Gilll Ganial iymddl Eaenl

)

THE EGYPTIAN SOCIETY
OF LANGUAGE ENGINEERING

The Tenth Conference

On Language Engineering
December 15-16, 2010, Cairo, Egypt
(ESOLEC'2010)

Organized by
Egyptian Society of Language Engineering (ESOLE)

Under the Auspices of

PROF. DR. HANY HELAL
Minister of Higher Education and Scientific Research

PROF. DR. TAREK KAMEL
Minister of Communications and Information

PROF. DR. AHMED ZAKI BADR
Minister of Education

PROF. DR. MOHAMMAD MAGED ELDIEB
President of Ain Shams University

PROF.DR. ALI SHERIF ELFAYAD
Dean, Faculty of Engineering, Ain Shams University

CONFERENCE CHAIRPERSON
PROF. DR. M. A. R. GHONAIMY

CONFERENCE COCHAIRPERSON
PROF. DR. SALWA ELRAMLY

Faculty of Engineering —Ain Shams University

http: //eng.asu.edu.eg/esole

Conference Chairman: Conference Sponsors

Prof. Dr. M. R. A. Ghonaimy

Technical Program Committee:
Prof. Taghrid Anber , Egypt

Prof. I. Abdel Ghaffar , Egypt

Prof. M. Ghaly, Egypt

Prof. M. Z. Abdel Mageed, Egypt
Prof. Khalid Choukri, ELDA, France
Prof. Nadia Hegazy, Egypt

Prof. Christopher Ciri, LDC, U.S.A
Prof. Mona T. Diab, Stanford U., U.S.A
Prof. Ayman EIDossouki, Egypt

Prof. Afaf AbdelFattah, Egypt

Prof. Y. EIGamal, Egypt

Prof. M. Elhamalaway, Egypt

Prof. S. Elramly, Egypt

Prof. H. Elshishiny, Egypt

Prof. A. A. Fahmy, Egypt

Prof. I. Farag, Egypt

Prof. Magdi Fikry, Egypt

Prof. Wafa Kamel, Egypt

Prof. S. Krauwer, Netherlands

Prof. Bente Maegaard, CST, Denmark
Prof. A. H. Moussa, Egypt

Prof. M. Nagy, Egypt

Prof. A. Rafae, Egypt

Prof. Mohsen Rashwan, Egypt

Prof. H.I. Shaheen, Egypt

Prof. S.I. Shaheen, Egypt

Prof. Hassanin M. AL-Barhamtoshy, Egypt
Prof. M. F. Tolba, Egypt

Dr. Tarik F. Himdi, Saudi Arabia

Organizing Committee

Prof. I. Farag Prof. S. Elramly

Prof. Nadia Hegazy Prof. Hany Kamal

Prof. H. Shahein Dr. A. Bahaa

Eng. Mona Zakaria Eng. Bassant A. Hamid

Conference Secretary General

Prof. Dr. Salwa Elramly
The Tenth Conference on Language Engineering
Final Program

NTRA

$IEEE

Wednesday 15 December 2010

9.00
10.00
10.30

11.15

12.00

13.30

14.30

15.30

10.00
10.30
11.15

12.00

13.30

14.30

15.30

17.00

Registration

Opening Session

Session 1: Invited Paper 1:

