented yielding results that

are more accurate than the results of the conventional string-matching systems. KEYS also includes the tools SEAN, NORMA

and EDGES and is expected to synthesize and normalize the information available on the Web, and to provide summaries

extracted out of several different input documents.

7 UNL WORLD

UNL World is the overall strategy followed by the UNDL foundation to propagate the UNL project, encourage the participation

of institutions and individuals and disseminate knowledge about its scope, goals and applications. Projects involved in the

category of UNL World include the UNL School which aims to train people who are interested in participating in the

development of UNL-related modules, tools and applications. In accordance with the UNL School, the UNDL foundation has

already organized several courses in Armenia, Switzerland, Egypt and India. Another component that can be considered part of

the UNL World strategy is the UNLweb which comprises the UNLarium, the UNLwiki and the UNL forum.

8 CURRENT PROJECTS FOR B UILDING THE BASIC LINGUISTIC RESOURCES

After examining the five areas of interest composing the UNL+3 plan, this section will discuss some of the project that are

underway according to the specifications of UNL+3.

A. MIR

The UNL MIR is a collaborative project aiming at creating a general-purpose multilingual lexicon to be used in Natural

Language Processing (NLP) tasks. The UNL MIR contains 27,255 entries representing different sets of synonyms (or synsets) of

the English language automatically extracted out of an abridged version of the English WordNet 3.0. Each synset is also

accompanied by a gloss and, occasionally, some examples to pinpoint its intended sense. The project, then, involves the different

language centers associating each synset with the most appropriate lexical item in their respective languages and, hence, building

their basic NL-UNL and UNL-NL dictionaries.

 The UNL MIR provides a concept-to-word database (i.e., a semasiological, decoding or writer's dictionary) instead of a

word-to-concept lexicon (onomosialogical, encoding, reader's dictionary); hence, entries in the UNL MIR should not be thought

of as words, but as definitions to concepts along with their most likely lexical realizations in the language of the dictionary

(synsets extracted from the WordNet represent the most likely lexical realizations of the concept in English).

http://www.unlweb.net/tut/

 The UNL MIR is open to the participation of individuals and institutions. The results of the project will be available

under the Attribution Share Alike (CC-BY-SA) Creative Commons license mentioned earlier. More information about the UNL

MIR project is available at (http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-

mir&catid=1:latest-news&Itemid=60).

B. IGLU

The project i(GL>U) - from glosses into UNL - aims at UNLizing the glosses of 27,255 entries extracted from an abridged

version of the WordNet 3.0. The results of the project will be used in populating the UNL KB; thus, improving the quality of

word sense disambiguation and enhancing the capability of information retrieval and extraction through UNL. The results will

also constitute the UNL memory base, to be used in future mappings between English and UNL.

 The project is divided into two main phases. The first phase; (iGLU#1), addresses a subset of 27,255 synsets and will be

carried out in a predominantly human basis. The second, on the other hand, will be devoted to the remaining 90,404 synsets and

is expected to be mainly automatic. In the first phase, the working linguists would analyze (UNLize) WordNet glosses using the

UNL Editor. Their decisions would then be stored in a UNL memory base, which would store the mappings between lexical

items of English and Universal Words as well as the chosen attributes and relations. The data stored in the memory base will,

then, be employed by IAN to automatically analyze the glosses of the second phase; a first step towards a fully-automatic natural

language analysis system.

 Similar to the UNL MIR, The iGL>U project is also open for the participation of individuals and institutions and the

results of the project will also be accessible for all. More information about iGLU is available at

(http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=60:iglu&catid=1:latest-news&Itemid=60).

C. LACE

Up till now, UNL-based systems have been built upon lexical resources provided in a rather manual basis, mainly because the

word sense disambiguation techniques has not yet reached the stage of making up for human intervention. Hence, the project

LACE (Language Acquisition from Comparable tExts) aims at compiling, replicating and extending techniques that have been

widely used in statistical natural language processing by making use of comparable corpora and building language modules out

of data automatically extracted from comparable corpora; thus, extending the coverage of the current resources and providing a

less expensive alternative for populating lexical databases in the UNL framework.

 The results of the project would be used in natural language disambiguation, thus, improving the performance of the

various UNL-based applications such as machine translation, summarization, information retrieval and semantic reasoning.

More information about the project LACE is available at

(http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=66:lace&catid=1:latest-news&Itemid=60).

D. Le Petit Prince

In earlier phases, UNL technology had been used in UNLizing the text of Le Petit Prince, a French novel authored by Antoine

de Saint-Exupéry in 1943. Le Petit Prince had been chosen as it is one of the best-selling books ever and has been translated to

more than 180 languages and, thus, would serve as a good basis for contrasting and evaluating a wide range of UNL-based

translations. Moreover, it provides new genres to experiment with; namely, narrative and literature.

 The Project Le Petit Prince (LPP), hence, involves providing the UNL-NL dictionary entries and UNL-NL grammar

rules required for automatically generating into natural language (NLizing) the already UNLized version of Le Petit Prince. The

main goal is also to “UNL-plicate” the text in at least three different directions: replication, summarization and simplification, in

as many languages as possible.

9 CONCLUSION

In less than three years, the UNL+3 program has succeeded in going a longer way than the previous 13 years of development

have ever gone, thus, bringing the UNL system closer to its goals. However, this is understandable as such a massive project

must require an extended period of trial and experimentation in order to detect and troubleshoot all the potential limitations and

problems. UNL+3 specifications represent the compendium of these years, putting into effect the solutions to the detected

http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-mir&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-mir&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=60:iglu&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=66:lace&catid=1:latest-news&Itemid=60

problems and, by that, creating a UNL system that is more efficient, more easily managed and maintained and can output better

results. Enhancements include visual and user-friendly environments, statistical tools in addition to the classic components of the

UNL system, thus, bringing together a system that is almost ideal. By the end of 2011, UNL+3 should put an end to the period of

UNL research and finally bring to light operational UNL-based applications that can serve the general public in performing fast

and accurate natural language processing tasks. A compete presentation of how UNL+3 applies to the Arabic language will be

presented in [13] in this volume.

REFERENCES

[1] Charles J. Fillmore, “The Case for Case” , In Universals in Linguistic Theory, Holt, Rinehart, and Winston. 1968.

[2] H. Uchida, 2006. Universal Networking Language (UNL): Specifications version 2005. Edition 2006. Available from: www.undl.org/unlsys/unl/unl2005-

e2006/ (accessed 15th november 2010).

[3] H. Uchida, M. Zhu and T. Della Senta, “UNL: A gift for A millennium”. Institute of Advanced Studies, United Nations University, Tokyo.1999.

 [4] I. Boguslavsky, J. Cardeñosa and C. Gallardo. “A Novel Approach to Creating Disambiguated Multilingual Dictionaries”, Applied Linguistics, vol. 30, 70–

92, Oxford University Press, 2008.

[5] I. Boguslavsky, J. Cardeñosa, C. Gallardo and L. Iraola. “The UNL Initiative: An Overview”, Lecture Notes in Computer Science, Volume 3406, 377– 87,

Computational Linguistics and Intelligent Text Processing (CICLing), 2005, ISBN 978-3-540-24523-0.

[6] J. Bekios, I. Boguslavsky, J. Cardeñosa and C. Gallardo. “Using Wordnet for building an Interlingua Dictionary” in proceedings of 5th International

Conference on Information Reseasrch and Applications, (I.TECH). vol.1, pp. 39-46, June, 2007.

[7] J. Cardeñosa, Alexander Gelbukh and Edmundo Tovar (eds.), Universal Networking Language: advances in theory and applications, Mexico City, National

Polytechnic Institute. 2005.

[8] N. Chomsky. “Remarks on Nominalization” In: Readings in English Transformational Grammar. R. Jacobs and P. Rosenbaum (eds.), pp. 184-221. 1970.

[9] Noha Adly, Sameh Alansary, “Evaluation of Arabic Machine Translation System based on the Universal Networking Language”, in proceedings of 14th
International Conference on Applications of Natural Language to Information Systems, (NLDB 2009), Saarland University, Saarbrücken-Germany,

June 24 - 26 2009.

[10] R. Martins, and V. Avetisyan, “Generative and Enumerative Lexicons in the UNL Framework”, in proceedings of 7th International Conference on

Computer Science and Information Technologies, (CSIT 2009), 28 September - 2 October, 2009, Yerevan, Armenia. 2009.

[11] Ray S. Jackendoff, X syntax: A study of phrase structure, Cambridge, Massachusetts, MIT Press, 1977.

[12] Sameh Alansary, Magdy Nagi and Noha Adly,”Machine Translation Using the Universal Networking Language (UNL)”, in prooceedings of 8th

International Conference on Language Engineering, Ain Shams University, Egypt, December 18 – 19, 2008.

[13] Sameh Alansary, Magdy Nagi andNoha Adly, “A Practical Application of the UNL+3 Program on the Arabic Language”, in proceedings of 10th

International Conference on Language Engineering, Ain Shams University, Egypt, December 15 – 16, 2010.

[14] Sameh Alansary, Magdy Nagi, and Noha Adly, “A Semantic-Based Approach for Multilingual Translation of Massive Documents”, in proceedings of 7th

Symposium of Natural Language Processing, Thailand, December 13 - 15 2007.

[15] Sangharsh Boudhh, and Pushpak Bhattacharyya, “Unification of Universal Words Dictionaries using WordNet Ontology and Similarity Measures”, in
proceedings of 7th International Conference on Computer Science and Information Technologies, (CSIT 2009), Yerevan, Armenia, 28 September - 2

October, 2009.

[16] WordNet: An electronic lexical database. Christiane Fellbaum (Ed.), Cambridge, MA, MIT Press, pp. 423, 1998.

BIBLIOGRAPHY

 Hiroshi Uchida. UNL: Universal Networking Language – An Electronic Language for Communication, Understanding, and Collaboration, United

Nations University,Institute of Advanced Studies, UNL Center, Tokyo, Japan, 1996.

 Hiroshi Uchidaand Meiying Zhu, The Universal Networking Language beyond Machine Translation, The UNDL Foundation, 2001.

 Sameh Alansary, “Issues on Interlingua Machine Translation Systems”, in proceedings of 9th Conference on Language Engineering, Cairo, December 23-

24, 2009.

 Sameh Alansary, Magdy Nagi and Noha Adly, “Generating Arabic Text: the Decoding Component in an Interlingual System for Man-Machine

Communication in Natural Language”, in proceedings of 6th International Conference on Language Engineering, Cairo, Egypt, December 6 - 7 2006

 Sameh Alansary, Magdy Nagi, and Noha Adly, “Communicating in Arabic in Cyberspace”, in proceedings of Information and Communication

Technology International Symposium, (ICTIS07), Arabic Natural Language Processing Workshop, Fez, Morocco, April 3 - 5 2007.

 Sameh Alansary, Magdy Nagi, and Noha Adly, “The Universal Networking Language in Action in English-Arabic Machine Translation”, in procedings of

9th Conference on Language Engineering, Cairo, December 23-24, 2009.
 Sameh Alansary, Magdy Nagi, and Noha Adly,“Processing Arabic Text Content: The Encoding Component in an Interlingual System for Man-Machine

Communication in Natural Language”, in proceedings of 6th International Conference on Language Engineering, Cairo, Egypt, December 6 - 8 2006.

http://www.undl.org/unlsys/unl/

Ontology-based Architecture for an Arabic Semantic Search
Engine

Ibrahim Fathy Moawad*1, Mohammad Abdeen**2, Mostafa Mahmoud Aref **3
**Information System Department, Faculty of Computer Science and Information Sciences, Ain Shams University

Abbassia, Cairo, Egypt
2ibrahim_moawad@hotmail.com

*Computer Science Department, Faculty of Computer Science and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt
3m_abdeen2@yahoo.ca
3aref_99@yahoo.com

Abstract Most of the current Arabic search engines are classified as syntactic search engines, since the search is based on keyword(s).
These search engines present several problems related to the meaning of the search query. For example, the low query precision and the
shortness in understanding user's query intention represent some of these problems. In this paper, an Arabic semantic search engine
based on an Arabic ontology. The proposed architecture is layered, and is loosely coupled with an existing Arabic syntactic search
engine. The proposed Arabic semantic search engine is semantically reason using an Arabic ontology that represents a very rich
vocabulary (Arabic concepts' attributes, inheritance relations, and association relations). It helps the search engine to understand the
user's query intention, and hence enhances the search results. Finally, the paper illustrates semantic search through simple search
examples in computer domain.

1. INTRODUCTION
The internet has become the world’s biggest information superstore. From simple bloggers to space agencies, all use the
internet fabric for information sharing. The size of Internet is doubling every 5 years. Figure 1 shows the number of Internet
sites from 1995 to 2008. Users locate their needed information through search engines [1].

Figure 1: The number of Internet sites from 1995 to 2008.

Existing search engine technology works well in a narrow set of situations. Such as when the user is able to provide search
terms that precisely match the resources they are attempting to locate. As the number of resources that can be accessed and
searched by computer users increases, search engines are no longer just convenient information tools. In fact, they are powerful
agents of a transformation that is making the business environment more transparent, and thus, potentially more competitive.
While the development of search engines has significantly increased the ability of computer users to discover or locate
information, existing search engine technology still has various significant limitations, and it is frequently insufficient to help
people locate the information they need.
The alternative of keyword-based search engines is having semantic search engines that generate information more relevant to
the user need [2]. The semantic search engines use ontology rather than lexicon that is used in the traditional search engines.

 2

An Arabic ontology is needed to achieve the Arabic semantic search engine. In this paper, the Arabic ontology is going to be
used to enhance an existing Arabic search engine by developing a semantic Arabic search engine.
Section 2 presents the background and the related work about semantic search engines and Arabic Ontology. Section 3
discusses the architecture of the proposed Arabic semantic search engine. Arabic semantic search examples in computer
domain are illustrated in section 4. Conclusion and future works are given in section 5.

2. BACKGROUND
Semantic search is a process used to improve online searching by using data from semantic networks to disambiguate queries
and web text in order to generate results that are more relevant. A Semantic network (also called "concept network" or
ontology) is a graph, where vertices represent concepts and edges represent relations between concepts. At the level of
ontology, a semantic network expresses vocabulary that is helpful especially for human, and can be used for machine
processing.
A Semantic Search Engine attempts to make sense of search results based on context. It automatically identifies the concepts
structuring the texts [3]. For instance, if you search for “election”, a semantic search engine might retrieve documents
containing the words “vote”, “campaigning” and “ballot”, even if the word “election” is not found in the source documents. An
important part of this process is disambiguation of both the user queries and the web content. This means that the search
engine, through natural language processing, will know whether you are looking for a car or a big cat when you search for
“jaguar” [4].

A. The Semantic Search Engines
In recent years, considerable research efforts have been devoted to apply semantic web technologies into information search
and retrieval process. There are a number of pilot non-Arabic semantic search projects and frameworks have been
implemented and evaluated in various application domains. Some of these semantic search engines can be summarized as
follow: -

Hakia [5] is a general purpose semantic search engine, as opposed. It searches structured corpora (text) like Wikipedia.
Often, Hakia will propose related queries, which is also great for research. For instance, if we search for Barack Obama,
Hakia suggest that we might be interested in information about Michelle Obama, Hillary Clinton, Democrats, Sarah Palin,
John McCain, John Sununu and Joseph R. Biden Jr. as well.

SenseBot [6] is a web search engine that summarizes search results into one concise digest on the topic of your query. The
search engine attempts to understand what the result pages are about. For this purpose, it uses text mining to analyze Web
pages and identify their key semantic concepts.

Cognition [7] has a search business based on a semantic map, built over the past 24 years, which the company claims is
the most comprehensive and complete map of the English language available today. It is used in support of business
analytics, machine translation, document search, context search, and much more. You can use Cognition’s technology to
search one of four bodies of information: public (Resource.org is currently contains 1,858 volumes consisting of 675,704
files of federal case law in XHTML format), MEDLINE (Medical Literature Analysis and Retrieval System Online)
abstracts, the English version of Wikipedia, and the complete New English Translation including text and translator notes
of the Gospels of Matthew, Luke, John and Mark.

B. Arabic Ontology
Ontology is defined as an explicit specification of conceptualization. Ontology will thus analyze the most general and abstract
concepts or distinctions that underlay every more specific description of any phenomenon in the world, e.g. time, space,
matter, process, cause and effect, system [8]. There are several works done in English ontology. The most common used ones
are Upper Model [9], Wordnet [10], Sumo [11] and OpenCyc [12]. For the Arabic language, little work has been done on the
subject of Arabic ontology. The most common work is Arabic Wordnet [13, 14].
In general, there are two main kinds of Ontology [15]:

1. A domain ontology (or domain-specific ontology) that models a specific domain, or part of the world. It represents the
particular meanings of terms as they apply to that domain. For example the word "card" has many different meanings. An
ontology about the domain of poker would model the "playing card" meaning of the word, while an ontology about the
domain of computer hardware would model the "punched card" and "video card" meanings.

2. An upper ontology (or foundation ontology) is a model of the common objects that are generally applicable across a
wide range of domain ontologies. It contains a core glossary in whose terms objects in a set of domains can be described.
There are several standardized upper ontologies available for use, including Dublin Core, GFO, OpenCyc/ResearchCyc,
SUMO, and DOLCE. OntoSelect [16] is a library that monitors the webs that provide an access point for ontologies on
any possible topic or domain that is automatically updated, organized in a meaningful way and with support for ontology
search and selection. Based on OntoSelect, figure 2 shows the distribution of languages used in creating Ontologies on the

 3

Semantic Web. We can detect from the graph that the Arabic Language isn't considered, due to the lack of a real
considerable and reliable Arabic Ontology.

OntoSelect Ontologies Language
Distribution

69.59%

7.43%

6.76%

4.05%

4.05%

5.40%

2.72%

en
de
fr
en-US
es
en-uk,pt,hu,it
pl,nl,ru,ja

Figure 2: OntoSelect: Distribution of languages used in creating ontologies

3. THE ARCHITECTURE OF ARABIC SEMANTIC SEARCH ENGINE
The current Arabic keyword-based search engines present several problems related to the meaning of the keyword used in the
search query [17]. In order to solve the problems of the low query precision and the shortness in understanding user's query
intention that occur in these traditional search engines, this paper aims to propose an Arabic search engine architecture based
on Arabic ontology. By using semantic reasoning, which based on ontology, it helps the search engine to understand the user's
query intention, and hence enhances the search results.
The proposed Arabic search engine architecture will be developed as a loosely coupled semantic layer over an Arabic syntactic
search engine. Building an Arabic semantic search engine will consider related semantic Arabic words when searching for an
Arabic one (Arabic Ontology). The Arabic semantic search engine (shown in Figure 3) will utilize the existence of Syntactical
Search Engine. Two modules are going to be added to a Syntactic Search Engine: Semantic Query Analyzer and Semantic
Ranker.

Figure 3: The Ontology-based Arabic Search Engine Architecture

As shown in Figure 3, the ontology-based Arabic search engine consists of an Arabic Ontology module, a semantic query
analyzer module, a semantic ranker and a syntactic search engine. To develop the architecture shown in figure 3, there are
four main objectives should be achieved: Building an Arabic Ontology using limited vocabulary; Developing a Semantic
Query Analyzer module, Developing a Semantic Ranker, and Interfacing with the existed Syntactical Search Engine. A brief
description of these objectives is given as follows:

1. Building an Arabic Ontology
There are two approaches to build ontology: top-down and bottom-up [18]. In the top-down approach, the top of the
hierarchy will be considered first (e.g. entity). The second level will be considered next (abstract entity or concrete
entity), and so on. On the other hand, in the bottom-up approach, concepts are grouped and analyzed. The attributes

Search Results

Syntactical

Search Engine

Semantic Search Engine

Semantic Query Analyzer

Input Query

Arabic
Ontology

Semantic Ranker

 4

Interactive Semantic Query
Analyzer

Syntactical Search Engine
 (Google)

Computer
Specific

Ontology

Search

Search
Query

Interacively bulit semanic query

End User

(properties) of these concepts are specified. The common attributes of group of concepts are assigned to a higher level
concept. The group concepts will be considered as children for this higher concept. Constructing ontology for the
whole Arabic Language is a very difficult task. In this paper, we consider a subset of the Arabic language. This subset
might be domain specific or limited vocabulary. The limited vocabulary is considered in this work. The limited
vocabulary is then used to build an Arabic semantic search engine.

2. Developing the Semantic Query Analyzer
Given the user query, a semantic query analyzer accesses the Arabic ontology to find the related concepts
(semantically related words). These concepts are sent to the syntactic search engine to find the related documents in
its indexed database.

3. Developing the Semantic Ranker
In syntactic search engines, search results areranked before delivered to the query generator (the user). Usually the
“relevant” documents generated by the search query are numerous (could be in hundreds of thousands or even more).
Displaying these documents to the user at one time and with no intervention or prioritization could yield the search
useless. Users are usually interested in the first 10 documents or so and will not bother looking at the remaining ones.
It is therefore of importance to present the search result to the user in the most effective way by showing the most
relevant documents first. This is known as “page ranking”.
While in syntactic search engines the page rank is calculated using the “term frequency”, this same technique is not
appropriate for semantic search engines since the produced documents could have many incidences of the concept
without having the same term as in the search query. For semantic search engines, possible words of the same concept
will have to be generated with the help of the Ontology. The result will be used by the semantic ranking module to
perform the ranking.

4. Interfacing with Syntactical Search Engine
To utilize the existing syntactical search engine, a set of application interfaces should be defined and developed.
These interfaces are used to loosely couple the semantic ranker module and the semantic query analyzer module with
the syntactical Search Engine.

4. ARABIC SEMANTIC SEARCH EXAMPLES IN COMPUTER DOMAIN
To validate the proposed Arabic semantic search engine architecture, set of simple examples in computer domain have been
experimented. The developed prototype helps the end user to compose the search query semantically, where it includes a
module called "Interactive Semantic Query Analyzer". This module interacts with the end user by recommending him with
extra semantic search criteria by accessing specific-domain ontology (a very simple ontology in the Computer domain). Also,
the developed prototype exploits the Google search engine by accessing it using the Google APIs. Figure 4 shows the
prototype architecture that includes three components: Interactive Semantic Query Analyzer, Computer Specific Ontology, and
the Google search engine. Interactive Semantic Query Analyzer has two main roles: interacting with the end user to build
search query based on the ontology semantics, and interfacing with the Google by sending the composed search query. After
that, the search results are retrieved and appeared to the user by Google. Three test cases have been experimented.