Chairman: Prof. Dr. Adeeb Riad Ghonaimy

Arabic Linguistics and In-Depth Text Processing
Nabil Aly

Expert in Computational Linguistics

Coffee break

Session 2: Natural Language Processing for Information Retrieval
Chairman: Prof. Dr. Ibrahim Farag
1. Invited Paper 2: An NLP Based Fully Distributed Arabic Search
Engine — Part (1)
Taghride Anbar
Al-Alson Faculty, Ain Shams University
2. Invited Paper 2: An NLP Based Fully Distributed Arabic Search
Engine — Part (2)
Mohammad Abdeen
Faculty of Computer and Information Sciences, Ain Shams University
3. A Comparative Study of Rocchio Classifier Applied to supervised
WSD Using Arabic Lexical Samples
Soha M. Eid!, Almoataz B. Al-Said®, Nayer M. Wanas*, Mohsen
A. Rashwan?, Nadia H. Hegazy*
Informatics Department, Electronics Research Institute, Cairo, Egypt
2Electronics and Electrical Communications Department, Faculty of
Engineering, Cairo University, Cairo, Egypt
3Cairo University, Cairo, Egypt
Session 3: Machine Translation:
Chairman: Prof. Dr. Mohamad Zaki Abdel Mageed
1. UNL*3: The Gateway to a Fully Operational UNL System
Sameh Alansary!, Magdy Nagi?, Noha Adly?
!Department of Phonetics and Linguistics, Faculty of Arts, University
of Alexandria, El Shatby, Alexandria, Egypt
2Computer and Engineering Department, Faculty of Engineering,
University of Alexandria, EI Hadara, Alexandria, Egypt
2. A Practical Application of the UNL*® Program on the Arabic
Language
Sameh Alansary
Phonetics and Linguistics Department, Faculty of Arts, University of
Alexandria, Alexandria, Egypt
Lunch

Session 4: Room A: Language Analysis and Comprehension:
Chairman: Prof. Dr. Taghride Anbar
1. A Machine Learning-Based Automatic Arabic Diacritizer,
Tokenizer and Morphological Analyzer
Ramy N. Eskander?, Amin F. Shoukry?, Saleh A.S. EI-Shehaby?

15.30

17.00

17.00

17.30

'Faculty of Engineering, Alexandria University, Alexandria, Egypt

2Egypt-Japan University of Science and Technology (EJUST), New
Borg El-Arab City, Alexandria, Egypt
3Medical Research Institute, Alexandria University, Alexandria,
Egypt
disa (MSAC) b palaall (a puaill (1 4l digia (flo (sa Ay al) Alanll Judas 2
salea 2l (5 glu/
el g JSTY) & pad dgma
3. Improving YamCha Tool Performance
Salwa Hamada
Electronics Research Institute (ERI)
Session 5: Room B: Semantic Web and Ontology Languages:
Chairman : Prof. Dr. Hassanin El-Barhamtoushy
1. Ontology-based Architecture for an Arabic Semantic Search
Engine
Ibrahim Fathy Moawad®, Mohammad Abdeen?, Mostafa Mahmoud
Aref®
!Computer Science Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Cairo, Egypt
2Information System Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Cairo, Egypt
2. Rich Semantic Graph Generation System Prototype
Mostafa Mahmoud Aref!, Ibrahim Fathy Moawad?, Soha Said
Ibrahim?
!Computer Science Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Cairo, Egypt
2Information System Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Cairo, Egypt
3. Ontology and its Methodology
Susan Fisal Ellakwah?, Passent El-Kafrawy?, Mohamed Amin?, El-
Sayed El-Azhary?
!Central Lab for Agricultural Expert Systems (CLAES), Agricultural
Research Center (ARC), Giza, Egypt
?Mathematics and CS Department, Faculty of Science, Menoufia
University, Egypt
Session 6: Room B: Language Engineering and Artificial
Intelligence
Chairman: Prof. Dr. Hany Kamal Mahdy
1. AL-IMAM: A Comprehensive Database for Arabic Text Mining
Ibrahim F. Imam, Ahmed Abd-Allah
Computer Science Department, Arab Academy for Science,
Technology and Maritime Transport, Cairo, Egypt

Thursday 16 December 2010

10.00 - 12.00 Session 7: Room A: Speech Processing, Recognition and Synthesis

Chairman: Prof. Dr. Mohsen Rashwan

1. On the Modeling of Non-Keyword Intervals for Spoken-Term
Detection in Arabic
M. Hesham?!, M. F. Abu-EL-Yazeed?, and A. Toulan?
'Engineering Math. & Physics Dept., Faculty of Engineering, Cairo
University
2Electronics & Communications Engineering Dept., Faculty of
Engineering, Cairo University, Egypt