Figure 4: Experimental Prototype Architecture

 5

A. ONTOLOGY OVERVIEW
Figure 5 shows the computer specific domain ontology used in the developed prototype. This ontology contains set of concepts
like "العتاد" , "الحاسب" , etc. Also it contains three types of relations: -

1. Inheritance relations: Both the "أقراص ممغنطة" concept and the "أقراص ضوئیة" concept inherit the "العتاد" concept.
Also, the "إنشاء الوثائق" concept, the "حل المسائل الرقمیة" concept, and the "تخزین واسترجاع المعلومات" concept inherit the
 .concept "مجال"

2. Association relations: The "یطبق فى" relation relates both the "الحاسب" concept and the "مجال" concept. Also, The "یتبع"
relation relates both the "الحاسب" concept and both the "برامج" concept and the "العتاد" concept.

3. Synonym relations: Both "الحاسب" concept and "الكمبیوتر" concept are synonyms. Also, Both "برامج" concept and
 .concept are synonyms "تطبیقات"

Figure 5: Computer domain specific ontology

B. Test Cases
The following are two examples that have been experminted using the system prototype shown in figure 4, and the computer
domain ontology shown in figure 5. The following two cases are illustrated in terms of a brief description of each case
including its interactive search scenario, both syntactic search (using Google only) and the semantic search results, and finally
a brief comparison between both results.

1) Case 1: Inheritance relation search
Let’s assume that the user would like to perform a query such as " أقراص ضوئیة حاسب آلي ", the Interactive Semantic Query
Analyzer module suggests that it is better to search also with " أقراص ممغنطة ", where both " أقراص ضوئیة حاسب آلي " and " أقراص
" concepts are sub-types of another concept called "ممغنطة عتاد ". Figure 6 shows the semantic search results of case 1 (560
pages), where figure 7 shows the syntactic search results (12900 pages). As noted, the number of semanitc search results is
very small if it is compared with the number of syntactic search results (it is 4.3% of the traditional search results).

Figure 6: The semantic search results of case 1

 6

Figure 7: The syntactic search results of case 1

2) Case 2: Association relation search
In this case, let’s assume that the user would like to perform a query such as " تطبیقات الحاسوب ", the Interactive Semantic Query
Analyzer module suggests that you can also search with associated concepts with " تطبیقات الحاسوب ", which are " حل المسائل

" إنشاء الوثائق والصور" "تخزین واسترجاع المعلومات" "الرقمیة . Figure 8 shows the semanitc search results of case 1 (64200 pages),
where figure 9 shows the syntactic search results (62900 pages). As noted, both number of semanitc search results and
syntactic search results are approximatly similar, but the semantic search results include more specfic and user-accepted query
keywords.

Figure 8: The semantic search results of case 2

Figure 9: The syntactic search results of case 2

 7

5. CONCLUSION
The majority of the currently available search engines are keyword-based. While these engines are relatively easy to use, their
search results in some cases could be inaccurate and sometimes misleading. Semantic search engines present a more viable and
less ambiguous alternative to the keyword-based search engines. Several works are found in the literature that proposes
semantic search engines based on ontology. In those works the supported ontologies and therefore search engines are for the
English language. In this paper we have proposed a semantic search engine for the Arabic language. This engine is based on an
Arabic ontology. We have adopted the limited vocabulary Arabic ontology approach. We have shown an overall architecture
for the proposed Arabic semantic search engine. This architecture consists of three main modules: the semantic query analyzer
and the semantic page ranker modules. The third module is the regular keyword-based search engine.We have demonstrated
the effectiveness of this architecture with two examples. Both examples are based on the computer domain. We have also
compared the results from our semantic search engine with that of a syntactic search engine (Google). Our results showed that
the number of pages using semantic query are far less than that of a syntactic search. This helps a great deal with more accurate
search results and to reduce any search ambiguity.

References

[1] http://news.netcraft.com/archives/2009/01/16/january_2009_web_server_survey.html
[2] R. Guha, R. McCool, and E. Miller, “Semantic search,” in Proc. of the 12th international conference on World Wide

Web, New Orleans, 2003, pp. 700–709.
[3] WWei, P M Barnaghi and A Bargiela, “The Anatomy and Design of A Semantic Search Engine”, Tech. rep., School

of Computer Science, University of Nottingham Malaysia Campus, 2007.
[4] http://www.pandia.com/sew/1262-top-5-semantic-search-engines.html
[5] http://www.hakia.com/
[6] http://www.sensebot.net/
[7] http://www.cognition.com/
[8] Marek Obitko (advisor Vladimir Marik): Translations between Ontologies in Multi-Agent Systems, Ph.D.

dissertation, Faculty of Electrical Engineering, Czech Technical University in Prague, 2007.
[9] John Bateman & Till Mossakowski, “Ontologies for spatial reasoning, action and interaction”, University of Bremen,

NIST Discussion. March 2006.
[10] Amaro, R., R. P. Chaves, P. Marrafa, and S. Mendes ``Enriching Wordnets with new Relations and with Event and

Argument Structures" In: Seventh International Conference on Intelligent Text Processing and Computational
Linguistics , pp. 28 - 40, Mexico City, Lecture Notes in Computer Science, Springer-Verlag. 2006.

[11] Chow, I.C and Webster, J.J. Integration of Linguistic Resources for Verb Classification: FrameNet Frame, WordNet
Verb and SUMO. Alexander Gelbukh (Ed.) LNCS 4394/2007 pp.1-11. Computational Linguistics and Intelligent Text
(CICLing'07), Mexico City, Mexico. 2007.

[12] Stephen L. Reed and Douglas B. Lenat, “Mapping Ontologies into Cyc”, American Association for Artificial
Intelligence, 2002.

[13] Black, W., Elkateb, S., Rodriguez, H, Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C., “Introducing the Arabic
WordNet Project”, in Proceedings of the Third International WordNet Conference, Sojka, Choi, Fellbaum and Vossen
eds. 2006.

[14] Black, W., Elkateb, S., Rodriguez, H., Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C., Introducing the Arabic
WordNet project, Proceedings of the 3rd Global Wordnet Conference, Jeju Island, Korea,South Jeju, January 22-26,
2006.

[15] K. S. Esmaili, H. Abolhassani, “A Categorization Scheme for Semantic Web Search Engines” Proceeding AICCSA
'06 Proceedings of the IEEE International Conference on Computer Systems and Applications, 2006

[16] OntoSelect Library http://olp.dfki.de/ontoselect.
[17] Al-Khalifa, H., Al-Wabil, A. (2007). The Arabic Language and the Semantic Web: Challenges and Opportunities.

International Symposium on Computers and the Arabic Language. November 2007, Riyadh, Saudi Arabia.
[18] Gruber, T. R., "Toward Principles for the Design of Ontologies Used for Knowledge Sharing". In: International

Journal Human-Computer Studies, 43(5-6):907-928, 1995.

Automatic Speech Segmentation Using Genetic Algorithm

Based on Best Tree Encoding

Amr M. Gody*

*Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum EGYPT

amg00@fayoum.edu.eg

Abstract Best Tree Encoding BTE features vector which was derived in a previous paper [1] is used to find phoneme boundaries along

speech utterance. No training process is needed. Disturbance function is calculated for the given speech signal. Genetic algorithm is

utilized to optimize the disturbance function for highlighting the phoneme boundaries. The given procedure indicates very promising

results for speech recognition. It can trace the very hard transitions in phoneme stream along speech utterance. We can define the wrong

markers as those exist in the result without a reference or those exist in the reference and do not exist in the result. Excluding the wrong

markers, this procedure gives less than 10% drift in markers off the reference markers.

1. INTRODUCTION

Speech signal is a stream of information. The basic information unit is called phoneme. It is believed that human speech is

decomposed of small time durable unites called phonemes. Each phoneme contributes in specific piece of information. We can

make analogy between spoken and written langue in such that phoneme is the basic unit in the spoken langue as the character is

the basic unit in written langue. Information in each phoneme is encoded into the frequency domain. Simply the information is a

pattern of frequency components [1]. Features are extracted from the speech signal to best represent such information. The

good feature is ranked as of how far is it discriminating such information stream in speech signal.

Presently, manual annotation by expert phoneticians is the most precise way for time-aligning a speech waveform against the

corresponding phonetic sequence. This is a tedious and time consuming task, which makes it a prohibitive choice for large

speech corpora. Several approaches have been proposed for the task of speech segmentation [3-7]. The most frequently used

approach is based on HMM phone models. In this method each speech waveform is initially decomposed into a sequence of

feature vectors, using a speech parameterization technique. Afterwards, a set of HMM phone models (phone recognizer) is

utilized to extract the corresponding phonetic sequence as well as the positions of the phonetic boundaries. Other speech

segmentation methods have also been proposed in the literature. Some of them include detection of variations/similarities in

spectral or prosodic parameters of speech, template matching using dynamic programming and/or synthetic speech and

discriminative learning segmentation. Phone transitions (boundaries) may be classified into many types. It may be called phone

transition type to refer to the transition between the left context phonetic class of a boundary to the right context class. The class

may be classified as vowels, affricates, fricatives, nasals, glides, stops and silence.

Various speech parameterizations have been utilized in the phonetic segmentation task, with the Mel Frequency Cepstral

Coefficients (MFCC) among the most widely used, especially in the HMM-based approach. Other speech features such as

Perceptual Linear Prediction (PLP), Line Spectral Frequencies (LSF), Linear Predictive Coding (LPC), short-time energy,

formants and wavelet-based have also been used.

In this research a new proposed speech parameter called Best Tree Encoding (BTE) is utilized for this task. BTE is first

introduced in [1] and [2] as a new speech parameters. An approach that is much close to dynamic programming is utilized to

solve this problem. The genetic algorithm is used to minimize the disturbance measure function for finding phone transitions.

Considering that speech signal is stationary along the duration of phoneme utterance is the key point to find the boundaries. As

it is supposed that speech is stationary along the phoneme duration, this is implies that minimum disturbance occurs in the

extracted features along the phoneme utterance duration. Suitable function is designed to model the disturbance. Genetic

algorithm is used to optimize the function parameters on a given signal under test. Speech database is prepared to measure the

quality of this experiment. Speech database is labeled and transcribed then verified to evaluate the results of automatic

segmentation. The following sections will navigate through the details of this research. Section 2 illustrates the problem

definition. BTE speech feature is described in section 3. The disturbance measure function will be discussed in section 4. The

derivation of the function will be clarified. In section 5, the Genetic algorithm will be illustrated to show how it is used to get

phone transitions locations by minimizing the disturbance function. The results will be presented in section 6. Some examples

that give the obtained phone locations and baseline speech signal marker locations will be introduced in this section. The

conclusion will be given in section 7.

2. PROBLEM DEFINITION

Accuracy in automatic Speech Segmentation is targeted in this research. Phoneme is the basic speech unit; it is supposed that

there is some sort of homogeneity in a single phoneme. Figure 1 focuses on a segment of Arabic utterance that contains a

transition between two phones. As shown in figure the properties in the frequency domain, the lower part of the figure, are

almost homogeneous along each phone’s duration. There is a transition region in which the properties are changing in time.

Figure 1 Speech signal at the top and the associated Spectrogram at the bottom. This is a speech signal of an Arabic utterance transcribed in Arabic letters as
“ سُسُِ الَأعِلأمِيَّه لِلأبحَأ Spectrogram illustrates how phone transitions appear in frequency domain (the Y axes in the bottom figure) .” الَأعِلأمِيثِ مَاَ الَْأ

It is required to find a model for describing phoneme homogeneity property in speech signal as illustrated in figure 1. It is also

needed to find a disturbance measure of the model parameters. It is supposed that the disturbance will be a maximum at the

phone boundaries.

The model should reflect the frequency domain homogeneity that is shown in the lower part of figure 1. Best Tree Encoding

(BTE) [1] is chosen as a map for speech signal in the frequency domain. Section 3 will give a summary of BTE model and its

suitability for this point of research. Disturbance measure model will be designed in the BTE domain. Suitable Genetic based

model will be configured to catch the poles of the disturbance function. Poles of the model are points in time at which the model

indicates peaks in disturbance. It is supposed that the poles happened at the time boundaries of phonemes.

3. BEST TREE ENCODING

BTE is a simple on/off entropy mapping of the signal into the bands in which the signal is decomposed using wavelet packets.

The key property in BTE is the alignment of the neighboring frequency domain bands in wavelet packets decomposition of the

signal. Adjacent bands are much closer in distance than the non adjacent bands.

Part a: Before BTE

Part b: After BTE

Figure 2: BTE bands are aligned such as to make adjacent wavelet bands are closer in distance than non adjacent bands.

Figure 2-a illustrates how bands are sorted according to Matlab wavelet packets function. Figure2-b indicates how bands are

encoded in BTE. Bands are rearranged for calculating the BTE of the frame. The tree is Encoded into a single number that held

information of tree structure {leaves} and weight according to figure 2-b.

Figure 3: BTE for certain wavelet packets Best tree structure

 The indicated tree structure in figure 3 will be encoded into features vector of 3 elements as shown in table 1.

TABLE 1

 BEST TREE 4 POINT ENCODING EVALUATION.

Element Binary Value Decimal value Frequency Band

V1 0001100 12 0 - 25 %

V2 1000000 64 25% - 50%

V3 0000000 0 50%-75%

V4 0000100 4 75%- 100%

Features BTE vector  for this example of speech frame will be



















=

4

0

64

12



4. DISTURBANCE MEASURE

BTE is implemented to map phoneme properties in the frequency domain. As discussed earlier, the properties should be

homogeneous during the phoneme duration. This is the criterion that is intended to be measured in BTE domain. Figure 4-c

illustrates the continuous changing in Best tree structure along speech utterance. BTE is an encoding for Best Tree structure.

The variation in the Best Tree Structure is measurable through BTE variations along speech utterance. In this section, a suitable

measure will be designed to model BTE variations.

Figure 4: A) Time waveform of speech signal, b) Spectrogram of speech signal, c) Sketch of BTE encoding and associated disturbance.

Equation 1 is the template of the proposed disturbance measure function. It is required to find the suitable weights to get the

optimal phoneme boundaries.

 ()
=

−−=
4

1

2

1)(
i

i

n

i

ni xxwnf (1)

where

)(nf : Disturbance at frame number n .

 iw : Band weight of band number i .

i

nx : BTE vector’s component number i at frame number n .

i

nx 1−
 : Depth of wavelet packets decomposition analysis.

As being illustrated earlier through the derivation of BTE vector, each vector’s component in BTE is reflecting part of the

Bandwidth of the signal. Speech signal is a stream of information encoded into signal frequency; this makes it logical that BTE

vector’s components should be weighted, as information is not equally distributed along the bandwidth.

Genetic algorithm is utilized to solve this optimization problem. The cost function is given by eqn.1. Given suitable number of

labeled speech streams, it is possible to obtain the best set of weights for this optimization problem.

Below is the Matlab function " dist " of calculating the disturbance function for a given weight vector. This function is intended

to be optimized using genetic process to find the minimum disturbance on a given training data. The output of the genetic

process is the weight vector that gives the minimum disturbance.

%%[y] = dist(A,W)

%% A : Columns based BTE vectors. It is 4 x L. 4 is the order of BTE vector. L is the %% length

in frames of the given Data.

%% W : Weights array. It is 1 X 4 vector.

%% Y : This is the output disturbance function. It is 1 X L vector. The first element %% is

calculated as the average value of the first 10% elements in the Y vector. This is to

%% avoid the discontinuities at the beginning of the array.

%% Amr M. Gody

function [y] = dist (A,W)

nbIn = nargin;

if nbIn < 1 , error('Not enough input arguments.');

 elseif nbIn == 1, W = ones (size(A,1),1);

end;

W = Tocolumn(W);

L = size(A,2);

y = zeros (1,L);

for k=2:L

 try

 v2 = single(A(:,k));

 v1 = single(A(:,k-1));

 y(k) = sqrt(sum(W .* (v2 - v1).^2));

 catch

 m = int32(0.1 * L);

 y(k) = mean(y(2:m+1));

 end

end

m = int32(0.1 * L);

y(1) = mean(y(2:m+1));

end

5. PHONE LOCATIONS USING GENETIC ALGORITHM

In this section the genetic algorithm model for solving phone locations will be illustrated. Genetic algorithm is used to

maximize of minimize certain cost function. The cost function should be parameterized in some parameters that are required to

be minimizing or maximizing the cost function. Those parameters should be related to the intended target.

Recalling EQU. 1, disturbance is a function of the parameters array w. Recalling the following points

1- Phone segment is a homogenous part of speech utterance.

2- Phoneme Identification Information is not normally distributed over the bandwidth. Each phone has a different pattern

of identification information that best identifying the phone.

3- BTE is a 4 elements vector. Each element reflects a 25% of the bandwidth of the signal.

Considering the above three points we can conclude the following

1- It is expected that disturbance is a minimum or ideally zero during the single segment.

2- Transition from phoneme to another phoneme may not necessary require equally changing value in all BTE vector’s

elements.

According to our intended target which is finding the locations of phoneme transitions, this may be obtained if we got the

optimal w vector that minimizes the disturbance function. It is assumed that if the signal is a single phone, this should be zero

disturbances. The following assumptions are considered

 1
4

1

=
=i

iw (2)

 41;01.0  iiwi (3)

Eqn. 2 and 3 are needed to exclude the forbidden solution of w = [0 0 0 0] from the set of possible solutions that may be

obtained by genetic Algorithm. Eqn. 2 hold a meaning that the weight of BTE vectors are sum to one which means that it is

considered that the information is 100% unit distributed over 4 parts.

Now it is needed to design a fitness function to evaluate the fitness of each solution during the optimization process of genetic

algorithm. Each solution is a chromosome. In our case it is the w vector. The following function is supposed to be the fitness of

the chromosome.

N

nf
n


=

)(

 (4)

)(nf is the disturbance function which is given in eqn.1.  will give the mean of the disturbance. The best chromosome is

that one gives the best mean of the disturbance function for a given BTE vectors.

One can ask , what is the benefit of establishing the w vector and why we do not make the disturbance without applying the

weight vector w. The answer is to exclude the non informative parts of BTE vector from the calculations of the transitions. The

non informative parts will impose a noise that is not needed for the process. The information is not normally distributed as

indicated before. Also one cannot assume certain parts to contain the information. It is complex to be determined. So be using

such heuristic technique like genetic, the problem may partially solved. The transitions between phones are estimated.

Here is below, the Matlab function "fitv" for calculating the fitness of the Genetic population.

function [val] = fitv(x)

 global buff; %This is a global buffer to store the array of bte vectors

 val = mean(dist (buff,x));

end

Below is the script of command line to call the genetic algorithm for optimizing the disturbance function.
% Evaluating the best weights for moving distance

 Ae = [1 1 1 1];

 Be = [1];

 w = ga(@fitv,4,Ae,Be,[],[],[0.01;0.01;0.01;0.01],[]);

Array Ae and Be are the constraint arrays. This will make "ga" to find solutions that satisfy the given constraints

 ee BwA = (5)

Egn. 5 is used to pass the constraint given by eqn.2 to the built in Matlab function GA, which is used to run the genetic

algorithm on the fitness function. The other constraint given by eqn.3 is directly passed to GA using the array [0.01; 0.01; 0.01;

0.01]. The empty square brackets are to pass default values arrays for the GA function. They are not used here in this research.

6. RESULTS

The results of this research will be illustrated through examples. The following Matlab script is used to apply the procedure.

Figure 5 gives a snapshot of the process. Y axis is used as a reference for defining the graph in the composite drawing. The

legend is given by:

Draw with y axis value less than 0.5 → Speech waveform signal.

Draw with y axis value around 0.5 → Disturbance function.

Draw with y axis value = 1.0 → Obtained phoneme markers.

Draw with y axis value = 2.0 → Reference phoneme markers and annotations.

Figure 5 Composite draw of speech signal, disturbance function, Obtained phoneme boundaries, Reference phoneme boundaries and phoneme annotations
respectively according to the y axis reference value.

As shown in figure; the obtained markers are very close to the reference markers. Local peaks are detected. Peaks detection

process is applied on the disturbance curve to put phone markers. This task is very open to find the best peaks that best match

with the reference markers. It is chosen here in this research that peaks should satisfy the local maximum condition of 20(ms)

clearance area around the local peak. Clearance area is defined as area with no peaks. This can be modeled mathematically as

the following equation

 
)(40__

)(_
msinGroupedindex nfMaxLocal= (6)

)(nf is the disturbance function. If it is grouped in 40(ms) subgroups, it will make
2

N
 sub groups (N is the number of

frames). In our case, frame length is 20(ms), this leads to groups of 2 elements will be considered to calculate the local peaks.

This will discard the situation of two successive peaks are encountered. This is in other word indicates that the case of two

major changes happened within 40(ms) will be discarded.

The error is calculated by applying the cross correlation process on the obtained markers (signal x) and the reference markers

(signal y). In case of full coincidence of the locations of the two signals, this will make a maximum correlation at 0= in

eqn.7. This makes  gives an indication of how much is the mismatching maximum locations of the two signals.




−=

−=


)()()(tyx (7)

Below is the Matlab function to calculate the error figure.

function err = GetErr(refv,v)

 x = xcorr(refv,v);

 u = find(x == max(x));

 refx = max(size(refv));

 err = abs(refx-u)/refx;

end

Applying the error figure estimation function on the available training data gives an average of ±8% drift off the reference

locations. This error estimation does not include the effect of wrong markers. Wrong markers are defined as those markers

exist in the result but don’t exist in the reference or vice verses.

More examples are illustrated in Figure 6 to give more clarification of the peak peaking process and the locations of the

obtained markers and the reference markers.

Below is the script of the Matlab function that implements the overall process of finding phoneme locations based on BTE. The

function takes one parameter which is the file name of the speech signal. It expects to find HTK1 format file of the annotations

for the given file in the same folder. Below is a part of an HTK formatted file for labeling certain utterance.

308400 1550000 Sa

1550000 2693900 i

2693900 4298200 f

4298200 5909500 r

The first column indicates the beginning of the segment and the second column indicates the end of the segment. Numbers are

in term of 100(ns). For example 308400 means segment (Sa) will start at)0.0308(sec10100308400 9 = −
 .

The Matlab function "findphonelocations" reads the given speech signal in WAV2 format. As mentioned earlier that the

function expects to find an associated annotation file in the same folder with exact name as the given file but with file extension

is ".LAB". The function uses a global buffer to pass the BTE vectors of the given file to the genetic algorithm fitness function.

The global buffer is named "buff "

function [x] = findphonelocations(file)

 global buff;

 try

 [data fs] = wavread(file);

% Encoding frames into BTE3

 y = framing(data,20e-3*fs,0,0);

 a = bte3(y);

 buff = single (a);

% Read the associated Label file in HTK format

 labfile = strrep(file, 'wav', 'lab');

 [A l] = importhtkfile(labfile);

 reft = [A(:,1);A(size(A,1),2)] .* fs;

 refM = ones(size(A,1)+1,1) .* 2;

% Estmating the best weights for moving distance using genetic algorithm

 Ae = [1 1 1 1];

1 HTK : Hidden Markov Model Toolkit http://htk.eng.cam.ac.uk/.
2 WAV: Standard format for storing Audio signal. It is simple Pulse Coded Modulation samples. In this research speech signals

are sampled at 32(KHz). Samples size = 16 (bits).

 Be = [1];

 w = ga(@fitv,4,Ae,Be,[],[],[0.01;0.01;0.01;0.01],[]);

% Evaluating the disturbance function for a given signal using the estimated weights.

 df = dist(buff,w);

%Find peaks in moving local durations of 20 (ms)

 [x p] = findpeaks (df,'minpeakdistance',2);%,'minpeakdistance',2);

 xpr = x ./ size(df,2);

 x = xpr .* size(y,1);

% Get Error Estimate

 scale = max(size(data))/max(size(reft));

 RefV = resize (reft, scale);

 scale = max(size(data))/max(size(x));

 TestV = resize(x,scale);

 err = GetErr(RefV,TestV);

%Draw the results

 y1 = p > 1;

 hold on;

 y = normalize(data);

 plot(y);

 xlabel ('Time (Samples)');

 stem(x,y1);

 stem(reft,refM);

 dx = 0.01 * max(x);

 dy = 0.01 * max(refM);

 for k =1: max(size(l))

 text(reft(k)+ dx,refM(k)-5 * dy,l(k),'FontSize',14);

 end

 y2 = normalize (resample(df,max(size(data)),max(size(df))));

 t = 1:max(size(y2));

 plot(t,y2./max(y2),'r');

 hold off;

 catch exception

 display(exception.identifier);

 end

end

Here is below the Matlab function "resize", which is used to resize the vectors without changing the relative indices of the data.

This function is very important to unify the size of the data vectors before applying the error function.

%%y = resize(x,scale)

% Resize array x using the given scale. All elemثnts are mapped as of the

% percentage distance of thier index in the given array.

% x : The array to be processed.

% scale : Index scale. If scale > 1, then the output array will be sized as

% (the original array size - 1) * scale

% y : The output array.

% Amr M. Gody

function y = resize(x,scale)

oldsize = max(size(x));

newsize = (max(size(x))-1) * scale;

z = zeros(newsize,1);

for u = 1:oldsize

 d = int32(1 + (u-1) * scale);

 z(d) = x(u);

end

y = z;

end

Here is below the Matlab function for framing the speech signal

% data : Samples of Speech signal stored into a column array

% n : Required Frame size in samples

% p : Required Frames overlap in samples

% f : This is the output Frames array. The frames are stored into the columns.

% window : Default =0

% 0 : none

% 1 : Hamming

function [f] = framing(data,n,p,window)

 nbIn = nargin;

 if nbIn < 3 , error('Not enough input arguments.');

 elseif nbIn==3 , window = 0;

 end

 data = ToColumn(data);

i =size(data);

 maxindex = i(1);

 s=1;

 e=n;

 if window == 0 , f=data(s:e);

 elseif window ==1 , f=data(s:e).*hamming(n);

 end

 while i(1)>0;

 s=s+n-p;

 e=s+n-1;

 i(1)=i(1)-n+p;

 if(e<maxindex)

 if window == 0 , f = [f data(s:e)];

 elseif window ==1 , f = [f data(s:e).*hamming(n)];

 end

 end

 end

end

Sample a

 Sample b

Sample c

Figure 6 BTE phoneme boundaries for two speech signals. Y axe is used to reference the signals in the composite graph. The signal at level 2 is the baseline

markers signal obtained manually for phoneme boundaries. Annotation is available at the same level y=2. The obtained results are at Y = 1. It is highlighted by

the small circles on the top of the marker lines. The disturbance measure function is fluctuating about Y = 0.5. Speech signal is fluctuating about Y = 0.0.

7. CONCLUSIONS

BTE is very promising in tracing non stationary property variations along speech duration. It is utilized here to find phoneme

boundaries. It indicates promising results. Tracing a very hard to detect phoneme is obtained in reasonable accuracy. To avoid

wrong markers, peak detection algorithm of disturbance function may be modified to catch the proper peaks. But for the

detected peaks there are less than 10% drift of the manually estimated phone boundaries.

8. REFERENCES

[1] Amr M. Gody,"Wavelet Packets Best Tree 4-Points Encoded (BTE) Features ", the 8th Conference on Language

Engineering, PP. 189-198, 2008, Cairo, Egypt.

[2] Amr M. Gody," Voiced/Unvoiced and Silent Classification Using HMM Classifier based on Wavelet Packets BTE features

", the 8th Conference on Language Engineering, PP. 199-213, 2008, Cairo, Egypt.

[3] Iosif Mporas, Todor Ganchev, Nikos Fakotakis, "Phonetic segmentation using multiple speech features", International

Journal of Speech Technology, Springer Netherlands, Volume 11, Number 2 / June 2008, PP. 73-85

[4] Kris Demuynck, Tom Laureys, "A Comparison of Different Approaches to Automatic Speech Segmentation", Lecture

Notes in Computer Science, Springer Berlin / Heidelberg, Volume 2448/2006, ISBN 978-3-540-44129-8, PP. 385-406

[5] Z. M. šarić, S. R. Turajlić, "A new approach to speech segmentation based on the maximum likelihood", Journal of Circuits,

Systems, and Signal Processing, Birkhäuser Boston, Volume 14, Number 5 / September 1995, PP. 615-632

[6] Chin-Teng, Der-Jenq, Rui-Cheng, Gin-Der, "Noisy Speech Segmentation/Enhancement with Multiband Analysis and

Neural Fuzzy Networks", Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume 2275/2002, ISBN 978-3-

540-43150-3, PP. 81-94.

[7] Yanxiang Chen, Qiong Wang, "A Speaker Based Unsupervised Speech Segmentation Algorithm Used in Conversational

Speech", Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume 4798/2007, ISBN 978-3-540-76718-3, PP.

396-402.

 1

Abstract—A Printed-Arabic Large Text Corpus (P-ALTEC) is proposed and developed by the Arabic

Language Technology Center (ALTEC) [1]. The corpus is a large database that is intended for advanced

research and prototype product development of optical character recognition (OCR) Arabic printed text.

The database is designed to cover all important fonts used in Arabic printed documents (Windows and

MAC), with plain and bold modes for each font, as well as a coverage of 7 sizes from 10 to 22. The database

also has each document in clean, copied, mobile camera and digital camera-captured and typewriter forms

to cover different practical qualities and acquisition states. The Arabic words come from a corpus that is a

cleaned part of the Arabic Gigaword, with a lexicon of more than 500,000 unique words. An algorithm was

developed to produce unique lists of words such that they cover all possible character and ligature shapes

for all used fonts, at least 10 times in the clean data for each unique list. With 85 unique lists used, the

database contains approximately 100,000 unique words, 11,000 pages, and 300 different character and

ligature shapes. Character level segmentation is available for about 10% of the documents, with full word-

based annotation and segmentation for the whole data. (P-ALTEC) should be available to the research

community by March 2011.

Index Terms— Arabic OCR, Arabic printed text, ALTEC, P-ALTEC

I. INTRODUCTION

Arabic characters are used in writing by nearly a billion people worldwide. Hence, huge amount of printed Arabic

documents are available without digital source. These documents may be governmental, historical, educational, and

artistic such as books and magazines. Optical Character Recognition (OCR) is a technology that allows transforming

such documents into digital forms for archiving, retrieval, and editing. OCR has matured quite well in European

languages such as English and French [2-4], where the performance of available products is highly accurate and robust.

Arabic OCR products, on the other hand, still suffer from an obvious gap in performance with their Latin counterparts.

In particular, in cases where the documents that are being processed are of low quality due to the aging of the source

(books, magazines, historical documents), or the acquisition method (copier, mobile camera, Fax, etc.). Furthermore,

Arabic characters have many different shapes that are font dependent both in single characters and in ligatures. Added

Printed-Arabic Large TExt Corpus for OCR

Research (P-ALTEC)
Waleed Fakhr*1, Mohsen Moftah*2, Mohsen Rashwan**3, Mohamed ElMahallawy*4

* College of Computing, Arab Academy for Science and Technology

Ahmed Ismail street, Heliopolis, Cairo, Egypt
1waleedf@aast.edu

2mohsen.moftah@barmagyat.com

4mahallawy@aast.edu

* Communications Department, College of Engineering, Cairo University

Giza, Cairo, Egypt
3mohsen_rashwan@rdi-eg.com

mailto:2waleedf@aast.edu

 2

with the large number of fonts that are used in the documents (current and historical), this gives the Arabic OCR its

special challenges and difficulties.

Since all OCR products depend on machine learning concepts, and since all machine learning algorithms require

training data, then, a training database is always a very important component in producing any OCR product or research

prototype. Designing a training database is always a difficult task, in particular, when the aim is to make products. In

that sense, the OCR research team in ALTEC [1] spent a large amount of time and efforts trying to come up with an

Arabic printed text database that is diverse enough to cover almost all different alternations of the Arabic characters and

ligatures, over most frequent qualities encountered in practice. The database aimed covers approximately 300 different

character and ligature shapes over 15 different Arabic fonts for Windows and MAC systems. The documents are

available in clean form (print and scan), as well as copied form (copy from clean then scan), and digital and mobile

camera forms. Also, a large number of books and theses covering a large time span are included in scanned forms using

book digitizer technology. All the documents are transcribed down to the word level. As well, 10% of the documents

(distributed over the whole document population) have character-ligature level segmentation and annotation. The

database will be available to the research and industry by the end of March 2011, and will include approximately 11,000

pages, with more than 100,000 unique words and 15 different fonts, with 7 sizes between 10 and 22.

II. ARABIC OCR TECHNOLOGY

Since the mid-1940s researchers have carried out extensive work and published many papers on character recognition.

Most of the published work on OCR has been on Latin characters, with work on Japanese and Chinese characters

emerging in the mid-1960s. Although almost a billion of people worldwide, in several different languages, use Arabic

characters for writing (alongside Arabic, Persian and Urdu are the most noted examples), Arabic character recognition

has not been researched as thoroughly as Latin, Japanese, or Chinese and it has almost only started in the 1970’s. This

may be attributed to the following:

(i) The lack of adequate support in terms of journals, books, conferences, and funding, and the lack of

interaction between researchers in this field.

(ii) The lack of general supporting utilities like Arabic text databases, dictionaries, programming tools, and

supporting staff.

(iii) The late start of Arabic text recognition.

(iv) The special challenges in the characteristics of the Arabic script as stated in the following section. These

characteristics results in the fact that the techniques developed for other writings cannot be successfully

applied to the Arabic writing: Different fonts, etc;

In order to be competent with the human capability at the digitization of printed text, font-written OCR’s should achieve

an omni-font performance at an average WER≤3% and an average speed ≥ 60 words/min. per processing thread. While

 3

font-written OCR systems working on Latin script can claim approaching such measures under favorable conditions, the

best systems working on other scripts, especially cursive scripts like Arabic, are still well behind due to a multitude of

complexities [windows magazine 2007]. For example, the best reported ones among the few Arabic omni font-written

OCR systems can claim assimilation WER’s 3%and 10% generalization WER's under favorable conditions (good laser

printed windows and Mac fonts) [5-7].

Arabic OCR challenges

The written form of Arabic language while written from right to left presents many challenges to the OCR developer.

The most challenging features of the Arabic orthography are [5-8]:

i) The connectivity challenge

Whether handwritten or font written, Arabic text can only be scripted cursively; i.e. graphemes are connected to one

another within the same word with this connection interrupted at few certain characters or at the end of the word. This

necessitates any Arabic OCR system to not only do the traditional grapheme recognition task but do another tougher

grapheme segmentation one (see Figure 1) To make things even harder, both of these tasks are mutually dependent and

must hence be done simultaneously.

Figure (1): Grapheme segmentation process illustrated by manually inserting vertical lines at the appropriate grapheme

connection points.

ii) The dotting challenge

Dotting is extensively used to differentiate characters sharing similar graphemes. According to Figure (2), where some

example sets of dotting differentiated graphemes are shown, it is apparent that the differences between the members of

the same set are small. Whether the dots are eliminated before the recognition process, or recognition features are

extracted from the dotted script, dotting is a significant source of confusion – hence recognition errors – in Arabic font-

written OCR systems especially when run on noisy documents; e.g. those produced by photocopiers.

Figure (2): Example sets of dotting-differentiated graphemes

iii) The multiple grapheme cases challenge

Due to the mandatory connectivity in Arabic orthography; the same grapheme representing the same character can have

multiple variants according to its relative position within the Arabic word segment {Starting, Middle, Ending, Separate}

as exemplified by the 4 variants of the Arabic character “ ع” shown in bold in Figure (3).

 4

Figure (3): Grapheme “ ع” in its 4 positions; Starting, Middle, Ending & Separate

iv) The ligatures challenge

To make things even more complex, certain compounds of characters at certain positions of the Arabic word

segments are represented by single atomic graphemes called ligatures. Ligatures are found in almost all the Arabic fonts,

but their number depends on the involvement of the specific font in use. Traditional Arabic font for example contains

around 220 graphemes, and another common less involved font (with fewer ligatures) like Simplified Arabic contains

around 151 graphemes. Compare this to English where 40 or 50 graphemes are enough. A broader grapheme set means

higher ambiguity for the same recognition methodology, and hence more confusion. Figure (4) illustrates some ligatures

in the famous font “Traditional Arabic”.

Figure (4): Some ligatures in the Traditional Arabic font.

iv) The overlapping challenge

Characters in a word may overlap vertically even without touching as shown in Figure (5).

Figure (5): Some overlapped Characters in Demashq Arabic font.

v) Size variation challenge

Different Arabic graphemes do not have a fixed height or a fixed width. Moreover, neither the different nominal

sizes of the same font scale linearly with their actual line heights, nor the different fonts with the same nominal size

have a fixed line height.

vi) The diacritics challenge

Arabic diacritics are used in practice only when they help in resolving linguistic ambiguity of the text. The

problem of diacritics with font written Arabic OCR is that their direction of flow is vertical while the main

writing direction of the body Arabic text is horizontal from right to left (See Figure (6)). Like dots;

 5

diacritics –when existent– are a source of confusion of font-written OCR systems especially when run on

noisy documents, but due to their relatively larger size they are usually preprocessed.

Figure (6): Arabic text with diacritics.

III. ARABIC OCR STATE OF THE ART

OCR is a highly mature technology for Latin script with excellent performance. The main challenges are in the pre-

processing, page segmentation, speed of batch processing and post-processing. OmniPage-17 by Nuance is an example

of such a product with less than 1% CER [9].

Regarding Arabic OCR products, there are mainly three mature engines from SAKHR, VERUS from NovoDynamics

and ReadIRIS. Sakhr has around 1% CER for good quality documents but may drop significantly with poor quality

documents. It offers high speed, and best output layout [10]. VERUS on the other hand is a little lower than Sakhr for

good quality but significantly better for poor quality documents. It is to be noted that Bibliotheca Alexandrina uses both

engines for its digitization project. Finally, ReadIRIS has the lowest performance of the three [10], however, no

elaborate comparison between the three has been published yet.

Regarding the current research efforts, the focus mainly is on producing true Omni OCR for different font families, font

sizes (specially the large), document pre-processing and framing, noise robustness, and batch-mode speed. Most recent

research to improve the performance employ hidden Markov models (HMMs), and fusion between multiple OCR

systems targeting Omni font performance. Recent competitions focus on document analysis and page segmentation

(ICDAR 2009) [2].

From the above, for the Arabic OCR to narrow the gap in performance with the Latin counterparts, the following is

required:

1- Creation of a standard thorough database that would be available to research and development groups who are

doing serious Arabic OCR systems development.

2- Creation of a standard benchmark database that would be available to the research and development groups with

regular evaluation workshops that include competitions on the benchmark data.

The aim of ALTEC is exactly the above. In that sense, the P-ALTEC database has been developed, where a portion will

be dedicated to benchmarking and a near future competition.

 6

IV. DATABASE DESIGN

1. Introduction

The project aims to generate a corpus or a database of wordlists and images to be used in OCR related development and

research. The produced wordlists should cover every possible occurrence of Arabic letters and ligatures in different

positions within the word. We used a cleaned portion of Arabic Gigaword corpus which contains 500K unique words as

the source from which the required wordlists will be produced. The plan was to produce wordlists for 13 Arabic fonts

namely Simplified Arabic, Arabic Transparent, and Traditional Arabic for Windows and Dahab, Riadh, and Naskh for

MAC, each with Bold and normal, and also the normal Typewriter font. Each unique list is designed to cover every

possible Arabic shape at least 10 times. Finally, we have extended the lists to 85 lists by having a unique list for each of

the 7 font sizes used covering approximately 100,000 unique words.

2. Research Phase

During this phase many approaches were examined to tackle the problem. The first approach was to look at different

letters’ shapes within different context. Since we are looking at letter shapes, it is impossible to use the normal ASCII

Code based character set, because this coding scheme keeps only one code for every letter called the code page, and the

shape shown at display/print time is selected from the font page through a Contextual Analysis process, which

determine which letter shape to display/print according to its position in the word. To handle letter shapes shape by

shape, we had to use UNICODE Coding scheme that gives a unique code for every shape either a single letter or

ligature as shown in Table1. Therefore, the first conclusion was that we have to convert the source wordlist from ASCII

coding to UNICODE coding system. To guarantee that the wordlist covers all letters in all contexts, we decided to work

on tri-graphemes where a tri-grapheme is a group of three letters. A prototype application was development that creates

all possible tri-graphemes, then the program scans the wordlist and counts all occurrences of every tri-graphemes

(determine tri-graphemes coverage); Tri-graphemes with counts greater than zero are considered legal. Running the

prototype on a subset of the source wordlist, we found that working on Tri-graphemes will require a huge wordlist to

select from to satisfy an acceptable coverage. In addition to that, the produced wordlist will be impractically large, so it

was decided to work on bi-graphemes which will cover all possible latter context and produce a wordlist of practical

size. The prototype was run on the source wordlist based on bi-graphemes to produce 3225 legal bi-graphemes out of

15625 possible bi-graphemes. Another program was developed to create output wordlist for the extracted legal bi-

graphemes, the produced wordlist was 25K words for 20 words coverage which is still considered a large number.

Table 1: UNICODE Coding scheme

Hex Code Shape Hex Code Shape Hex Code Shape Hex Code Shape Hex Code Shape

fe80 ء fe99 ث feb2 س fecb ع fee4 م

fe81 آ fe9a ث feb3 س fecc ع fee5 ن

 7

fe82 آ fe9b ث feb4 س fecd غ fee6 ن

fe83 أ fe9c ث feb5 ش fece غ fee7 ن

fe84 أ fe9d ج feb6 ش fecf غ fee8 ن

fe85 ؤ fe9e ج feb7 ش fed0 غ fee9 ه

fe86 ؤ fe9f ج feb8 ش fed1 ف Feea ه

fe87 إ fea0 ج feb9 ص fed2 ف Feeb ه

fe88 إ fea1 ح feba ص fed3 ف Feec ه

fe89 ئ fea2 ح febb ص fed4 ف Feed و

fe8a ئ fea3 ح febc ص fed5 ق Feee و

fe8b ئ fea4 ح febd ض fed6 ق Feef ى

fe8c ئ fea5 خ febe ض fed7 ق fef0 ى

fe8d ا fea6 خ febf ض fed8 ق fef1 ي

fe8e ا fea7 خ fec0 ض fed9 ك fef2 ي

fe8f ب fea8 خ fec1 ط feda ك fef3 ي

fe90 ب fea9 د fec2 ط fedb ك fef4 ي

fe91 ب feaa د fec3 ط fedc ك fef5 لآ

fe92 ب feab ذ fec4 ط fedd ل fef6 لآ

fe93 ة feac ذ fec5 ظ fede ل fef7 لأ

fe94 ة fead ر fec6 ظ fedf ل fef8 لأ

fe95 ت feae ر fec7 ظ fee0 ل fef9 لإ

fe96 ت feaf ز fec8 ظ fee1 م Fefa لإ

fe97 ت feb0 ز fec9 ع fee2 م Fefb لا

fe98 ت feb1 س feca ع fee3 م Fefc لا

After discussion with font and OCR experts, we confirm that letters shapes do not change with context so we decided to

work on uni-graphemes, and that it is enough to have 10 instances of each uni-grapheme i.e. coverage will be 10 words.

Accordingly, the same prototype was run for uni-grapheme producing a significantly small wordlist of about 600 words.

Since wordlists will be produced for different fonts, it was time to introduce ligatures for different fonts. Another

program was developed to count the coverage of some commonly used ligatures, it was found that the coverage is

dramatically bad; therefore, we had to consider the ligatures as part of the Arabic letter list and re-create the wordlist

that satisfies the coverage required. The produced wordlist was about 1200 words.

The last part of the research phase was to examine producing different wordlists for different fonts. After carrying out

statistics on the source wordlist and uni-grapheme and ligatures coverage, it was found that uni-graphemes and ligatures

are not equally covered in the source word list so words for uni-graphemes/ligatures with lower coverage should be

repeated among different lists to guarantee that all uni-graphemes and ligatures are represented in every list.

Accordingly, the following algorithm, illustrated in Figure 7, was used to produce wordlists.

 8

1. In the source wordlist, every word was assigned a rank initially zero.

2. Uni-graphemes/ligature are processed individually. And for every uni-grapheme/ligature based on the coverage

required, words from the source wordlist are selected and sorted by rank on ascending order. The selected

words are then copied to the output list and their ranks in the source wordlist is incremented by one.

3. Step 2 is repeated until all uni-graphemes/ligatures are processed.

Since at every iteration the selected words are sorted by rank in ascending order, it is guaranteed that always less used

words and/or not used words come at the top of the list Figure 7 explains this algorithm.

In this way if the uni-grapheme/ligature has high coverage it will be represented by different words in different lists.

Repetition of words in different lists (overlap) will increase with uni-graphemes/ligatures with lower coverage.

The previous steps were repeated as many times as the required number of lists.