2. Designing and Implementing Arabic Text-To-Speech (ArTTS)
Hassanin M. Al-Barhamtoshy, Fahd Al-Hiedary, Mansour Al-Johany and
Wajdi H. Al-Jedaibi
Faculty of Computing and Information Technology, King Abdulaziz
University, SA

3. Automatic Speech Segmentation Using Genetic Algorithm Based on
Best Tree Encoding
Amr M. Gody
Electrical Engineering Department, Faculty of Engineering, Fayoum
University, Fayoum, Egypt

4. Variable Bit Rate Speech Coding Using Wavelet Transform
Sarah Baligh Boulos!, Dr. Naglaa Hosny?
!Communications and Electronics Department, Faculty of Engineering,
Ain Shams University
2Canadian International College, Egypt

12.00 - 12.30 Coffee Break

1230 - 13.30 Session 8: Room A: Automatic Optical Character Recognition
Chairman: Prof. Dr. Waleed Fakhr
1. Recent Advances in Arabic Handwriting Recognition
Mostafa G. Mostafa!, Mohamed F. Tolba?
1Computer Science Department, Faculty of Computer & Information
Sciences, Ain Shams University, Cairo, Egypt.
2Scientific Computing Department, Faculty of Computer & Information
Sciences, Ain Shams University, Cairo, Egypt
2. Arabic Character Recognition Using statistical Moment Invariants
and ANN
Ismail I. Amr!, Mohamed Amin?, Passent El-Kafrawy?, and Amr M.
Sauber?
College of Computers and Informatics, Misr International University,
Cairo, Egypt
2Mathematics and CS Department, Faculty of Science, Menoufiya
University, Egypt

13.30

14.00

15.00

10.00

12.30

15.00

17.00

14.00

15.00

17.00

12.00

14.00

17.00

17:30

Session 9: Room A: Large Corpora

Chairman: Prof. Dr. Mohamad Fahmy Tolba

1. A General Purpose Large Scale Arabic Online Handwriting Corpus
Sherif Abdou'?, Mohamed Waleed Fakhr?2, lbrahim Hosney?,
FakhrEdeen Alwajeeh?
!Faculty of Computers and Information Cairo University, Egypt
The Arabic Academy of Science and Technology, Egypt
3The Arabic Language technologies Center (ALTEC), Egypt

2. Printed-Arabic Large Text Corpus for OCR Research (P-ALTEC)
Waleed Fakhr!, Mohsen Moftah!, Mohsen Rashwan?, Mohamed
ElMahallawy?!
1College of Computing, Arab Academy for Science and Technology,
Cairo, Egypt
2Communications Department, College of Engineering, Cairo University,
Giza, Egypt

Lunch

Session 10: Room A: AOCR Products Evaluation Workshop
Chairman: Prof. Dr. M. Fahmy Tolba
Gy g) e 3 gudall iyl gl s gl Al g g gall) yaslaall]
Jsull ue Az g e
5 8ldl) drala — o ledl lo S

2. Panel Discussion

Session 11: Room B: Workshop on Language Modeling Applications in
Arabic NLP

Part 1: Prof. Dr. Mohamed Waleed Fakhre

Session 12: Room B: Workshop on Language Modeling Applications in
Arabic NLP

Part 2: Eng. Mohsen Moftah

Session 13: Room B: Workshop on Language Modeling Applications in
Arabic NLP

Part 3: Eng. Shady Abdel Ghaffar

Closing session

ailll Gwnial iyl dszenl

)