Specify List No

Get No words<=Coverage

containing the

unigrapheme/ligature from

WordList sorted on word

rank in ascending order

Specify required

Coverage

Take top

uniigrapheme/ligature

Copy the selected

words to the output

list

Increment the rank of

the selected words in

source wordlist

Figure (7): Word Selection Algorithm

 9

Finally, the implementation of the above research resulted in developing a number of programs to carry out the required

tasks to achieve the following:

1. Use three Arabic fonts simplified Arabic, Arabic transparent, and Traditional Arabic. In two modes Normal,

and Bold.

2. A different list will be used for different fonts and different mode.

3. Two sets of lists will be produced one for Windows and another for MAC.

4. Another list will be for typewriter font.

3. Development and Implementation Phase

The following are the steps followed to create the Arabic Wordlist needed. For every step there is corresponding

program developed to carry out the specific stem

(i) Specify Arabic Letters Specifications

In this program all Unicode Arabic letters shapes are displayed and letter specification is set. The specification

include the position of each letter and whether it is connected or not, Figure 8.

Figure 8: Unicode Arabic Letters Specifications

(ii) Create Unicode Lexicon

This program reads the words from the pre-prepared Arabic wordlist and each word undergoes a contextual

analysis process to convert the word from normal ASCII code to Unicode shapes. The program analyses the

word letter by letter to determine the specification of each one based on its position in the word and whether it is

connected or not.

 10

The result is table containing the words with its Unicode representation. Table 2 shows a sample of the

UNICODE lexicon produced. As shown, using UNICODE scheme enables us to deal with letters shapes

separately.

 Table 1: Unicode and ASCII Wordlist

Unicode ASCII

 لزراعة ة زراع ل لزراعة ة زراع ل

 لزراعتها ا ه ت زراع ل لزراعتها ا ه ت زراع ل

 لزعيمنا ا ن م ي زع ل لزعيمنا ا ن م ي زع ل

(iii) Create Multiple Wordlist

This program produces as many wordlists as required based on the input criteria as shown in Figure 10. The

produced wordlist order could be based on Tri-graphemes, bi-graphemes, or uni-graphemes, below is the

explanation of the input criteria.

Figure 9: Create UNICODE Lexicon

 11

Figure 10: Create Multiple Word List

Grapheme Order: Uni-grapheme, Bi-graphemes, or Tri-graphemes

Coverage: minimum number of instances of required grapheme.

Threshold: the grapheme frequency after which grapheme will be processed.

Number of Graphemes: the number of graphemes to be processed in the current run.

The selected words that satisfy the input criteria are written to a new list according to the algorithm in Figure

7.

The selected criteria in our run was:

Grapheme Order: Uni-grapheme

Coverage: 10

Threshold: 0

This program was run 13 times to produce 13 output wordlists (then was extended to produce 85 lists, but

throughout this section we will mention the basic 13 lists). Every wordlist contains a number of unique words

not included in any other wordlist, some words common with another wordlist, some words common with

three wordlists and so forth. Table 3 and Figure 11 show a statistics of the word distribution among the 13

wordlists.

 12

Table 2: Produced Lists and Repetition Distribution

Lists

List01 List02 List03 List04 List05 List06 List07

Count % Count % Count % Count % Count % Count % Count %

R
ep

et
it

io
n

1 897 74.6 871 72.3 865 71.7 868 72.5 855 71.3 848 70.7 850 70.5

2 49 4.1 66 5.5 90 7.5 105 8.8 118 9.8 115 9.6 124 10.3

3 92 7.7 98 8.1 82 6.8 50 4.2 47 3.9 64 5.3 76 6.3

4 44 3.7 45 3.7 52 4.3 55 4.6 59 4.9 51 4.3 36 3.0

5 21 1.7 28 2.3 18 1.5 20 1.7 26 2.2 22 1.8 22 1.8

6 10 0.8 13 1.1 16 1.3 10 0.8 10 0.8 12 1.0 10 0.8

7 20 1.7 14 1.2 15 1.2 21 1.8 16 1.3 18 1.5 19 1.6

8 5 0.4 5 0.4 10 0.8 10 0.8 7 0.6 3 0.3 5 0.4

9 15 1.2 15 1.2 10 0.8 10 0.8 13 1.1 17 1.4 15 1.2

10 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8

11 1 0.1 1 0.1 2 0.2 2 0.2 2 0.2 2 0.2 2 0.2

12 9 0.7 9 0.7 8 0.7 8 0.7 8 0.7 8 0.7 8 0.7

13 29 2.4 29 2.4 29 2.4 29 2.4 29 2.4 29 2.4 29 2.4

 1202 1204 1207 1198 1200 1199 1206

Table 3 continued

Lists

List08 List09 List10 List11 List12 List13

Count % Count % Count % Count % Count % Count %

R
ep

et
it

io
n

1 841 68.6 848 70.7 849 69.5 847 69.1 800 66.7 821 67.2

2 135 11.0 114 9.5 115 9.4 116 9.5 128 10.7 121 9.9

3 80 6.5 82 6.8 87 7.1 105 8.6 86 7.2 86 7.0

4 36 2.9 51 4.3 57 4.7 36 2.9 62 5.2 64 5.2

5 25 2.0 28 2.3 19 1.6 18 1.5 28 2.3 25 2.0

6 15 1.2 7 0.6 13 1.1 14 1.1 11 0.9 15 1.2

7 15 1.2 18 1.5 18 1.5 21 1.7 15 1.3 21 1.7

8 7 0.6 8 0.7 1 0.1 10 0.8 9 0.8 0 0.0

9 13 1.1 12 1.0 19 1.6 10 0.8 11 0.9 20 1.6

10 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8

11 2 0.2 2 0.2 2 0.2 2 0.2 1 0.1 1 0.1

12 8 0.7 8 0.7 8 0.7 8 0.7 9 0.8 9 0.7

13 29 2.4 29 2.4 29 2.4 29 2.4 29 2.4 29 2.4

 1216 1217 1227 1226 1199 1222

 13

(iv) Create Output Wordlist Files

This program takes as input the list number for which it is required to create wordlist file in text format. File

name is automatically created, the rest of the input criteria specify the wordlist to be used as input (see Figure

11).

 This program is run 13 times to produce the required 13 wordlists.

(v) Create Text for Printing

The produced text file was opened using MS Word one at a time and the font and size were changed to produce

different file for different font and size.

4. Request for Proposal Phase

The production of the database is currently underway based on a request for proposal (RFP) that has been distributed to

all local companies working in the field. The details of the RFP are as follows.

(i) Fonts and Sizes for the word lists

The production of the required output will be carried out according to the following specifications:

1. Fonts:

a. For Windows Platform

1) Simplified Arabic

Figure 11: Create Output Wordlist Files

 14

2) Arabic Transparent

3) Traditional Arabic

b. For MAC Platform:

1) Dahab

2) Riadh

3) Naskh

 Each font is done twice for both Normal and Bold.

c. Manual Typewriter (fixed mode and font)

(This sums to 13 different streams).

2. Sizes (for Windows and MAC): Each of the above is required to be produced for those sizes (except the

typewriter): 10, 12, 14, 16, 18, 20, and 22

The bidders will be provided with the following files:

1. Arabic Word Lists: these lists are text files named List01.txt, List02.txt, up to List85.txt.

2. Letters and Ligature Files: these files contain the shapes of individual Arabic letters and Arabic Ligatures

for every font, the files names are:

a. For Simplified Arabic: Simplified-Arabic_Letters-and-Ligatures.txt

b. For Arabic Transparent: Arabic-Transparent_Letters-and-Ligatures.txt

c. For Traditional Arabic: Traditional-Arabic_Letters-and-Ligatures.txt

d. For Dahab: Dahab_Letters-and-Ligatures.txt

e. For Riadh: Riadh_Letters-and-Ligatures.txt

f. For Naskh: Naskh_Letters-and-Ligatures.txt

(ii) Books and Theses Documents:

1500 pages from different books will be selected (average of 10 pages from each book for copyright constraints which

gives approximately 150 books). The books will be chosen to cover uniformly the past 50 years. In addition, 1000

theses (in Arabic) will be selected as well which should also cover uniformly the past 50 years. Books should come

from at least 15 different categories based on the fonts and sizes used. The books used will be classified manually and

approved by ALTEC. Theses should come from at least 10 different categories based on the fonts and sizes used. The

theses used will be classified manually and approved by ALTEC.

 15

(iii) Naming Convention

The output files names should follow the following naming convention:

The Base file names will consist of the following parts

• System Type: WIN (for windows), MAC, BK (for book), or TH (for thesis)

• Source List No: 01, 02, etc., or book No: 01, 02, etc.

• Page number in the list or in the book 01, 02, etc.

• Font Name: (SA for Simplified Arabic), (AT for Arabic Transparent), (TA for Traditional Arabic) (DH for

Dahab, RH for Riadh and NH for Naskh).

• N for Normal, B for Bold.

• TP for Typewriter

• Font Size: 10-22

Example:

For Windows system, Source List file List02.txt, 3rd page in the list, font Simplified Arabic, Size 10, Normal the file

name will be:

WIN_02_03_SA_10_N

For MAC system, Source List file List08.txt, 10th page, font Dahab, Size 10, Bold the file name will be:

MAC_08_ 10_DH_10_B

For the book number 17, 7th page, noting that the books and theses will be captured directly by a book digitizer as an

image:

BK_17_07

(iv) Document Production

The documents production stage has two steps for the windows. MAC and typewriter lists: the first is the printing step

and the second is the scanning step. As for the books and theses, we go directly to the scanning step.

Printing and Imaging

In printing step, the produced output files are printed then undergo different processes to add noise to the produced

document. At the end of this step, the following document versions should have been produced:

1. Clean Version: the clean version is the first print out from the created files. Printing should be done using a

different printer for every document set (at least 20 different printers should be used). In addition, the original

document produced by typewriter is to be considered as clean version.

2. Copy Version: the clean version should be photocopied using different photocopying machines (at least 12).

 16

3. Photo the clean version using Digital Cameras and Mobile Cameras. (At least 10 digital cameras and 10 mobile

cameras). In this case, no scanning will be required since we will get the jpg images directly. All cameras

should be at least 5Mpixel of resolution, and the distance to the documents should be 50cm. 50% of the imaging

should be with separate cameras, and 50% with mobile cameras. The produced jpg images of this step will not

undergo any further processing.

Scanning and Digitizing

The documents produced by the printing step (1 and 2 above) are scanned using a different scanner for every set of

documents (at least 12 scanners are required), and saved in (jpg) format. The scanning should be done using the

following resolutions: 200, 300 and 600 dpi.

As for the books and theses, a Book Digitizer must be used to produce three resolution versions of each page: 200, 300,

and 600 dpi.

At this stage, all documents have been transformed into jpg images.

The produced (jpg) files names should have the same name as the source file from which it was printed in addition a

new suffix to show the version from which it was created. The suffixes will be as follows:

C: Clean Version

P: Copy Version

D: Digital Camera Version

M: Mobile Camera Version

B: Books Version

H: Thesis Version

Another suffix should be added which indicates the resolution used.

Accordingly, if we print a file such as (WIN_05_03_TA_16_N) and expose it to different processing mentioned before,

the scanned file names should be as follows:

Clean Version, 200 dpi: WIN_05_03_TA_16_N_C_2.JPG

Clean Version, 300 dpi: WIN_05_03_TA_16_N_C_3.JPG

Clean Version, 600 dpi: WIN_05_03_TA_16_N_C_6.JPG

Copy Version, 200 dpi: WIN_05_03_TA_16_N_P_2.JPG

Copy Version, 300 dpi: WIN_05_03_TA_16_N_P_3.JPG

Copy Version, 600 dpi: WIN_05_03_TA_16_N_P_6.JPG

Digital Camera Version: WIN_05_03_TA_16_N_D.JPG

Or a Mobile Camera Version: WIN_05_03_TA_16_N_M.JPG

 17

As for the Typewriter written documents we will have the original printed version (clean) then they will undergo the

copying step as well as the camera step. The naming will be as follows (also, for 200, 300 and 600 dpi):

Clean Version, 200dpi: TP_13_05_C_2.JPG

 Copy Version, 200 dpi: TP_13_05_P_2.JPG

As for the Books and Theses names, the dpi should be added to the base name (2, 3 and 6 for 200, 300 and 600dpi):

BK_17_07_3.jpg (for book number 17, page number 7 and 300dpi).

Same goes for these:

TH_44_01_6.jpg (for thesis number 44, page number 1 and 600dpi)

(v) Segmentation and Annotation:

The following are the required outputs associated with each image file:

1- It is required to have a text transcription file for each image file. Text transcription files are required to be xml

files that include all the details of each image (file name, font, size, quality, etc.) plus the full text transcription

of the corresponding image for each line.

2- It is required to have full line segmentation for each line in the image with full information about the

starting/end and height of each line in the image so that the user can extract the line directly from the image

(using the upper right and lower left <x , y> coordinates).

3- It is required to have word boundary segmentation for all the lines, which gives the starting /end of each word,

its height (using the upper right and lower left <x , y> coordinates).

4- This information should be included in the transcription files and it should allow the user to extract any word

directly from the image.

5- It is required to have character boundary segmentation for a portion of the produced data. These boundary

segmentations should also give the <x , y> coordinates of the box containing the character.

The particular portion to be character-segmented documents should be 10% of the whole data, such that

approximately 10% of the images are taken for each category as follows:

a. 10% for each font (12 fonts), each size (7 sizes) and each resolution (3 resolutions) plus 10% of the

typewriter images.

b. 10% of all the copied documents images

c. 10% of all the digital camera and 10% of all the mobile camera images.

d. The pages taken should be taken at random to cover all shapes and characters.

e. 10% of all the books images such that 10% is taken from each book category, and for each resolution.

f. 10% of all the theses images such that 10% is taken from each category and for each resolution.

 18

Transcription files naming should have the same naming convention as the corresponding image files, except for the

xml extension for example:

WIN_05_03_TA_16_N_C_2.xml

1- The convention to be used in all segmentations is the box convention, where each line, word, character

(ligature) would be enclosed by a box. The segmentation gives the (x1,y1) and (x2,y2) coordinates of that box,

which are the upper right and lower left coordinates respectively.

2- Each line in the transcription files should correspond exactly to the same line in the corresponding image.

V. CONCLUSION

A Printed Arabic Text Large Database (P-ALTEC) is proposed and developed by the Arabic Language

Technology Center (ALTEC). The database is intended for advanced research and prototype product development

of optical character recognition (OCR) Arabic printed text. The database is designed to cover all important fonts

used in Arabic printed documents (Windows and MAC), with plain and bold data for each font, as well as a

coverage of sizes from 10 to 22. The database also has each document in clean, copied, camera-captured and

typewriter forms to cover different practical qualities and acquisition states. The database contains approximately

100,000 unique words, 11,000 pages, and 300 different character and ligature shapes. Character level

segmentation is available for about 10% of the documents, with full word-based annotation and segmentation for

the whole data. (P-ALTEC) should be available to the research community by March 2011.

REFERENCES

[1]. ALTEC website: http://www.altec-center.org/index.php

[2]. ICDAR 2009 technical program: http://www.cvc.uab.es/icdar2009/techprog.html

[3]. J. Makhoul et. al., "Multilingual Machine Printed OCR", IJPRAI (15.1) 2001.

[4]. Mohamed Cheriet et. al., "Character Recognition systems, A Guide for Students and Practitioners", Wiley

Inter-science, 2007.

[5]. Rashwan, M., Fakhr, W., Attia, M., El-Mahallawy, M., Arabic OCR System

[6]. Analogous to HMM-Based ASR Systems; Implementation and Evaluation, Journal of Engineering and Applied

Science, Cairo University, www.Journal.eng.CU.edu.eg, December 2007.

[7]. Al-Badr, B., Mahmoud, S.A., "Survey and Bibliography of Arabic Optical Text Recognition", Elsevier Science,

Signal Processing 41 (1995) pp. 49-77.1.

[8]. Govindan, V.K., & Shivaprasad, A.P., “Character recognition A review”, Pattern Recognition, Vol. 23, No. 7,

1990, pp. 671-683.

[9]. Hazem Y. Abdelazim, “Recent trends in Arabic OCR,” in Proc. 5th Conference of Engineering Language, Ain

Shams University, 2005.

[10]. http://www.nuance.com/imaging/omnipage/omnipage-professional.asp

[11]. H. Osman, Orange Egypt, personal communication.

http://www.altec-center.org/index.php
http://www.journal.eng.cu.edu.eg/
http://www.nuance.com/imaging/omnipage/omnipage-professional.asp

ARABIC LINGUISTICS AND IN-DEPTH TEXT

PROCESSING
Nabil Ali

nabilalii@gmail.com

Extended abstract -Text processing is currently being developed into a level of computation much

deeper than the conventional approaches adopted so far.

Main motivations are:

• The emergence of the Semantic Web

• Growing number of text-intensive applications, cultural and business as well.

• The increasing importance of language acquisition methods using ICT.

These have led to a paradigmatic shift in text processing characterized by the following major

trends:

• from generative grammar to cognitive grammar

• from list-based lexicography to concept-based lexicology

• from taxonomical classification to computational ontology

• from parsing to understanding

• from ad-hoc textual output generation to systematic text generation and summarization

• from statistical vs-rule-based dichotomy to genuine hybridity

• from sentential processing to textual corpus computational techniques.

All these trends call for more serious Artificial intelligence techniques capable enough to deal

with linguistic complexities involved in textual computation.

The above-mentioned trends are overviewed from an Arabic language perspective.

The study attempts to map between brain cognitive functions related to indeterminacy to

language tools and mechanisms to support such functions.

The study concludes by presenting list of proposed research areas in both fields of Arabic

computational and theoretical linguistics.

The presentation will be delivered in Arabic.

Arabic Character Recognition Using statistical

Moment Invariants and ANN

Ismail I. Amr*, Mohamed Amin**, Passent El-Kafrawy**1, and Amr M. Sauber**2
* College of Computers and Informatics

Misr International University, Cairo, Egypt
**Mathematics and CS Department, Faculty of Science,

Menoufiya University, Egypt
1passentmk@gmail.com, 2amrmausad@gmail.com

Abstract - Many Arabic character recognition systems have been proposed since the last three decades. Many

systems reported high recognition rates or high speed rate, however, they overlooked one of them but not both.

Any real-time system should have both factors. In this paper, a high-performance Arabic character recognition

system is introduced. The goal of the system is to maximize accuracy and minimize speed. The goal has been

achieved through developing a high-accuracy yet simple Arabic character recognition technique; the technique

is optimized using OpenMP-like technique for utilizing multithreads or multi-processors.

 1 INTRODUCTION

Since the advent of computers, search for better interaction between man and computer has been
going on. The goal has been always to provide the computer with information that can be retrieved
and utilized afterwards. The merit of such interaction is usually evaluated through answering two
questions. The first is how accurate the process of transferring the information to the computer is.
The second is will the information be processed within the time specified by the user. The answer to
the first question involves researching the area of speech and character recognition. The goal is to
find the most accurate way to feed the machine with human voices or scripts. The second question
involves finding the optimum approach to attain that goal in terms of meeting the user's time
requirement. The emergence of multi-processing machines provided additional frontiers to meet
such requirements. Hence, an integration of a speech or character recognition system into a parallel
environment should be very promising.

Throughout the years, researchers have put great effort in Latin and other character recognition as a
way of facilitating man-machine interface [1][2][3][4]. Such research has led to the availability of
many commercial optical character recognition systems for Latin scripts. Similarly, since the early
eighties, a number of Arabic character recognition systems have been proposed [5][6][7][8][9][10].
Most systems achieved high recognition rates which is the rate of the number of recognized
characters to the total number of characters. Despite these high rates, most current systems ignored
the speed factor that has the same importance as the recognition rate. Building a recognition system
with a 100% recognition rate would be useless if the recognition speed fails in matching the required
specifications of real-time applications. As a result, our focus should be on building a recognition
system that achieves both full accuracy and high speed leading to an optimal communication
interface between the system and its users.

 2 FEATURES OF ARABIC CHARACTERS

Arabic characters possess some unique features that make them different from English especially for
the recognition problem. The following are the main characteristics of Arabic characters [11]:

1. The Arabic language consists of 28 main characters. Whereas English characters can appear
in two forms (upper and lower), Arabic characters can have four different shapes, depending
on the position of the character within the word (beginning, middle, end, and isolated).

mailto:2passentmk@gmail.com
mailto:amrmausad@gmail.com

2. The Arabic word is always cursive.
3. The Arabic text is written from right to left.
4. Many Arabic characters (15 out of 28) have dots which are positioned at a suitable distance

above, below, or within the letter body. Dots can be single, double, or triple. Different Arabic
letters can have the same body and differ in the number or position of dots identifying them.
Letters Baa, Taa, and Thaa are examples of such a case.

In Addition to the previous points we add:

5. Although The Arabic language consists of 28 main characters there are many more cases for

some characters like 'لا' which is lam 'ل' followed by Alif 'ا' but written in a different form

 .('لـا' instead of 'لا')

6. As well as there are different cases of dots there are Hamza 'ء' Maed 'آ' .

7. Having 28 characters in the Arabic alphabet; each character has two to four different forms
that depend on its position in the word or sub-words and after adding other cases, as Hamza,
there are 121 classes to be recognized. The Arabic character set is shown in Fig. 1 [5].

8. An Arabic word can have one or more sub-words, e.g., there are three sub-words in the word
shown in Fig. 2.

9. We have also noticed that Arabic words may horizontally overlap and characters may stack

on others as shown in Fig. 2 for Raa 'ر' and Hha 'ح'.

No Name separated starting middle ending

1 Alif ـا ـا ا ا

2 Baa ـب ـبـ بـ ب

3 Taa ـت ـتـ تـ ت

4 Tha ـث ـثـ ثـ ث

5 Jeem ـج ـجـ جـ ج

6 Hha ـح ـحـ حـ ح

7 Kha ـخ ـخـ خـ خ

8 Dal ـد ـد د د

9 Thal ـذ ـذ ذ ذ

10 Raa ـر ـر ر ر

11 Zay ـز ـز ز ز

12 Seen ـس ـسـ سـ س

13 Sheen ـش ـشـ شـ ش

14 Sad ـص ـصـ صـ ص

15 Dahd ـض ـضـ ضـ ض

16 Tta ـط ـطـ طـ ط

17 Tha ـظ ـظـ ظـ ظ

18 Ain ـع ـعـ عـ ع

19 Ghain ـغ ـغـ غـ غ

20 Faa ـف ـفـ فـ ف

21 kaaf ـق ـقـ قـ ق

22 kaf ـك ـكـ كـ ك

23 Lam ـل ـلـ لـ ل

24 Meen ـم ـمـ مـ م

25 Noon ـن ـنـ نـ ن

26 Haa ـه ـهـ هـ ه

27 Waw ـو ـو و و

28 Yaa ـي ـيـ يـ ي

More Cases

 ـإ ـإ إ إ 29

 ـأ ـأ أ أ 30

 ـآ ـآ آ آ 31

 ـلا ـلا لا لا 32

 ـلأ ـلأ ل# ل# 33

 ـلآ ـلآ لآ لآ 34

 ـئ ـئـ ئـ ئ 35

 ء ء 36

 ـؤ ـؤ ؤ ؤ 37

 ـى ـى ى 38

Figure (1): Arabic alphabet in all its forms.

Figure (2): Arabic word consists of three sub-words and overlapping between the second and the third sub-
word.

 3 MOMENTS

Region moment representation interprets a normalized gray level image as a probability density function of

a 2D random variable. Properties of this random variable can be described using statistical characteristics -

moments. A moment of order (p+q) is dependent on scaling, translation, rotation, and even on gray level

transformations and is given by

The central moment

Let

We use composite trapezoidal rule for evaluating the double integral

Where M and N image size, , are the co-ordinate of the region’s centriod , and

 ,

The normalized un-scaled central moments

, where

A less general form of invariance is given by seven invariant moments characterizing: rotation, translation,

and scale [31].

 4 PROPOSED TECHNIQUE

Arabic character recognition requires several steps, mainly: segmentation, feature extraction and

identification. In this paper, the first step is achieved by using a local diffusive segmentation method. There

exist a wide variety of ways to achieve segmentation; however, it is not the subject of this paper. All

contiguous pixels, which share a given point-based characteristic of the object, or are surrounded by those

that do, are considered as object pixels and those outside the included region, are considered as

background. The result is a group of contiguous pixels, which collectively represent the object. The

boundary pixels of the object are then extracted from the segmented object pixels by a simple iterative

trace, around the outside of the object that continues until the starting point is reached.

In the second stage, the input is a set of character images. First they must be transformed into a negative

state – white object on black background. Second moment's invariants are calculated for each image to be

used as key features to identify character images as shown in the appendix at the end of the paper. By

definition an image moment is a certain particular weighted average (moment) of the image pixels'

intensities, or a function of such moments, usually chosen to have some attractive property or

interpretation. We used them because they are constant to an image even if it is scaled or rotated. Moments

had been used before for image retrieval and identification [12][13] in database systems, which we will use

in this research for OCR.

In the third stage, after explaining the process of feature extraction for Arabic characters classification, we

enhance the recognition capability of the system with a neural network to classify the characters. We used a

multi-layer perceptron (MLP) neural network to equip the proposed engine with learning the features of the

different characters, so as, the system recognition capability would be enhanced in this way.

The input pattern of the network consists of the feature vector composed of the seven moments calculated

for each character. All the input pattern’s features have been passed to 121 output nodes, feeding 121

possible input cases to train the network.

 5 EXPERIMENTAL RESULTS

In this section we will present and evaluate the experimental results of our technique. We used a random set

of characters – as shown in figure 3 - to evaluate our technique and run multiple tests on multiple subsets

and then calculate the Mean Absolute Error for each test. Our technique has a Mean Absolute Error =0.02.

 ـث ـثـ ثـ ث ـث تـ ت ـت ـتـ ت ت

 ـج ـجـ جـ ج ـج ثـ ث ـث ـثـ ث ث

 ـح ـحـ حـ ح ـح طـ ط ـط ـطـ ط ط

 ـخ ـخـ خـ خ ـخ ظـ ظ ـظ ـظـ ظ ظ

 ـد ـد د د ـد عـ ع ـع ـعـ ع ع

 ـذ ـذ ذ ذ ـذ غـ غ ـغ ـغـ غ غ

 ـر ـر ر ر ـر فـ ف ـف ـفـ ف ف

 ـز ـز ز ز ـز لا لا ـلا ـلا لا لا

 ـس ـسـ سـ س ـس ل# ل# ـلأ ـلأ ل# ل#

 ـش ـشـ شـ ش ـش لآ لآ ـلآ ـلآ لآ لآ

 ـص ـصـ صـ ص ـص ئـ ئ ـئ ـئـ ئ ئ

 ـض ـضـ ضـ ض ـض ء ء ء ء

 ـط ـطـ طـ ط ـط ؤ ؤ ـؤ ـؤ ؤ ؤ

 ـظ ـظـ ظـ ظ ـظ ى ـى ـى ى ى

 ـع ـعـ عـ ع ـع ا ا ـا ـا ا ا

 ـغ ـغـ غـ غ ـغ بـ ب ـب ـبـ ب ب

 ـف ـفـ فـ ف ـف تـ ت ـت ـتـ ت ت

 ـق ـقـ قـ ق ـق ثـ ث ـث ـثـ ث ث

 ـجـ جـ ج ـج ـجـ جـ ج ـج ـجـ ج ج

 ـحـ حـ ح ـح ـحـ حـ ح ـح ـحـ ح ح

 ـخـ خـ خ ـخ ـخـ خـ خ ـخ ـخـ خ خ

Figure (3): An example of samples used in the experimental test.

 6. CONCLUSION

This paper presents a new technique for Arabic OCR CBIR based on moment's

invariants and neural networks. The proposed method consists of two parts: feature

extraction and character identification. The experimental results show that our technique

is quite promising. We also considered a larger set of 121 Arabic character cases instead

of the classic 100 one.

We will work in the future on the Tashkil signs of the Arabic characters. The small signs

that change the sound of the word. Moreover, we might consider other fonts and formats.

Finally, we would like to explore other types of NNs that might enhance and speed the

recognition process.

 REFERENCES

[1] Mantas, J.. “An overview of character recognition methodologies”. Pattern Recognition 19 (6), pp.

425-430, 1986.

[2] 2 Mori, S., Suen, C., Yamamoto, K.,. “Historical review of OCR research and development”.

Proceedings of the IEEE vol. 80, no. 7, pp. 386-405, 1992

[3] Nagy, G., Seth, S.. Modern optical character recognition. Froehlich, F., Kent, A., Hall, C., (Eds.),

The Froehlich/Kent Encyclopedia of Telecommunications. Vol. 11, Marcel Decker, New York,

pp. 473-531. 1996

[4] Pal, Roy , Tripathy and Llados, Multi-oriented Bangla and Devnagari text recognition, Pattern

Recognition, vol. 43, pp. 4124–4136, 2010

[5] Abdelazim, H., Mousa, A., Salih, Y., Hashish, M.,. Arabic text recognition using a partial

observation approach. In: Proceedings of the 12th National Computer Conference. Riyadh, Saudi

Arabia, pp. 427-437, 1990

[6] Al-Badar, B., Mahmoud, S.. Survey and bibliography of Arabic optical text recognition. Journal

of Signal Processing, vol. 41, no 1, pp. 49-77, 1995

[7] Alherbish, J.,. High Performance Arabic Character Recognition. Ph.D. Thesis, University of

Connecticut, CT, 1996

[8] Khellah, F., Mahumod, A.,. “Recognition of hexagonally sampled printed Arabic characters”. The

Arabian Journal for Science and Engineering, vol. 19, no 4A, pp. 565-586, 1994

[9] A Amin,H Al-Sadouni and S Fischer, “Hand-Printed Arabic Character Recognition System Using

An Artificial Network”, Pattern Recognition, vol. 29, no. 4, pp. 663 675, 1996

[10] Alherbish, Ammar, “High-performance Arabic character recognition”, The Journal of Systems and

Software, vol. 44, pp. 53-71, 1998

[11] Mahmoud, S., Abu Haiba, I., Green, R., 1991. “Skeletonization of Arabic characters using

clustering based skeletonization algorithm (CBSA)”. Pattern Recognition 24 (5), 453±464.

[12] Rizon and others, “Object Detection using Geometric Invariant Moment”, American Journal of

Applied Sciences vol. 2, no. 6, pp. 1876-1878, 2006

[13] Amr, Amin, El-Kafrawyy and Sauber, Using Statistical Moment Invariants and Entropy in Image

Retrieval , Proceeding of IJCSIS August 2009

Appendix: The images of all possible shapes of characters and the corresponding

moment's invariants values

No. ID Name Phi1 Phi2 Phi3 Phi4 Phi5 Phi6 Phi7

1 1

0.51348593 0.24046356 0.19952337 0.19374598 0.034041221 -0.04041018 0.002213509

2 4

0.57243076 0.17605628 1.82876575 1.27594321 0.239500325 -0.02237976 -0.49475388

3 5

0.48383499 0.0992986 1.4081342 0.13823916 0.047961495 -0.01405392 0.064688886

4 6

0.39018496 0.03360662 0.04917335 0.44484608 -0.17132452 0.000184426 -0.02308836

5 7

0.39663514 0.05949592 0.10159821 0.14555496 -0.01826053 0.003426853 -0.00401176

6 8

0.5320821 0.16589933 0.57756122 0.04493097 0.000736081 -0.00814528 0.001427151

7 9

0.47004304 0.04401122 0.36397648 0.13113947 -0.00112885 -0.00070796 -0.00547026

8 10

0.49996501 0.03603016 2.43119929 1.19793445 0.653559805 -0.00728851 0.199812673

9 11

0.47286402 0.00406314 3.97124839 1.27976774 0.556503944 -0.00019471 0.058840111

10 12

0.51666705 0.1004805 1.02292102 0.29373638 -0.04422433 0.002262942 0.00416058

11 13

0.45339525 0.01851946 0.89272325 0.31749632 -0.04154231 0.00013347 -0.00252657

12 14

0.50830257 0.04220102 2.88754321 1.07890468 0.583543175 -0.00364621 0.117642868

13 15

0.48274467 0.00106848 4.81410931 1.5048024 0.71629581 6.96E-05 0.098339254

14 16

0.49914352 0.06567965 1.79333051 0.62278344 -0.25261268 0.003766646 0.02671461

15 17

0.39243384 0.03418779 0.05740282 0.04769106 -0.00126703 0.000422797 0.005619581

16 18

0.31487832 0.02968625 0.22544119 0.24341286 -0.01171848 0.00480792 0.005218898

17 19

0.37507133 0.06760058 0.52443502 0.05478958 0.000941061 -0.00141765 0.004488728

18 20

0.33738497 0.00428418 0.36012477 0.29056537 -0.01135912 -8.39E-05 -0.0048217

19 21

0.44713421 0.04830117 0.10687816 0.0802836 -0.01054278 0.002336741 0.02546698

20 22

0.339376 0.05199642 0.69560542 0.33154382 0.026413353 0.010152174 -0.00358594

21 23

0.40914962 0.09933534 1.21777452 0.15872775 -0.00474901 -0.00463757 0.024434066

22 24

0.3762731 0.00495493 0.46773178 0.39574875 -0.01218962 -0.00031453 0.01173723

23 25

0.47351682 0.07617086 0.01647283 0.0354496 -0.01100364 0.004934931 0.013189353

24 26

0.35008637 0.02039904 1.72519727 0.62194335 0.031632725 0.003624865 -0.1187025

25 27

0.40571817 0.05282934 2.53407073 0.50559343 -0.0199701 -0.00033337 0.006078222

26 28

0.38767279 0.00944428 0.15425486 0.26209005 -0.03257097 -0.00012155 -0.00130883

27 29

0.298368 0.02307172 0.24485422 0.11112118 0.008144392 -0.00036986 0.002401827

28 32

0.30781646 0.00317893 0.81127268 0.2610676 -0.00885782 6.98E-06 -0.00140375

29 33

0.47734634 0.11832847 2.05680032 1.48761503 2.066684681 -0.11568866 0.478923171

30 36

0.43642035 0.04344279 3.23003476 1.90416966 2.192387387 -0.02162654 -0.26580303

31 37

0.48133819 0.10655886 1.26044734 0.70784518 0.194330509 -0.007659 0.079123251

32 40

0.42814981 0.07913416 0.57383813 0.06647803 -0.02123773 -0.00118123 -0.03304087

33 41

0.70118519 0.26523992 7.61230905 4.67795508 20.01433056 -0.66531308 7.769188646

34 44

0.53659426 0.07762224 3.5515309 1.564404 1.408524589 -0.04938937 1.201390156

35 45

0.45096737 0.10817553 0.19475385 0.01059584 0.001513537 0.000617967 -5.67E-05

36 46

0.4977583 0.19866177 0.15679503 0.48068278 -0.38145188 0.055757195 -0.03105472

37 47

0.54903994 0.25260348 0.46485532 0.42298094 -0.07388397 0.070917507 0.007285662

38 48

0.49811925 0.14954637 0.3425857 0.0546775 0.003226128 -0.00110511 0.000566202

39 49

0.47165831 0.08629934 0.88766991 0.57568256 -0.00016377 -0.00283923 -0.06329362

40 50

0.45561101 0.04063789 2.48190954 1.35944194 0.061703296 0.005712444 -0.44541166

41 51

0.47146677 0.04893759 3.96328692 1.18016784 -0.06570969 0.00988628 -0.16107619

42 52

0.47313119 0.06982351 2.34983907 0.56156316 -0.03108245 0.002910016 -0.06416703

43 53

0.52584543 0.1952889 0.383267 0.1068067 0.010834776 0.035197531 -0.02077468

44 54

0.53751895 0.23005276 0.30881443 1.76313794 -4.18845667 0.285195839 -0.17980211

45 55

0.56511615 0.25703085 0.912166 1.63001507 -1.48906731 0.293787954 0.082297923

46 56

0.56342995 0.23133659 1.04093806 0.07042356 -0.03052889 0.011933154 0.00123734

47 57

0.5052542 0.16093846 0.71670525 0.27558363 0.05523719 0.036673994 -0.10029915

48 58

0.50648777 0.16888047 0.8653345 1.76814818 -2.22536779 0.19646211 -0.66414349

49 59

0.53190065 0.19287442 1.77957362 1.54332944 -0.14589987 0.185996553 -0.19937968

50 60

0.53590809 0.18603294 1.73342261 0.2188929 -0.08172129 0.012110217 0.014225763

51 61

0.31723088 0.00257222 0.93247919 0.43341874 0.071365529 0.000205311 0.037471609

52 62

0.36908746 0.00696639 2.49239371 0.70032427 0.07943616 0.001162136 -0.17237329

53 63

0.39243118 0.0191143 3.43223572 0.80355251 0.010399086 0.001677359 -0.04954194

54 64

0.34595044 0.01261367 1.57722631 0.72412425 -0.09036928 -0.00010075 -0.01300902

55 65

0.30708253 0.00173904 0.68304714 0.27041266 0.031970052 1.75E-05 0.017567064

56 66

0.35847087 0.00670283 2.12596731 0.61816948 0.038821146 0.000717733 -0.18917341

57 67

0.37688984 0.01204596 3.21181655 0.73262588 -0.05017632 0.001197258 -0.05447011

58 68

0.33130565 0.00680178 1.41032828 0.52942637 -0.03747902 -1.12E-05 -0.00317531

59 69

0.45685811 0.09245099 0.05662764 0.00338339 0.027475879 -0.00178365 -0.00421877

60 70

0.31959398 0.04788684 0.33289061 0.14204883 0.004217062 0.003644904 -0.00457358

61 71

0.33216485 0.05028158 0.90614155 0.14151876 -0.01166794 -0.00150921 0.013726506

62 72

0.34685118 0.01337728 0.03925785 0.0587916 -0.00391578 -0.00011965 -0.00023357

63 73

0.49850264 0.12968023 0.3951615 0.08261349 0.0213848 0.008592961 0.014761955

64 74

0.31984 0.02571269 0.79043559 0.29345921 0.005760083 0.001672272 -0.02907277

65 75

0.34323666 0.01845286 2.02388681 0.47843874 -0.01331572 0.000214616 -0.00146311

66 76

0.37648466 0.02792528 0.11151113 0.06262548 -0.00453087 0.000227474 0.000530145

67 77

0.55929609 0.13494754 0.05752542 0.76270188 -0.7741162 -0.01068872 -0.17644214

68 78

0.35714453 0.02988435 1.3549732 0.60498335 0.085625807 -0.0007495 -0.04086737

69 79

0.35863162 0.00259689 2.98127304 1.08437061 0.470450873 -0.00035284 0.065483644

70 80

0.56985751 0.16241161 0.48246512 0.84136843 -0.56749662 0.045175184 -0.26687203

71 81

0.39917586 0.02570591 1.42277052 0.95286162 0.544585089 -0.00698384 0.324005379

72 82

0.39104999 0.0454164 1.71256167 0.78419558 0.243237758 -0.00255553 0.039398567

73 83

0.39943194 0.00788589 4.26460022 1.69460229 1.714938137 -0.00234839 0.375666608

74 84

0.36946601 0.00857327 1.27255674 0.57488232 0.250879864 -0.00145953 0.105600887

75 85

0.33923544 0.02333804 0.30236607 0.39889992 0.002399449 -0.00011294 0.026843426

76 86

0.35629151 0.01408028 1.17887974 0.40679687 0.015252973 0.000149787 -0.01004725

77 87

0.37425764 0.00027277 2.72885571 0.63961861 -0.01323291 -6.37E-07 -4.43E-05

78 88

0.34349135 0.00732496 1.21230853 0.51238548 0.054450359 -6.81E-05 0.001514839

79 89

0.51337681 0.08096054 1.18824525 1.44102333 0.926792124 -0.03753039 0.805073971

80 90

0.54594989 0.12449657 3.03552476 1.72194656 1.274361162 -0.02957832 0.524015985

81 91

0.47975857 0.01833214 5.3198 2.14456651 2.138104606 -0.00406563 0.374599085

82 92

0.45077782 0.02548306 1.99331559 1.2388748 1.119310184 -0.00372299 0.320312812

83 93

0.35243232 0.06291575 0.28380145 0.25965215 0.046745385 -0.00783806 0.012915806

84 94

0.35510974 0.08702415 0.12928189 0.37985199 -0.15940024 0.019730069 -0.01317406

85 95

0.40354996 0.12088528 0.43885191 0.21375456 0.007251905 0.013338198 0.010907323

86 96

0.34526509 0.01685253 0.21969492 0.41984 -0.02922756 -5.89E-05 0.09165811

87 97

0.42798747 0.0102825 0.60618606 0.56021329 0.228720073 -0.0022588 0.197541817

88 98

0.48524722 0.05615896 1.341085 1.14812336 0.044927575 -0.00939169 0.101396996

89 99

0.46110015 0.03455434 2.58393153 0.96069033 0.186244816 0.00262184 -0.05794815

90 100

0.40307272 0.01082667 0.36302466 0.1966122 0.034902248 -0.00107058 0.027821502

91 101

0.19994213 0.01083269 0.01098637 0.00385729 9.63E-06 -9.03E-06 1.32E-06

92 102

0.26418737 0.01792356 0.55851212 0.27214789 0.007875686 0.001694131 -0.02159765

93 103

0.28585633 0.01895186 0.04437821 0.00497271 -8.98E-06 2.53E-06 -2.53E-06

94 104

0.35555475 0.04968204 0.69779023 0.13506525 0.098546585 0.001202368 0.044208079

95 105

0.36548155 0.06510147 0.24379733 0.01809119 -0.00676455 0.001145881 -0.00681385

96 108

0.32023733 0.0216649 0.29916941 0.07054431 0.013216415 -0.00092237 -0.00844875

97 109

0.31869661 0.0221274 0.05130322 0.07888822 0.004382359 -3.33E-05 0.002122836

98 110

0.37065889 0.01008951 0.18064172 0.3948456 -0.09358552 -6.30E-05 -0.0123305

99 111

0.36771605 0.03011438 0.07322082 0.07878852 -0.01206227 0.000875763 -0.00082109

100 112

0.33554597 0.03674416 0.91106326 0.11783776 -0.0175256 -0.00200942 0.046881679

101 113

0.97535532 0.90601136 0.51647278 0.5750439 0.328992068 -0.57553804 0.002479303

102 116

0.58539474 0.13962764 1.2427269 1.29063157 0.27977799 -0.03312036 0.160666221

103 117

0.693844 0.43928626 0.08203627 0.05764718 0.001131213 -0.00358039 0.002916343

104 120

0.66739015 0.26005484 3.86282133 2.2209418 2.243294287 -0.10191519 -1.54906706

105 121

0.66146133 0.39274044 0.09686717 0.05084986 0.001361809 -0.00348406 0.000776105

106 124

0.71282959 0.31954074 3.80166795 2.52469717 3.315030946 -0.20171047 -1.9686574

107 125

0.4058173 0.06851054 0.71580718 0.17819819 -1.66E-05 0.001023337 0.001670091

108 128

0.4168099 0.02500434 1.0744891 0.46167945 -0.01831265 -3.09E-06 -0.00263816

109 129

0.41510455 0.0611749 0.76074122 0.11390652 0.058997576 0.000297602 -0.01066326

110 132

0.42900771 0.04915118 0.52841671 0.39069815 -0.0025307 4.36E-05 -0.01435372

111 133

0.43430483 0.09143368 0.65452084 0.13986546 0.013127801 0.002637119 0.005410006

112 136

0.44419649 0.04304991 1.25306357 0.6783396 -0.00832477 -0.00020224 -0.01322404

113 137

0.35594139 0.00102107 0.25396319 0.0020656 0.043081936 -0.0002108 -0.01010137

114 138

0.53017833 0.05544939 3.51325218 1.76024521 1.522847666 -0.01761352 0.507587697

115 139

0.49060856 0.00162721 5.36433263 1.85974736 1.416365603 -0.00080826 0.207746645

116 140

0.44582019 0.0120774 0.75382227 0.61228701 -0.0048871 -0.00507747 -0.69142341

117 141

0.20496123 0.00347482 0.02203227 0.00583988 -7.40E-06 -1.11E-07 -1.09E-07

118 145

0.50049732 0.13109899 0.72572679 0.44994704 -0.15284186 0.019326743 0.460753464

119 148

0.42615138 0.04580369 0.90284972 0.6904555 -0.1063073 0.006382922 0.469637319

120 149

0.33429005 0.02627507 0.01902429 0.19118902 -0.03817926 -0.00028624 -0.00812037

121 152

0.38308439 0.06758365 0.55861758 0.05462001 0.00310965 -0.00215921 0.015516476

AL-IMAM: A Comprehensive Database for Arabic Text

Mining

Ibrahim F. Imam & Ahmed Abd-Allah

Computer Science Department

Arab Academy for Science, Technology and Maritime Transport

Cairo, Egypt

ifi05@yahoo.com

Abstract–– Arabic language is one of the most sophisticated languages in the world. There are many efforts to introduce language

resourceful systems for text mining in the Arabic language. This paper presents a novel database and a framework to support

applications in Arabic text mining. The database contains extensive information of more than ten millions diacritic Arabic words and

is linked with the English WordNet and SUMO. This database is designed to support applications such as translation, categorization,

similarity and opinion mining. The paper presents an analysis to show the speed and the kind of information that can be retrieved.

1. INTRODUCTION

The Arabic language is very rich language. It permits expandability in different ways. Due to the development slowdown in

the Arabic countries in the past centuries, new terminologies appeared in the western countries that has no substitution in Arabic.

Globalization accelerated transferring these terminologies to the Arabic world.

Research depends on rule-based approaches for extracting information from text. Rule-based approaches analyze the

grammar of each sentence and match it with predefined rule. A correct match identifies the type of each token. More rules are

needed to analyze tokens [6]. Usually, this is a very complex and time consuming process. Researchers evade the rule-based

approaches and exploit statistical approaches [4] [5]. Statistical approaches tend to estimate the correct matches based on the

probability of tokens, phrases, sentences, etc. A new approach has emerged where necessary information are stored in database

and retrieved much faster than the rule-based approaches and more accurately than the statistical approaches. The only

disadvantage of this approach is that it requires massive storage.

Natural language processing and text mining applications require rich corpus to accomplish the given task. In this paper, a

comprehensive database is created to cover all possible information about the Arabic words and their relation to English words.

There are many issues to be taken into consideration when creating such database. Among these issues, the sense of the word,

the search index, word categorizations, word ambiguity, etc. English language and implemented the Word Net system.

Unfortunately, the Arabic language is more complicated than English. Also, the Arabic version of the word Net is far from

complete. This is because the Arabic language is evolving faster than any other language and it is easy to migrate terms from

other languages to the Arabic language [9] [10]. Therefore, it was necessarily to implement a gigantic database that captures as

much information as possible about all Arabic words.

The proposed database is very helpful in Arabic information retrieval and text mining. Millions of Arabic words handled in it .

The huge amount of data help us to improve output of statistical text mining approaches [and we can save our time and effort

consumed in rule based systems. This huge database can help to improve performance of many text mining applicatiox like

information retrieval as proposed in [1] & [7], machine translation [8] & [11], text summarization and text similarity [3] and can

used to improve text categorization [2].

2. DATABASE DESIGN

Designing the proposed database was a challenge. This research investigated four different designs. The initial design started

by collecting Arabic documents using internet crawler. The text in the collected documents is tokenized and each token is

translated by a free source translator. Also, a part of speech tagging is assigned to each token. The second design started by

generating all possible n-gram combinations of the 28 Arabic alphabets. To ensure that a token is a word, we searched over the

internet for each token. In the third design, the database initiated using an Arabic-English online dictionary. All these designs

failed when attempting to assign relationships among the words. Also, searching for the diacritic corresponding was extremely

difficult process. The successful design started by collecting all possible diacritic words. Even though, this approach seemed

illogical, however, the design was much simpler and successful.

Data Collection and Maintenance: The Arabic spoken citizens originate new words in many ways. One way to originate new

word is by writing the phonetic of a foreign word in Arabic letters. For example, the English word “Internet” may be written

in Arabic “إنترنت”. Such words have to be added to the database and linked with all other entities. Figure 1 shows an abstract

entity relationship diagram of the database. The main entity is a list of all diacritic words and a key for each one. Figure 2

shows an example of one word “الفِلاحَة”.

Figure 1: An Entity Relationship Diagram of Al-Imam Database.

Figure 2: An example of Al-Imam Database.

3. DATABASE COMPONENTS AND STATISTICS

Arabic-English Dictionary: Contains Arabic diacritic words and their equivalent English translation according to diacritic

word part of speech. It contains 3588192 Diacritic words generating about 17000000 Arabic English translation entries. This

table contains 1644508 nouns and 1938817 verbs.

Arabic Morphological Analysis: Contains morphology of diacritic Arabic words. morphology that we can get complete

analysis of each word, we can get root of the word, Stem of the word which is the smallest component of the word, all word

prefixes, antefix, suffixes and postfixes. Word (ليكاتبنهم) has (لـ) as its antefix, (يـ) as its prefix,(ن) as its suffix,(هم)as its postfix,

 as its weight. This component contains 11041256 Arabic diacritic words and their (فاعل) as its stem and (كاتب),as its root (كتب)

morphological analysis (word type, root, stem, prefix, suffix and weight).database it contains 6646058 nouns, 4394339 verbs

and 859 stop words.

Arabic Synonyms: Synonyms are different words with similar meanings (حراثه & زراعه) are synonyms of (فلاحه). Synonym

words called synonymous, and the state of being a synonym is called synonymy. This component contains 197895 Arabic

diacritic words and their Arabic diacritic synonyms. It contains 55372 nouns, 64192 verbs, 38263 adjectives, 39887 masdar and

181 stop words. English Arabic Dictionary: Contains 255752 English words and their Arabic translation according to English

word part of speech. It contains 116314 nouns, 89457 verbs, 47919 adjectives, 1748 adverb and 314 stop words. English

Synonyms: Contains 199880 English words and their English synonyms. It contains 116236 nouns, 45479 verbs and 38165

adjectives. English Antonyms: words with opposite or nearly opposite meanings like(short and tall Contains 37107 English

words and their English antonyms. It contains 9049 nouns, 10881 verbs and 17177 adjectives. Word Path in English Tree:

Contains 94841 English word and their English word net trees. It contains 81856 nouns and 12985 verbs. Arabic Tree Links:

Contains 9756 Arabic word net tree paths. It contains 6404 nouns, 2500 verbs and 852 adjective.

Experiments

The goal of this experiment is view how far the proposed database is rich to help in Arabic text mining area. Using many

Arabic articles in different areas we found that proposed database cover about 90% of words morphology, 90% of words

translation, 30% of Arabic words synonyms and 20% of words Tree.

Table 1: Experimental results.

In the table above each record represents an Arabic article used in our experiment. First article contains 134 unique words,

proposed database covers the morphology of 94% article words, Translation of 96% of article words, synonyms of 30% of

article words.

4. CONCLUSION

This paper presents a novel database for Arabic text mining applications. The database is called Al-Imam, which means the

leader of all Arabic databases. The database contains 3588192 Diacritic words. These words generate about 17000000 Arabic

English translation entries. The database contains 1644508 nouns and 1938817 verbs. Al-Imam database is linked with the

English version of the WordNet database.

REFERENCES

[1] I. A. Al-Kharashi and M.W. Evans, "Comparing words, stems and roots as index terms in Arabic information retrieval

System," Journal of the American Society for Information Science (JASIS), vol.5, no. 8, pp. 548-560, 1994.

[2] M. El-Kourdi, A. Bensaid and R. Tajje-eddine, "Automatic Arabic document categorization based on naïve Baye's

Algorithm," in Proc. of International Conference on Computational Linguistics, (COLING), vol. 1, pp.51-58, Montreal, Canada,

August, 2004.

[3] D. Evans, "Similarity based multilingual multi- document summarization," Columbia University, Technical Report CUCS--

014-05, 2005.

[4] Euro WordNet Web Site: http://www.illc.uva.nl/Euro WordNet/ , (accessed 1 August 2009)

[5] Fellbaum (2004),WordNet 2.0, Available from: http://www.wordnet.princeton.edu/oldversions, (accessed 14 August 2009).

[6] D. Jurafsky and J. H. Martin, Speech and Language Processing: an Introduction to Speech Recognition, Computational

Linguistics and Natural Language Processing, 2nd ed., Prentice Hall, 2008.

[7] Y. Kadri and J.Y. Nie," Effective Stemming for Arabic Information Retrieval " Laboratoire RALI, DIRO, Université de

Montréal,2006.

[8] Y.S. Lee, " Morphological Analysis for Statistical Machine Translation," IBM T. J. Watson Research Center,

[9] R. Al-Shalabi, "Design and implementation of an Arabic morphological system to support natural language processing,"

Doctoral dissertation, Illinois Institute of Technology, Chicago, May 1996.

[10] F.S. Douzidia and G. Lapalme, "Lakhas, an Arabic summarization system," RALI-DIRO Université de Montréal, 2004.

Yorktown Heights, NY 10598, 2004.

[11] F. Sadat, and N. Habash, "Arabic Preproc-essing Schemes for Statistical Machine Translation," Proceedings of Human

Language Technology Conference of the NAACL.2006.

http://www.illc.uva.nl/Euro%20WordNet/
http://www.wordnet.princeton.edu/oldversions

1

Recent Advances in Arabic Handwriting Recognition

Mostafa G. Mostafa*1, Mohamed F. Tolba**2

*Computer Science Department, Faculty of Computer & Information Sciences,

Ain Shams University, Abbassia 11566, Cairo, Egypt.
1mgmostafa@cis.asu.edu.eg

**Scientific Computing Department, Faculty of Computer & Information Sciences,

Ain Shams University, Abbassia 11566, Cairo, Egypt.
2mftolba@cis.asu.edu.eg

Abstract— Arabic optical character recognition has been the subject of intensive research for the last four decades. The performance

of Arabic machine-printed character recognition systems has developed considerably in the last decade. The recognition of Arabic

handwriting, however, still an open research problem due to its substantial variation in appearance. This paper presents the recent

advances in the last decade in both offline and online Arabic Handwriting recognition. Recent results for the online Arabic

handwritten recognition show excellent recognition rate; A recognition rate of 100% was reported in the Last ICDAR recognition.

However, despite there is a good recognition rate in case of constrained writing, the offline Arabic handwriting recognition still has

many open problems that need more research. The main challenges, trends and contribution in the field of are discussed.

1 INTRODUCTION

Document analysis and recognition (DAR) systems can contribute tremendously to the advancement of the automation process

of the interaction between man and machine in many applications, including office automation, check verification, automatic

mail-sorting, and a large variety of banking, business and data entry applications. Document analysis and recognition (DAR)

systems decompose document content into two categories: Text and images. The text is then recognized automatically in order

to be transformed from the pixel format into digital format for further processing. Optical character recognition is the core

process for this transformation, and has been the subject of an active research in the past four decades [17], [46].

Nowadays, there exist successful DAR systems for the Arabic machine-printed documents [43]. This is due to the (relatively)

standard features of the Arabic machine-printed text that facilitate the recognition process. To the contrary, Arabic handwritten

text is quite different. Few Arabic DAR systems, with relatively acceptable recognition rate, are found for the analysis of the

handwritten Arabic documents. This is an important research topic of today [25],[26], [27].

There are two recognition approaches that are distinguished according to the way handwriting data is collected: on-line and

offline. In the online recognition, the data are captured during the writing process by a special pen on an electronic surface. In

the latter, the data are acquired by a scanner after the writing process is over. In this case, the recognition of offline handwriting

is more complex than the online case due to the presence of noise in the image acquisition process and the loss of temporal

information such as the writing sequence and the velocity. This information is very helpful in a recognition process. Offline and

on-line recognition systems are also discriminated by the applications they are devoted to. The offline recognition is dedicated

to bank check processing, mail sorting, reading of commercial forms, etc, while the on-line recognition is mainly dedicated to

pen computing industry and security domains such as signature verification and author authentication.

In this paper, we present the recent advances in the techniques of offline and online Arabic handwriting. Our survey is limited to

the work done in the last decade, for previous works see [38], [9]. This paper is organized as follows. In Section 2, a quick

background about the field, in which Arabic writing characteristics are discussed and an overview about the available databases

are given. Section 3 presents the different methodologies introduced in the last decades to solve the online and the offline

Arabic handwriting Recognition problem. We finally conclude the paper in Section 4.

2 BACKGROUND

In this section we summarize the main characteristics of the Arabic script and the major aspects of an optical character

recognition system (OCR). An OCR system consists of four main stages: data acquisition, preprocessing, representation and

features extraction, and recognition strategies. We also briefly overview most of the new trends of the techniques used in these

stages. Public databases that are used in this field are also presented.

2

A. Characteristics of Arabic Script

Arabic script (machine-printed or handwritten) has special characteristics that differentiate it from many other live languages.

The following points summarize the main characteristics of Arabic script (see Fig. 1 and Table 1 for an outline of the Arabic

script and Arabic Alphabets):

• Arabic script is formed by an Alphabet that consists of 29 letters, and is written from right to left.

• Arabic text (machine printed or handwritten) is cursive and Arabic letters are normally connected on a baseline (a

medium line in the Arabic word in which all the connections between the successive characters take place.)

• An Arabic letter might have up to four different shapes, depending on its position in the word. Table 1 shows the

variation of shapes of the Arabic characters according to their positions in the word.

• Some Arabic characters may have exactly the same shape, and are distinguished from each other only by addition of

diacritics. Namely, a dot, double dots, or triple dots. These dots may appear above or below the baseline. It is worth

noting that any erosion or deletion of these dots results in a wrong classification of the character.

• Arabic words are formed by connecting some letters together. However, some Arabic characters are not connectable

with the succeeding character. Therefore, if one or more of these characters exist in a word, the word is divided into

two or more subwords. A subword can be one letter, two letters, or group of letters, as shown in Fig. 1.

• Another feature of the Arabic writing is the ligature. A ligature is the combination of two characters to form a unit

shape, see Fig. 1. Ligatures occur only in some fonts, for example the two characters Noon نــ and Meem مــ can take the

shape نمـ in the "Simplified Arabic" or the shape نمـ in the "Traditional Arabic" as in Fig. 1. Ligatures form a challenge to

most AOCR systems.

• Also two letters can overlap to raise a problem for the segmentation using simple horizontal projection.

• Furthermore, characters of the same font have different sizes, i.e. characters may have different widths even though the

two characters have the same font and point size.

• Fortunately, Arabic characters can be represented using only 34 unique characters after removing the diacritics, and

removing the Middle and End characters that have the same shape as the start characters, see Table 2.

Figure 1. Some characteristics of the Arabic script.

B. Arabic Databases

Databases are cornerstone for any OCR system. They contain different samples that represents the class of objects the system

intends to recognize. They are necessary resources to the advances of the research field, where they form a common ground for

the performance evaluation of the different approaches proposed to solve the OCR problem. Four databases for the Arabic

Optical Character Recognition (AOCR) are now available to the research communities. Namely: The IFN/ENIT database [35]

The ARABASE database [8], and the ADAB database (). In the following we briefly describe such databases.

1) IFN/ENIT Database: Pechwitz et. al.) [35] introduced the IFN/ENIT database of Arabic handwritten names of

Tunisian towns/villages. It contains more than 2200 binary images of handwriting sample forms from 411 writers, about 26,000

binary word images have been isolated from the forms and saved individually for ease of access. A ground truth file for each

word in the database has been compiled. This file contains information about the word such as the position of the words base

line, and information on the individual used characters in the word. The IFN/ENIT database can be downloaded from

(http://www.ifnenit.com) .

2) ARABASE Database: Ben Amara et. al. [8] introduced the ARABASE database in 2005 for the research of Arabic

offline and online handwriting and machine-printed text recognition. The database contains digital images of documents, text

phrases, words/sub-words, isolated characters, digits, numerals, and signatures. The data corresponds to a variety of lexes (cities

 إنما الأمم الأخلاق مابقيت فإن هم ذهبت أخلاقهم ذهبوا

Baseline Overlap Ligature Word Sub-word

http://www.ifnenit.com/

3

name, literal amounts, isolated characters, digits, free texts, etc.). Figure 2. Illustrate the different types of Arabic writing in the

ARABASE database.

3) ADAB databases: The database ADAB (Arabic DAtaBase) [14],[15] was developed in a cooperation between the

Institut für Nachrichtentechnik (IfN) and the Ecole Nationale d’Ingènieurs de Sfax (ENIS), Research Group on Intelligent

Machines (REGIM), Sfax, Tunisia. The database in version 1.0 consists of 15,158 Arabic words handwritten by more than 130

different writers. The text written is from 937 Tunisian town/village names. The ADAB database is made available to the test

the candidate systems submitted to the Arabic online handwriting recognition competition, ICDAR 2009.

C. CAHRACTER RECOGNITION SYSTEMS

TABLE 2: The 34 unique shapes of the Arabic characters.

TABLE 1. The different shapes of the Arabic characters

that arise from the different position of the character within

a word (E=End, M=Middle, B=Beginning, I=Isolated).

No.
Char.

Name
E M B I

1 'Alif ا ا ـا ـا
2 Ba ب بـ ـبـ ـب
3 Ta ت تـ ـتـ ـت
4 Tha ث ثـ ـثـ ـث

5 Jeem ج جـ ـجـ ـج
6 H'a ح حـ ـحـ ـح
7 Kha خ خـ ـخـ ـخ
8 Dal د د ـد ـد
9 Thal ذ ذ ـذ ـذ

10 Ra ر ر ـر ـر
11 Zeen ز ز ـز ـز
12 Seen س سـ ـسـ ـس
13 Sheen ش شـ ـشـ ـش
14 S'ad ص صـ ـصـ ـص
15 Dhad ض ضـ ـضـ ـض
16 DTa ط طـ ـطـ ـط
17 DTha ظ ظـ ـظـ ـظ
18 Ein ع عـ ـعـ ـع
19 Ghein غ غـ ـغـ ـغ
20 Fa ف فـ ـفـ ـف
21 Qaf ق قـ ـقـ ـق
22 Kaf ك كـ ـكـ ـك
23 Lam ل لـ ـلـ ـل
24 Meem م مـ ـمـ ـم
25 Noon ن نـ ـنـ ـن
26 Ha ه هـ ـهـ ـه
27 Waw و و ـو ـو
28 Ya ىـ ى يـ ـيـ

29 Hamza ء أ، إ، ؤ، ئ، ئـ

Figure 2. Illustration of a few entries in the IFN/ENIT

database: (Pechwitz, 2002).

Figure 3. Illustration of a few characteristics of Arabic

writing in the ARABASE database: : (a) Different sub-

word of machine-printed text, (b) writing with diacritics,

(c) free handwriting, (d) Historical handwritten documents,

(e) multi-font machine-printed text, (Ben Amara, 2005).

4

The general model of Arabic optical character recognition (AOCR) systems can be described, likewise most of the pattern

recognition systems, in terms of four stages: preprocessing, segmentation, feature extraction, and classification.

• In the preprocessing is a collection of operations that apply some digital filters that enhance the document image by

reducing noise and distortion, and hence improve the recognition process. It may also include a thinning step to extract

the skeleton of the word to facilitate the segmentation and the feature extraction stages.

• The segmentation stage decomposes the document into text and graphics, lines of a paragraph, and characters of a

word. This stage is a cornerstone to most of the character-based method and the recognition rate depends solely on the

results of this stage.

• The feature extraction stage analyzes a text segment and selects a set of features that can be used to uniquely identify

the text segment.

• Classification is the main stage of any OCR system. It uses the extracted features from the previous stage to recognize

the text segment according to different methods, which are discussed in the following sections.

Some systems use a further post-processing stage can be included to improves the recognition by refining words recognition by

using context or word validation by using a dictionary search.

There are two methodologies which have been applied to both printed and handwritten Arabic character recognition, holistic

and analytical methodologies. In the holistic methodology, there is no attempt to identify characters individually; the

recognition is globally performed on the whole representation of words. Methods in this category include dynamic

programming, neural networks, probabilistic framework, and expert systems. In the analytical strategies, words are considered a

sequence of connected characters or small units which may be a part of a character. The recognition is then performed at the

character or the small units level. In later segmentation step in order to segment a word into isolated characters. Having good

segmentation technique is essential for having a more reliable Arabic DIA system.

Handwriting recognition systems can be classified, according to the data acquisition stage, into two main categories, namely,

online and offline systems. Online recognition is performed as the text to be recognized is written. Therefore, the process of

handwriting has to be captured online, e.g., using some pressure sensitive devices. They provide rich sequences of sensor data

including geometrical positions of the stylus as well as temporal information about the writing process, which is the big

advantage of online approaches. In contrast, offline recognition is performed after the text has been written. For this purpose,

images of the handwriting are processed, which are captured using a scanner or a digital camera. In the following sections we

summarize the reported result of both online and offline results that were published in the last decade.

3 ONLINE HANDWRITING RECOGNITION METHODS

It is commonly agreed that online handwriting recognition corresponds to the easier problem. Consequently, at least for certain

application domains like pen-based input interfaces substantial progress has been achieved, se for example the promising results

of the last Online Arabic Handwriting Recognition Competition [14],[15]. In fact, commercially available products suggest that

the problem of online HWR can be considered as being close to solved [50]. In the three ICDAR competitions [25], [26], [27]

specially the last one, interesting results have been reported for the online Arabic handwriting recognition. It was found that the

best systems that show very high recognition rate are, on one hand, use neural networks based techniques, and on the other

hand, the system does not use any normalization or feature extraction; they are the system works on the raw data directly

[14],[15]. The proposed classification methods was mainly based on neural networks and Hidden Markov Models (HHM), the

systems that are build using Neural Networks overcome systems that use Hidden Markov Models (HMM) [13] with less

running time and more recognition accuracy. [17], [50]. In the following we summarize the results of the main contributions in

online Arabic handwriting recognition.

Mezghani et al. developed a new representation used in online Arabic handwritten character recognition with Kohonen

associative memory [28],[29],[30]. This representation based on statistics of features based on histograms of tangents and

tangent differences at regularly spaced points along the character signal. For distance functions, they used Euclidean distance

and investigated the Kullback-Leibler divergence and the Hellinger distance functions to measure the distance between the

distributions. Furthermore, they performed some pruning and filtering operations on the trained memory to improve the

classification accuracy. They used Kohonen neural network (SOM) in the recognition step that is trained using the proposed

representation and compare its performance with K-nearest neighbor as benchmark.

Zafar et al. used backpropagation neural network (BPN) as a classifier in the second algorithm. They concentrated on sub-

character primitive feature extraction technique that did not utilize resizing of characters. Direction encoding was used to

shorten the characteristics of characters and they combined them to create a global feature vector. The database had 2000

5

characters collected from 40 subjects using tablet Summa Sketch III. Their script classifier requires training on different

surfaces because the writing styles may vary considerably on these surfaces to increase the recognition rate (Zafar 2006).

In Mirvaziri et. al. [31], the authors investigated and evaluated several handwriting recognition algorithms with respect to the

size of database, language and recognition rate Two of these algorithms deal with the online handwritten recognition. The first

one uses a recurrent neural network (RNN) for its ability to process data with long time dependencies. They combined CTC

network (Connectionist Temporal Classification) and LM (Language Model). CTC is an objective function designed for

sequence labeling with RNNs but it does not require pre-segmented training data to transform the network outputs into labeling.

They used IAM – On DB dataset that consists of pen trajectories collected from 221 different writers using a 'smart white board'

as the training, validation and testing sets[18].

Razzak et al. [41] presents a segmentation-free approach for recognition of online Urdu handwritten script using hybrid

classifier, HMM and fuzzy logic. Their trained data set consisting of HMMs for each stroke is further classified into 62 sub-

patterns based on the primary stroke shape at the beginning and end using fuzzy rule. Fuzzy linguistic variables based on

language structure are used to model features and provide suitable result for large variation in handwritten strokes. They applied

data smoothing on chain code of the strokes to remove the zigzag path because the unsmooth data may produce problem for

some features like cusp extracted from upward or downward sharp turning point as [42][43]. Twenty-six time variant structural

and statistical features are extracted for the base strokes. Their experimental results show that the fuzzy classification into sub-

patterns increases the efficiency and decreases the computational complexity due to reduction in data set size. The hybrid

HMM–fuzzy technique is efficient for large and complex data set. It provided 87.6% and 74.1% for Nasta’liq and Nasakh,

respectively, on 1800 ligatures.

In [22], the authors proposed two methods for recognizing handwritten Arabic and Chinese words and phrases. The first

method, Symbolic Indirect Correlation (SIC), can be used in both online and offline recognition. The SIC method was

introduced by the same authors in [35], [36]. It reassembles variable length segments of an unknown query that match similar

segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and

of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter

n-grams. The second method, Style Constrained Classification (SCC), is based on the notion that the style (distortion or noise)

of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It

is adaptive in the sense that, with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the

writer of the unknown query

4 OFFLINE RECOGNITION METHODS

Offline recognition systems usually work on the scanned images of the documents. Therefore, the temporal information

associated to the pin-point sequence, which are available to the online system, is now not available. The loss of such temporal

information makes the offline OCR task harder than that of the online. Representation of the handwriting plays a crucial role in

the performance of the recognition system. Accordingly, many representation techniques were proposed to extract a

discriminative feature of the handwriting. These representations includes, structural [32], graph representation [33], etc. The

classification methodologies proposed in the recent research are mainly Neural Networks [44], [48] and Hidden Markov field,

many other methods were proposed, which we summarize the main work done in the last decade in this section.

Mahmoud and Mahmoud [24] used Hartley transform for the optical recognition of printed (not handwritten) Arabic characters.

Their approach starts by extracting the contours of the primary parts of the characters. The Fast Hartley Transform (FHT) is

then applied to the contours of each character and only 10 Hartley descriptors are extracted. The dots and holes of the character

are also used besides the 10 descriptors to enhance the recognition rate. The authors reported a recognition rate of 97.3%, a

rejection rate of 2% and an error rate of 0.7%. They also observed that their technique (based on Hartley descriptors) were

comparable to the FFT-based Fourier descriptors in terms of recognition rate. The Hartley and FFT-based descriptors were

found to give higher recognition rate than the Modified Fourier Spectrum (MFS) descriptors. In all their experiments, they used

the nearest neighbor classifier.

Ziaratban and Faez [53] presented an approach for deslanting Farsi/Arabic scripts. In the first phase, this approach estimate the

overall tilt of a handwritten word based on directional filters. After overall deslanting, they apply non-uniform slant estimation

algorithm to compute the remaining slant of each near-vertical stroke of the word separately. A non-uniform slant correction

algorithm is then used to reduce the remaining slants of each candidate stroke keeping the distortions of other strokes of the

word at a minimum level. When the authors compared this approach and other prevalent methods (based on chain codes and

vertical projection), they found that the proposed gives the least estimation error and runs the fastest.

6

Plotz and Fink [39] surveyed the techniques of offline handwriting recognition that are based on Markov models (MMs). They

started by describing the architecture typical to MM-based offline handwriting recognition systems. Then, they presented a

review of the solutions proposed in the literature for the open problems associated with the use of MMs for handwriting

recognition.

Benjelil et al. [11] proposed a system for page segmentation and classification of complex documents. The system is to be used

to determine the layout of the pages of the input document. This information is fed into the OCR system along with the input

document. The proposed system is based on steerable pyramid transform. The features extracted from pyramid sub-bands are

used to locate and classify regions into text (either machine-printed or handwritten) and non-text (images, graphics, drawings or

paintings) that may exist in some noise-infected, deformed, multilingual, multi-script document images. Such documents can

contain tabular structures, logos, stamps, handwritten script blocks, photographs, etc. They used a dataset of 1,000 official

complex document images to test their system against other state-of-the-art methods. The results showed that their system

achieved higher accuracy than its competitors.

Al-Shaher and Hancock [3] presented a statistical approach for recognizing 2D shapes which are represented as an arrangement

of curves or strokes. The approach is a hierarchical one which mixes geometric and symbolic information in a three-layer

architecture. Each curve primitive is represented using a point-distribution model which describes how its shape varies over a

set of training data. Shapes are decomposed into an arrangement of primitives and the global shape representation has two

components. The first of these is a second point distribution model that is used to represent the geometric arrangement of the

curve centre-points. The second component is a string of stroke labels that represents the symbolic arrangement of strokes. They

use recover the stroke parameters, shape-alignment parameters and stroke labels by applying the expectation maximization

(EM) algorithm. The authors applied the resulting shape-recognition method to handwritten Arabic character recognition and

achieved a recognition accuracy of 97%.

Lopresti et al. [22] proposed two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), for

recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown

query that match similar segments of labeled reference words. For recognition, it uses the correspondence between the order of

the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language

context in the form of letter n-grams. The other method, SCC, is based on the notion that the style (distortion or noise) of a

character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is

adaptive in the sense that, with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the

writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references.

Al-zoubaidy [5] described a methodology for feature selection in unsupervised learning for application in Arabic handwritten

character recognition. The methodology uses a multiobjective genetic algorithm that minimizes the number of features. A

validity index that measures the quality of clusters have been used to guide the search towards the more discriminate features

and the best number of clusters. Experimental analysis of the method on Arabic handwritten character recognition indicated an

improvement in the recognition speed as well as the recognition accuracy. It achieved a 30-50% reduction of features with

trivial drop in recognition accuracy. The obtained identification accuracy was 95% for the training set, 89% for the validation

set, and 85.3% for the test set.

Amrouch et al. [7] addressed the offline recognition of isolated Arabic handwritten characters. Their system relied on Hidden

Markov Models (HMMs). The Hough accumulator of the character image in this system is partitioned into equal horizontal

bands to be used to extract directional information. This information is translated into sequences of observations that are used to

train the model for each character during the learning step. The system was experimented on 42 Arabic handwritten isolated

characters extracted from the base of characters. 50% of these served for the phase of learning, and 50% for the tests. The

proposed system achieved a recognition rate of 85.71%.

Amin in [6] applied Inductive Logic Programming (ILP) to the automatic recognition of Arabic characters. His system used a

structural approach for feature extraction (based on structure primitives such as curves, straight lines and loops in similar

manner to which human begins describe characters geometrically). The proposed system was tested on a sample of handwritten

characters from several individuals whose writing ranged from acceptable to poor in quality and the average correct

recognitions rate obtained using cross-validation was 86.65% while the rejection rate was 96.95%

Alshebeili et al.[4] presented an Arabic character recognition algorithm using 1-D slices of the character Fourier spectrum. It

estimates the Fourier spectrum of the character’s projections on the X- and Y-axes, and the features are extracted from this 2-D

7

spectrum. The features of 10 sets of characters were used as model features. The features obtained this way are invariant to

changes in scale, orientation and shift. To classify an input character, the algorithm extracts its feature vector and measures its

distance from the model features. The algorithm outputs the model whose feature vector is closest to the feature vector of the

input character. Experimental results have shown that the presented algorithm is capable of recognizing Arabic characters with

a recognition rate of 99.06%, using 10 features of the X-projection. Taking 10 additional features from the Y-projection

improves the recogntion rate to 99.94%.

Mozaffari et al. [34] proposed a fast method for extracting dots from cursive Farsi/Arabic handwriting and suggested a

technique for utilizing such dots in lexicon reduction. The technique involves extraction and representation of number and

position of dots from offline handwritten words to eliminate unlikely candidates. The system was tested on using a set of 12,000

handwritten word images and a lexicon reduction of 93% with accuracy of 85% was obtained. The incorporation of the

proposed lexicon reduction algorithm achieved a speedup factor of 2 as well as 13% improvement in recognition rate.

Farooq et al. [16] proposed a phrase-based post-processing technique for correcting the output of an arbirary OCR. The system

treats the OCR as a black box and adapts statistical machine translation techniques to correct the output of the OCR. The system

was able to improve the recognition rate of an Arabic OCR developed by Sakhr from 71.1% to 84.8% on a dataset containing

around 400 scanned documents.

Khorsheed [21] proposed a method that does not require segmentation into characters, and is applied to cursive Arabic script.

The method trains a single hidden Markov model (HMM) with the structural features extracted from the manuscript words.

These structural features are obtained by decomposing the skeleton graph of the word into a sequence of links (in the order in

which the word is written). Then, each link is further broken into small line segments using line approximation. The line

segment sequence is transferred into a sequence of discrete symbols using vector quantization and finally presented to the

HMM to obtain an sequence of the letters associated with the input pattern. To assess the performance of the proposed method,

samples extracted from a historical handwritten manuscript were used (written by a single person). The system achieved a

recognition rate of 81%. The use of an Arabic spell-checker helped increase the recognition rate to 97%. However, these

recognition rates are expected to decrease when including more handwritten fonts.

Abdulla et al.[1] described a segmentation algorithm using Rotational Invariant Segments Features (RISF). The algorithm uses

a dynamic feature extraction technique to evaluate a large set of curved segments or strokes through the image of the input

Arabic word or subword. It then nominates a small “optimal” subset of cuts for segmentation. All the directions of stroke are

converted to two main segments: '+' and w'-' RISF. The RISF algorithm was tested on databases designed by the authors and

achieved a segmentation rates between 90.58% and 95.66%.

Xiu et al. [51] presented a probabilistic segmentation model. It starts by conducting a contour-based over-segmentation to cut

the word image into graphemes. The graphemes are sorted by the algorithm into 3 queues, which are character main parts, sub-

parts (diacritics) above and below main parts, respectively. The confidence for each character is calculated by the probabilistic

model, taking into account both of the recognizer output and the geometric confidence besides with logical constraint. Then, the

global optimization is conducted to find optimal cutting path, taking weighted average of character confidences as objective

function. The method was tested on various writing styles and an average recognition rate of 59.2% was achieved.

Kessentini et al. [20] presented a multi-stream feature approach for offline handwritten word recognition. The proposed

approach combines low-level feature streams, namely (a) density-based features extracted from 2 different sliding windows

with different widths, and (b) contour-based features extracted from upper and lower contours. The approach was tested on a

Latin script database as well as an Arabic script one. The recognition performance was 89.8% for the Latin database and 79.8%

for the Arabic one.

Al-Ohali and Brook [2] presented a holistic technique for classifying and retrieving historical Arabic handwritten (HAH)

documents. The algorithm proceeds as follows. First, the HAH manuscript’s image is segmented into words and each word is

segmented into its connected parts. To improve the segmentation, the overlap between the adjacent connected parts of a single

word is reduced by a stretching algorithm that increases the gap between the connected parts. After that, a variety of structural

and statistical features, devised specifically for Arabic text, are extracted from the connected parts and then combined into one

consolidated feature vector representing the word as a whole. A neural network is then used to learn and classify the input

vectors into word classes. These classes are then utilized to retrieve HAH manuscripts.

Benouareth et al. [12] described an offline unconstrained handwritten Arabic word recognition system based on segmentation-

free approach and semi-continuous hidden Markov models (SCHMMs) with explicit state duration. The described system

performs word recognition by using a proposed sliding window approach based on vertical projection histogram analysis of the

8

word and extracting a pertinent set of statistical and structural features from the word image. The authors compared three

distributions (Gamma, Gauss and Poisson) for the explicit state duration modeling where the Gamma distribution achieved the

best recognition accuracy. Several experiments have been performed in which the proposed system achieved recognition rates

ranging from 90.2 to 97.50.

5 CONCLUSION

In this paper, we presented the main advances in the online and offline Arabic handwriting recognition, and some of the

databases available to the research communities for this task. The online Arabic handwriting recognition systems have recently

achieved a very good advancement. Most of the proposed classification methods were mainly based on neural networks and

Hidden Markov Models (HHM), the systems that are build using Neural Networks overcome systems that use Hidden Markov

Models (HMM). Interestingly, some systems (Vision Objects, the winning system in the Last ICDAR 2009 competition)

reported a recognition rate of 100% with fast processing speed. It worth noting that the system that achieved such excellent

performance does not use any normalization or feature extraction; the system works on the raw data directly. These results

indicates that the online handwriting recognition is almost a solved problem.

Offline recognition systems usually solve harder problem than the online problem. This is due to the lack of the temporal

information associated to the pin-point sequence, which are available to the online system. Representation of the handwriting

plays a crucial role in the performance of the offline recognition system. Accordingly, many representation techniques were

proposed to uniquely represent the different parts of the handwriting text. These representations include structural graph

representation. The classification methodologies proposed in the recent research are mainly Neural Networks, Hidden Markov

field; many other methods were also proposed. Most of the proposed systems use segmentation-based methodologies.

Segmentation is the main source for erroneous results; this is due to the cursive nature of the Arabic script and the different

styles of the writers. For that, the best performance achieved until now for the offline systems id about 97% for constraint

writing, and fell into about 60% in case of free-writing.

REFERENCES

[1] Abdulla, A. Al-Nassiri and R. Abdul Salam, "Offline Arabic Handwritten word segmentation using rotational invariant Segments

Features", The International Arab Journal of Information Technology, vol. 5. no. 2, pp. 200, 2008.

[2] Z. Al Aghbari, and S. Brook, "HAH manuscripts: A holistic paradigm for classifying and retrieving historical Arabic handwritten

documents", Expert Systems with Applications, Vol. 36, No. 8, pp.10942-10951, 2009.

[3] Al-Shaher and E.R. Hancock, "Arabic Character Recognition Using Structural Shape Decomposition", Lecture Notes in Computer

Science, Computer Analysis of Images and Patterns, Vol. 2756, pp. 478-486, 2003.

[4] S.A. Alshebeili, A.F. Nabawi and S.A. Mahmoud, "Arabic character recognition using 1-D slices of the character spectrum", Signal

Processing, vol. 56, No. 1, pp. 59-75, 1997.

[5] L.M. Al-zoubaidy, "Efficient Genetic Algorithms for Arabic Handwritten Characters Recognition", Advances in Soft Computing,

Applications of Soft Computing, Vol. 36, pp. 3-14, 2006.

[6] Amin, "Recognition of Hand-Printed Characters Based on Structural Description and Inductive Logic Programming", Pattern

Recognition Letters, Vol. 24, pp. 3187-3196, 2003.

[7] M. Amrouch, M. Elyassa, A. Rachidi and D. Mammass, "Off-Line Arabic Handwritten Characters Recognition Based on a Hidden

Markov Models", Lecture Notes in Computer Science, Image and Signal Processing, Vol. 5099, pp. 447-454, 2008.

[8] N. Ben Amara, O. Mazhoud, N. Bouzrara and N., Ellouze, "ARABASE: A Relational Database for Arabic OCR Systems", The

International Arab Journal of Information Technology, vol. 2, No. 4, p. 259, 2005.

[9] N. Arica and F.T. Yarman-Vural, "An overview of character recognition focused on off-line handwriting". IEEE Trans. Syst. Man

Cybern. C Appl. Vol 31, no. 2, pp. 216–232, 2001.

[10] S. M. Awaidah, S. A. Mahmoud. A multiple feature/resolution scheme to Arabic (Indian) numerals recognition using hidden

Markov models. Signal Processing, 89, 1176–1184, (2009).

[11] M. Benjelil, S. Kanoun, R. Mullot and A.M. Alimi, "Complex documents images segmentation based on steerable pyramid

features", International Journal on Document Analysis and Recognition, Vol. 13, No. 3, pp. 209-228, 2010.

[12] Benouareth, A. Ennaji and M. Sellami, M., "Semi-continuous HMMs with explicit state duration for unconstrained Arabic word

modeling and recognition". Pattern Recognition Letters, vol. 29, No. 12, pp. 1742-1752, 2008.

[13] F. Biadsy, J. El-Sana and N. Habash, "Online arabic handwriting recognition using hidden markov models", in Proc. of the 10th

International Workshop on Frontiers in Handwriting Recognition (IWFHR), pp. 85–90, 2006.

[14] H. El Abed and V. Märgner, "ICDAR 2009-Arabic handwriting recognition competition", International Journal on Document

Analysis and Recognition, pp. 1433–2833, 2010.

[15] H. El Abed, M. Kherallah, V. Märgner and A.M. Alimi, "On-line Arabic handwriting recognition competition: ADAB database and

participating systems". International Journal on Document Analysis and Recognition, pp. 1388-1392, 2010.

9

[16] F. Farooq, D. Jose and V. Govindaraju, "Phrase-based correction model for improving handwriting recognition accuracies". Pattern

Recognition, vol. 42, No. 12, pp. 3271-3277, 2009.

[17] H. Fujisawa, "Forty years of research in character and document recognition—an industrial perspective", Pattern Recognition. Vol

41, pp. 2435–2446, 2008.

[18] Graves, S. Fernàndez and J. Schmidhuber, "Multi-dimensional recurrent neural networks", in Proc. of the International Conference

on Artificial Neural Networks, Porto, Portugal, 2007.

[19] Graves, S. Fernandez, M. Liwicki, H. Bunke and J. Schmidhuber, "Unconstrained online handwriting recognition with recurrent

neural networks". Advances in Neural Information Processing Systems 21, NIPS'21, pp 577–584, 2008.

[20] Y. Kessentini, P. Thierry and A. Ben Hamadou, "Off-line handwritten word recognition using multi-stream hidden Markov

models", Pattern Recognition Letters, vol. 31, No. 1, pp. 60-70, 2010.

[21] M.S. Khorsheed, "Recognising Handwritten Arabic Manuscripts Using a Single Hidden Markov Model", Pattern Recognition

Letters, vol. 24, pp. 2235-2242, 2003

[22] D. Lopresti, G. Nagy, S. Seth and X. Zhang, "Multi-character Field Recognition for Arabic and Chinese Handwriting", Lecture

Notes in Computer Science, Vol. 4768, Arabic and Chinese Handwriting Recognition, pp 218–230, 2008.

[23] L.M. Lorigo, and V. Govindaraju, "Offline Arabic Handwriting Recognition: A survey", IEEE Trans. on Pat. Anal. and Mach. Int

(PAMI), Vol 28< no. 5, pp. 712–724, 2006.

[24] S.A. Mahmoud, and A.S. Mahmoud, "The use of Hartley transform in OCR with application to printed Arabic character

recognition". Pattern Analysis & Applications, vol. 12, No. 4, pp. 353-365, 2009.

[25] V. Margner, M. Pechwitz, and H. El Abed, "ICDAR 2005—Arabic handwriting recognition competition", in Proc. of 8th

International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 70–74, 2005.

[26] V. Margner and H. El Abed, "ICDAR 2007—Arabic handwriting recognition competition", in Proc. of the 9th International

Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 1274–1278, 2007.

[27] V. Margner and H. El Abed, "ICDAR 2009 Arabic handwriting recognition competition", in Proc. of the 10th International

Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 1383–1387, 2009.

[28] N. Mezghani, A. Mitiche, and M. Cheriet, "A new representation of shape and its use for high performance in online Arabic

character recognition by an associative memory", International Journal on Document Analysis and Recognition (IJDAR), Vol 7, no

4, pp. 201-210, 2005.

[29] N. Mezghani, A. Mitiche and M. Cheriet, "A new representation of shape and its use for high performance in online Arabic

character recognition by an associative memory", International Journal of Document Analysis, Vol. 7, no 4, pp 201–210, 2005.

[30] N. Mezghani and A. Mitiche, "A Gibbsian Kohonen Network for Online Arabic Character Recognition". Lecture Notes in

Computer Science, Advances in Visual Computing, Vol. 5359, pp. 493–500, 2008.

[31] H. Mirvaziri, M.M. Javidi and N. Mansouri, "Handwriting Recognition Algorithm in Different Languages: Survey", Lecture Notes

in Computer Science, Vol. 5857, Visual Informatics: Bridging Research and Practice, pp. 487–497, 2009.

[32] M. G. Mostafa, "An Adaptive Algorithm for the Automatic Segmentation of Arabic Characters", in Proc. of the 17th National

Conference on Computers, Al-Madinah Al-Munawwarah, Saudi Arabia, December 15-18, 2003.

[33] M.G. Mostafa, "Optical Character Recognition of Handwritten Arabic Numerals Using Structured Graph", in Proc. of the 3rd

International Conference on Intelligent Computing and Information Systems, Cairo, Egypt 15-18 March, pp. 275-280, 2007.

[34] S. Mozaffari, K. Faez, V. Margner, and H. El-Abed, "Lexicon reduction using dots for off-line Farsi/Arabic handwritten word

recognition", Pattern Recognition Letters, vol. 29, No. 6, pp. 724-734, 2008.

[35] G. Nagy, S.C. Seth, S.K. Mehta and Y. Lin, "Indirect Symbolic Correlation Approach to Unsegmented Text Recognition", in Proc.

of Conference on Computer Vision and Pattern Recognition, Workshop on Document Image Analysis and Retrieval (DIAR 2003),

Madison, WI, pp. 22–32, 2003.

[36] G. Nagy, D. Lopresti, M. Krishnamoorthy, Y. Lin, S. Seth and S. Mehta, "A Nonparametric classifier for unsegmented text", in

Proc. of IS&T-SPIE International Symposium on Document Recognition and Retrieval, San Jose, pp. 102–108, 2004.

[37] M. Pechwitz, S.S. Maddouri, V. Märgner, N. Ellouze, and H. Amiri, "IFN/ENIT-DATABASE OF HANDWRITTEN ARABIC

WORDS" , in the 7th Colloque International Francophone sur l'Ecrit et le Document , CIFED 2002, Hammamet, Tunis, Oct. 21-23,

2002.

[38] R. Plamondon, and S.N. Srihari, "On-line and off-line handwriting recognition: a comprehensive survey", IEEE Trans. Pattern

Anal. Mach. Intell., Vol 22, no. 1, pp. 63–84, 2000.

[39] T. Plotz and J.A. Fink. "Markov models for offline handwriting recognition: a survey", International Journal on Document Analysis

and Recognition, Vol. 12, No. 4, pp. 269-298, 2009.

[40] M.I. Razzak, S.A. Hussain and M. Sher, "Combining online and offline preprocessing for online Urdu character recognition", in

Proc. of International Multiconference of Engineers and Computer Scientists 2009 (IMECS 09), Hong Kong, 2009.

[41] M.I. Razzak, S.A. Hussain and M. Sher, "Numeral recognition for Urdu script in unconstrained environment", in Proc. of

International Conference on Engineering and Technology, Islamabad, 2009.

[42] M.I. Razzak, F. Anwar, S.A. Husain, A. Belaid and M. Sher, "HMM and fuzzy logic: A hybrid approach for online Urdu script-

based languages’ character recognition", Knowledge-Based Systems, Vol. 23, no. 8, pp. 914–923, 2010.

[43] Sakhr® OCR System. Web Site: http://www.sakhr.com/OCR.aspx (Accessed November 2010).

[44] M. F. Tolba and G. M. Abdul Moty, “A Comprehensive Survey on Arabic Optical Characters Recognition,” The 1st International

Conference of Linguistic Engineering, Cairo, Egypt, October 1998.

[45] M. F. Tolba and S. K. Fathy. “A Structural Approach of an Arabic Character Recognition,” The 2nd International Conference of

Linguistic Engineering, Cairo, Egypt, October 1998.

http://www.sakhr.com/OCR.aspx

10

[46] M. F. Tolba, G. M. Abdul Moty and A. M. Mahmoud, “Self-Organizing feature Maps For Arabic Sub-Words Recognition,” The

International Conference on Industrial Electronics, IETA2001, Electronics Research Institute (ETI), IEEE Industrial Electronics

Society & University of Bridgeport, Cairo, Egypt, December 2001.

[47] M.F. Tolba, G.M. Abdul Moty and A.M. Mahmoud, "Segmentation Free Approach for Printed Arabic Text Recognition",

International Journal of Computers and Their Applications (ISCA), Vol 10, no. 2, pp. 94-102, 2003.

[48] M. F. Tolba, M. S. Abdel Wahab, I. A. Taha and A. M. Al-Shishtawy, “A Secure Grid Enabled Signature Verification System,”

2nd International Conference on Intelligent Computing and Information Systems (IJICIS), Cairo, Egypt, March 2005.

[49] M.F. Tolba, "Arabic Optical Character Recognition: State of the Art", The Nineth International Conference on Language

Engineering, Cairo, Egypt, 2009.

[50] Vision Objects. Myscript handwriting recognition engine. Web Site: http://www.visionobjects.com/handwriting-recognition/how-

doesmyscript-work/ (Accessed November 2009).

[51] P. Xiu, L. Peng, X. Ding and H. Wang, "Offline Handwritten Arabic Character Segmentation with Probabilistic Model", Lecture

Notes in Computer Science, vol. 3872, Document Analysis Systems VII, pp. 402-412, 2006.

[52] M.F. Zafar, D. Mohamad and M.M. Anwar, "Recognition of online isolated handwritten characters by backpropagation neural nets

using sub-character primitive features", in Proc. of 10th IEEE International Conference on Information Technology, INMIC 2006,

Islamabad, Pakistan, pp. 157–162, 2006.

[53] M. Ziaratban and K. Faez, "Non-uniform slant estimation and correction for Farsi/Arabic handwritten words", International Journal

on Document Analysis and Recognition (IJDAR), Vol. 12, no. 4, pp. 49–267, 2009.

http://www.visionobjects.com/handwriting-recognition/how-doesmyscript-work/
http://www.visionobjects.com/handwriting-recognition/how-doesmyscript-work/

An NLP-Based Fully Distributed Arabic Search Engine (1)
Taghride Anbar

Ain Shams University, Al-Alson Faculty

Taghride@coltec.net

Abstract

This prototype search engine is sponsored by ITIDA (Information Technology Industry Development Agency). It

is one of ITAC projects (Information Technology Collaboration), of the type ARP program (Advanced Research

Project). ITAC projects aim at “promoting Industry/Universities collaboration”. The partners in this project are

“Faculty of Computer & Information Sciences” at Ain-Shams University, and COLTEC (Computer & Language

Technology) Company. Coltec’s role is to build a single-CPU NLP-based Arabic search engine. The role of the

Faculty of Computer & Information Sciences is to set up the system as a web search engine; this includes

developing parallel web crawler and page ranking.

Our paper aims at representing the NLP techniques introduced to this prototype search engine; accordingly, it is

out of the scope of the paper to characterize efforts and techniques applied on the different components of the

system.

 The target of our NLP techniques is to reduce as much as possible the linguistic distortion that affects both

indexing and searching documents. Before introducing our NLP work, we discussed the methodology of

automatic suffix splitting and illustrated how far it is inconvenient for processing Arabic. In the prototype search

engine, the applied NLP techniques handle two sources of linguistic distortion; namely the writing and the

affixation issues.

I. Introduction

Search engines are one of the main topics related to the domain of information retrieval, sometimes, named

text retrieval. The continuous stream of textual contents on the web creates urgent need to search engines: no

user can browse all of the web documents to get information on a certain concept. The user has to depend on a

system that is capable of performing this task automatically, quickly and accurately. The user has to represent

the required concept in a suitable word, a group of words, or a phrase. Doing that, a query has been built. A

list of search results points to the documents that include the query word(s); each item in the list points to a

document. When clicking on any item, the connected document opens. In few words, a web search engine

aims at searching in a huge pool of natural language documents to return the set of documents whose content

matches the query subject. Normally, the documents retrieved in a list are arranged in a way that the

documents evaluated by the system as most like the query come on the top of the list. The statistical method is

the most common method applied in Search engines.

II. Indexing & Querying

Though the diversity of methodology, design and structure of search engines, two components are basic in any

search system: the indexing and the querying components.

The indexing component is an essential subsystem of the Web Search Engine. From documents repository, it

extracts both content and attributes information and merges them into indexes, which facilitates fast and

accurate searches. The Indexing component should be capable of reading and extracting information from

various formats of files. In few words, Indexing is the overall process of extracting information, creating index

entries, and merging them into a large index that contains the sorted terms and their locations within the pool

mailto:Taghride@coltec.net

of indexed documents. The index unit is designed to execute all its tasks automatically and continuously so

that new updates being included and replaced old documents being omitted.

Without an indexing system, the application would scan every document in the document repository, which

requires considerable time and computing power.

 Among other preparatory operations that the indexing process executes, there are three operations in direct

relation to natural language;

1- Tokenization that returns texts into lists of words

2- Exclusion of stop words (relational or empty words) from being indexed: Prepositions, articles,

pronouns… are examples of empty words. Such words - contrary to the full words that carry lexical

meanings - have no lexical content. They are functional words that indicate relations among full

words. Stop words are of high frequency; they represent about one third of text content. If one third

of the words in a document are excluded from the indexing process, the indexing time and size will

surely improve, meanwhile the content will not be affected. In addition, no user builds a query about

a stop word. Based on these facts, almost all search engines do not include stop words in the index.

The exclusion process is performed by the help of a pre-defined list of stop words.

3- Returning the different forms of a word to their basic lexical item (an operation known as stemming):

words are the main way to express concepts, thus, when a user formulates a query, he means

inquiring a concept. The search, in return, uses the query word(s) as a means to search the concept.

In natural languages, full words are flexible; they may change their forms without changing their

conceptual content. In English, such changes mostly take place by adding suffixes: suffixes change

the lexical item (stem) “play” to: plays, played, playing… If the search is performed on words,

without the stemming operation, only, the form of the query word will be included in the search

results, the other forms will be dropped though they express the same concept. The word suffixes are

automatically removed according to a pre-defined list. Indexing stems guarantees -to a large extent-

that the required concept is widely covered independently from the linguistic variations. This

methodology of automatic Affix removal suits perfectly the English languages; the reason is that the

morphological system of English is relatively simple and limited. Meanwhile, This method does not

suit other European languages; the German language that widely uses compound nouns is an

example.

The querying component provides the search functions related to the index created by the Indexing

component. The output of this component represents a list of hits resulted by an inserted query with chosen

options. This list of search results are ordered by the Page Ranking module and viewed on the final interface.

To generate the text snippets of the results, the caller subsystem should retrieve the matched documents from

the document repository and extract the snippets according to the hit list.

The effectiveness of different search engines submits to continuous evaluation. The common

evaluation method is mapping precision against recall. TREC (Text Retrieval Conference) is one of

the most famous and important workshops in this domain.

III. NLP Track at TREC-5

The Text REtrieval Conference (TREC), is co-sponsored by the National Institute of Standards and

Technology (NIST), U.S. Department of Defense, Information Technology Laboratory's (ITL), Intelligence

Advanced Research Projects Activity (IARPA), and Retrieval Group of the Information Access Division

(IAD).

The first conference took place in November 1992. “its purpose was to support research within the

http://www.itl.nist.gov/
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.iarpa.gov/index.html
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.iarpa.gov/index.html
http://www.nist.gov/itl/iad/rg/index.cfm
http://www.nist.gov/itl/iad/index.cfm
http://www.nist.gov/itl/iad/index.cfm

information retrieval community by providing the infrastructure necessary for large-scale evaluation of text

retrieval methodologies…TREC has also sponsored the first large-scale evaluations of the retrieval of non-

English (Spanish and Chinese) documents”(TREC homepage: overview).

 In 1996, one of the tracks was dedicated to examine the impact of NLP techniques on text retrieval. Tomek

Strzalkowski summarized this track from his notes and Karen Spark Jones notes; ”NLP track has been

organized for the first time at TREC-5 to provide a more focused look at how NLP techniques can help in

achieving better performance in information retrieval…Five teams participated in this NLP track”

(http://www.dtic.mil).

 The conclusions are “This NLP track demonstrated that natural language processing techniques have solid

but limited impact on the quality of text retrieval, particularly precision. Techniques aimed at producing

higher quality queries, e.g., query expansion, constraints, appear to be more effective than those aimed

primarily at obtaining improved indexing of database documents. More work is needed before more

substantial gains can be seen” (http://www.dtic.mil).

 We judge these conclusions as not surprising; they are predictable. The language, subject to the NLP work

was English; a language with relatively simple linguistic structure. We believe that the processing

operations (mentioned above) are suitable and sufficient for search purposes; additional interference will

not be of remarkable advantage, it might degrade the search effectiveness.

 Are the conclusions of this track related specifically to English or extends to other languages even those

with complicated structures? The answer of this question was not apparent in Strzalkowski’s report. In all

cases, Since 1996, no other track was dedicated in TREC events to the NLP.

IV. Linguistic distortion in Arabic

The affixional system in Arabic is so rich that the variations of one lexical item like “مناضل “extends to about

2000 words: “ مهومناضل -ين مناضللل - مناضلو - ناضلمال... ”. Such affixes do not change the word’s lexical content;

they add to it detailed functional meanings. For human usage such richness is really fruitful; it allows the

speaker\writer to add as many details as required to the lexical content. For most of the automatic applications,

such details generate what we call “linguistic distortion”; search engines target searching concepts through

words; If the language affixation system produces loads of different words expressing one and the same

concept, the accuracy of search process will be highly affected. Linguistic distortion elimination by applying

the automatic suffix splitting methodology fails when dealing with Arabic:

1- The affixation system, in Arabic, is complicated. It is not just single suffixes:

up to three prefixes can combine together before a lexical item: “ بيتو بـ الـ ”,

two suffixes may follow a lexical item: “ و هممدرسـ ”,

lexical items accept compound prefixes and suffixes “ كمـ يـ تـ حديقـ ل ـف ”

2- Superficial segmentation misses the prefix\suffix validity which may lead to wrong segmentation:

ونعبدلــ ةـبعيـت - …

3- Some characters look like affixes, while they are part of the lexical item: ـريدف انوأ هـبيـن …

4- Affix\ lexical items validation has to be pre-defined. It is not an automatic act:

the lexical item : مهندس accepts the suffixes “ون ، ة”, while " ولد " does not accept those suffixes.

In addition to mentioned above, there are other types of linguistic noise (specific to Arabic) that affects

indexing & search processes:

a- In different languages, defining stop words is a simple task: “the, from, in, when” can easily be judged

as stop words. In Arabic, there are full words whose orthography is identical with that of stop words:

(stop word) من <> عن (stop word) ,(verb) نم … (proper noun) على <> على (stop word) ,(verb) عن <>

b- The Interaction between Affixes and lexical items may cause a kind of ambiguity:

تهم الـ → التهم م & ل واص فــ → فواصل ,الِ ت ه عـيـدـبـ → بعيد ل فواصِ & ب ـعـيـد &

http://www.dtic.mil/
http://www.dtic.mil/

c- The absence of diacritics “تشكيل” causes another type of ambiguity:

ـنازل , ش ـع ـر <> شِـعـر لـمـسـتـقـب , مُـنازل <> م ـلبـِ مـسـتـق <>

d- The lexical item changes orthographically in certain cases: مواعيد \ موعد - وظائف \وظيفة

e- The Arabic orthographic system is full of writing details which result in: first; one single lexical item

may have several writing variations: سماؤ \سمائـ \سماء , second; most of non-professionals in Arabic

linguistics commit many errors when writing texts. The on the web Arabic e-contents confirm this

claim.

The issues that cause linguistic distortion in relation to Arabic search engines can be classified in four

categories: affixation, inflection, writing, and ambiguity.

V. Arabic NLP Engine

Solving these issues necessitate developing a powerful NLP engine that adequately addresses these problems.

The NLP engine implemented in the prototype search engine overcomes properly the problems related to

affixation and inflection. The writing issues are - partially but not totally- resolved. Dealing with linguistic

ambiguities is the most complicated problem that NLP engines encounter in all languages; a first step solution

has been introduced to the system.

The NLP engine introduced to this system is composed of three main units:

- The system’s lexicon whose backbone is the lexical items. Each item is supplied with the linguistic

data required for this application. Part of the data points to the affixes that the lexical item accepts.

- The Word Identifier tool whose function is to analyze each token, to extract the lexical item and the

connected affixes, and to check the correctness of the token’s components. This tool is so powerful

that it verifies a word in 1/800 millisecond. In other words, it verifies 800 000 words/second.

- A set of simple rules that help with organizing the NLP processing and applying the required

functions.

Affixional Options

Searching Arabic queries in most of the current web search engines begins by searching the query as being

written, sometimes and not always, the word initial character(s) resembling one of the listed prefixes, is\are

removed; the remaining part is included in the search process without inclusion of other acceptable affixes:

Two options are applied in regard to the affixation:.

1- Exact Search option where the query is searched as being written. This technique does not include

affixes in the search process. It suits searching proper nouns in European languages because the

equivalents of Arabic prefixes are written in these languages as independent words: “the, and, then…’;

thus the search resulted will not be distorted by word variations. When applying the exact search, in

Arabic, on a query like “طه حسين”, the search results will miss structures like “ لطه حسين , وطه حسين ,

 ;Though this search technique has its disadvantages in Arabic, we allow using it in the search .“ كطه حسين

a user might choose to apply it for a certain reason.

2- Affixional Search option By “Affix” it is meant, in this context, prefixes and\or suffixes adhered to a

lexical item. The affixional technique can be called “Intelligent wildcard Search” opposite to the “dummy

wildcard search”. The dummy search accepts any characters adhered to the right or the left of the query

word (assuming that these characters are just prefixes or suffixes, which is right in relation to the English

language). Applying such technique on Arabic documents may result in retrieving irrelevant words;

queries like: ال عمالاست :may include in the search results, words like , عبير, ساخر ,عُمَّ ساخرم , عبيرت ,

respectively.

According to the intelligent wildcard search, valid affixes for each query word are pre-defined, thus; the

query word with all its affixional variations is only included in the search. i.e. the affixional search

technique automatically includes in the search process, the query word and all its possible valid variations.

This technique covers what is missed in the Exact Search. It is suitable for searching proper nouns in

Arabic.

Inflectional Option

In Arabic, some of the functional meanings - that are expressed through affixes added to the lexical item

in European languages- are expressed in Arabic through internal change in the body of the lexical item:

→ شباك , أولاد → ولد , حروب → حرب , كتب → كتاب عواصف → عاصفة , شبابيك

In Arabic, the irregular plural is the most common type of inflectional issues. It is extensively used; it

applies on more than one third of common nouns, thus; it cannot be ignored as a linguistic phenomenon,

meanwhile, broken plurals cannot be registered in a list as being done in English.

The inflectional search technique is designed to overcome issues like that of irregular plural and irregular

feminine: حمراء → أحمر , صغرى → أصغر. It covers the variations of a query word that are not

expressed through affixes.

This search option enhances searching on common nouns.

Writing Options

In Arabic there are two writing systems judged as correct. We call them “Strict” and “Relaxed“ modes.

The strict mode applies the classical writing rules; between them is the differentiation among the four

graphemes “ ا, آ , إ , أ “, and the two graphemes “ ى , ي “. In modern standard Arabic some modifications

are introduced to the writing system and considered as acceptable. These modifications are of

geographical character. Among these modifications is: dropping Hamza “ ء ” and using the grapheme “ا ”

to represent “ إ “ ,” أ ”, “ ا ,thus , ي :and dropping the final yaa (اكتب , اقبال , اكرم → اكتب ,إقبال , أكرم) ”

the grapheme “ ى ” represents both “ (على , على → علي , على) “ ي & ى. Among these modifications are

the set of words like مسئول that is written as مسؤول.

The writing system that considers these modifications is what we call “relaxed mode”. It is to note that

modifications in the relaxed mode go in one direction, i.e. the opposite replacements are not allowed:

neither أ or إ can replace the two other graphemes: ي as well cannot replace ى.

On the web, the writing errors dominate in most of the Arabic contents. To insist on ignoring wrong

words, and considering only the correct ones in both indexing and searching processes, is not a good idea.

Ignoring incorrect words means dropping a good quantity of data that express concepts.

the fact that search targets concepts and not words, a third writing option was added to the writing modes;

namely; “the common error mode”.

The Analysis of a big corpus full of writing errors, helped with recognizing the most common word

errors. They were classified and arranged according to certain priorities. Some error types are introduced

to the common error mode: Hamazaat (إستقبال , أبراهيم), Yaa’ (مستشفي), Taa’ and Haa’ (أقلامة , حديقه).

This mode is the default in the search process. The user can choose one of one of the two other options

“strict” or “relaxed” if he is dealing with linguistically revised sites.

It worth mentioning, that the common error mode has its disadvantages that require more investigation.

The main issue is that a wrong word might be mixed with a similar right word: if the user means “after it”

“ بهعق “and writes the last character wrongly as Taa’ Marbuuta “ بةعق “, this wrong word mixes with a right

one whose meaning is “obstacle”.

Ambiguity Solution

A temporary solution is being applied; the affixes specific to each of the stop words is removed. What

remains from the affixes of each stop word are those valid for similar full words: “ عليك، عليهم، عليه“ are

removed, but “على ” remains because it might point to the proper noun “ ع لى “. This way, we get rid of a

part of redundancies in search results. The opposite is done to guarantee the search comprehensiveness in

case of semantic ambiguity; we create what we call “shell affixation system”; it includes all affixes of

semantically ambiguous words in addition to their inflectional forms in the search operation. If the query

word is “منازل ”, then “ "منزل، منزلان... " in addition to ” منازلان، منازلون... will be included in the search

results.

All of the mentioned NLP facilities are exercised during the indexing phase. The linguistic information related

to each indexed item, is saved with it. Thus, no extra process has to be applied in the querying phase which

guarantees a high search speed. Meanwhile, the indexing process is not highly affected by added NLP work;

one reason is the proper structure of primary linguistic data, the other reason is that the index design is

dedicated to deal with the required NLP tasks.

Following is a screen shot assigning information on the index process as being monitored by a simple

monitoring tool built specifically for follow up purposes:

The in use PC is with the following specs:

Intel Core2 Duo 1.80GHz, 2MB cache

2GB RAM

MS Windows XP Professional sp3

MS SQL Server 2008 Enterprise RTM

It is to note that

1- The index size is about one third of the size of indexed documents

2- The indexing rate is 290774 words/minute (storage time of the SQL server being included)

3- The indexing rate raises to 468484 words/ minute when the storage time of the SQL server being

excluded

VI. Conclusions

In this paper, we reviewed the specific issues of the Arabic language that cannot be ignored or handled

superficially. We showed the necessity of introducing NLP techniques in Arabic search engines to overcome

a part of the linguistic distortion that affects both indexing and searching.

Affixional and inflectional issues are almost overcome through the NLP based search options. Yet, we have

ideas to improve the applied techniques.

The writing issues are partially solved through the options of writing modes. More investigation has to be

done to control mixing up correct words with misspelled ones in the common error mode.

The linguistic ambiguity is a serious issue. It requires more time and efforts to be fundamentally solved.

VII. References

[1] E.M. Voorhees and D. Harman:TREC; Experiment and Evaluation in Information Retrieval, MIT

Press, 2005

[2] H. Abu-Salem, M. Al-Omari, and M.Evens, Stemming methodologies over individual query words

for Arabic information retrieval. JASIS, 50 (6), pp. 524-529, 1999

[3] J.I. Tait, Charting a New Course: Natural Language Processing and Information Retrieval: Essays in

Honour of Karen Spärck Jones, Springer, 2005.

[4] J. Xu, A.Fraser, and R.Weischedel, Empirical studies in strategies for Arabic retrieval. Sigir

Tampere, Finland: ACM, 2002.

[5] L.S. Larkey & M.E.Connell, Arabic information retrieval at UMass in TREC-10., TREC 2001,

Gaithersburg: NIST, 2001.

[6] L.S. Larkey, L. Ballesteros, and M.E. Connell, Improving stemming for Arabic information retrieval:

Light stemming and co-occurrence analysis, University of Massachusetts, Technical Report IR-249,

2002

[7] M. Piotrowski, NLP-supported full-text retrieval, CLUE technical report no. 3, Friedrich-Alexander

University Erlangen, 2001

[8] W.Kraaij, & R.Pohlmann, Viewing stemming as recall enhancement. In Proceedings of ACM

SIGIR96. pp. 40-48, 1996.

[9] TREC homepage: http://trec.nist.gov/overview.html

[10] NLP Track at TRECC-5 homepage:

 http://www.dtic.mil/cgi-bin/GetRDoc?location-U2&doc= GetTRDoc.pdf&AD=ADA470634

http://trec.nist.gov/overview.html
http://www.dtic.mil/cgi-bin/GetRDoc?location-U2&doc