THE EGYPTIAN SOCIETY
OF LANGUAGE ENGINEERING

s ‘gall (30 dazaal) glilas
el (e Aaals — duigl) BdS— cilaslaal) ol S50 -1
5alal) daals — Lilaaay) Gigadly caladyal) agae =2
e (e Aaala — el sl S5 -3
@l Jailly LnglgiCally oglall Zsjall dpanalSY) -4
asdl sl Lua0f -5

by SN Gigan gae —6
Claslaal) LinglsiSh agae =7
Ayl 4s -8
(NTI) VLD sl agaall =9
(RDI) cllall ala okl Zowsigl) 35,40 ~10
sladll agle 5 any (he Hladnudl duesall gl -11
ousad) 5l daals Gilogleddl 5 lialall 4012
Al 5 Ganll Jualill 513 -13
darand) Cilaal
Ly g Lenaall L) el e 3€ls Luasdll Liial Lgiamy Auall 2l e 550 ae cilisalll davia Jlaar slaay) -1
AR A lles NS, |, GuSally Aupad) A3l) Ain)) e gt das il A1 Al) Jgemsl) Cings WiV 35 gt
Aad)ll Bl) ey Cag sl Al e S5l e Jaladl) dadlany , laalsiy gale Cajally 85kl
Lll) dunigy Laidal) Y laally aglall (& slail) dajlia =2
csallally agilly Aadl) (ggid) o dlladl) Zaalal) Clinenl) ga opslail) —3
S bl U 28l Aal davia Jlae 8 Lel) Jagill 23 3l il ayds e 30 Gagad) e clily 2elgd clis) —4
A Y) Rl gl Ayl ARl 8 elge L) poasl) oS
Lodle Y Loyl oyl may SISy Akl daigy Lalall Eigadl ya3) Jle (ggiase b Anaall 4y dadle Alaa cLis) -5
il Clgall dlse 2 (53Y)
Lll) dvia Jlae b ol gl Cilgni ie —6
GI1 Gl & pulandial) o) gpeat ol e @lll g giagal) degs (o JST 5 Cpeanadialls g laton S Cilyss aulas —7
slac¥l G aalall A5l 43l
AR el e i) sy malyall Jadi g samgalls Caigall 7l 4 ol —8
cilegungall Gai A Calaidall G A5 Gigan Jaad il g Gl e dlldy Gilagladl) dalig Oglaall Jlae 313 -9
Al Aae Baland (mpa Al Adindl ol Al claiall auis ~10
Al daais Ve 3 saaiad) dgeall Lmaaiil)l leal) amy —11
cllailad) 8 deall gg 8 clis) —12

Gilll iwnial iysmdl duenl

)

THE EGYPTIAN SOCIETY
OF LANGUAGE ENGINEERING

Aall) gl Lalad) aijal
ZOIOMA 16—-15
dupll jpan &g —5aE

AT3all kil
Jall) Autigl Lipuaall Lozl

gﬁLﬁJ s
N oS5 daaf [gasal) M) JalS (3l [gisal) Sy I Al sisal) M)
adlailly dusil) i3 Claglaally CYLAIY])9) Gy) anlail) 55

Gl 2abe daaa [gigal) M)

uadi (e daaly Gl

oabdl) iyl Ao [giSal) diud)
Cuadi (e drala — dudigl) S dae

el Gudy
i b qual daaa [gisal) daud)
uadi (pe daals — duaigl) s
3l sha
) Gan (gobes [siSal) Al
(uas (e dnala — Aunsigh) s

e (e drals — Al AuS 1 aijell die (S

http: //eng.asu.edu.eg/esole

Table of Contents

I. Language Engineering Frameworks and Methodologies

1. Invited Paper 1: Arabic Linguistics and In-Depth Text Processing
Nabil Aly
Expert in Computational Linguistics

I1. Lanquage Analysis and Comprehension

2. A Machine Learning-Based Automatic Arabic Diacritizer, Tokenizer
and Morphological Analyzer
'Ramy N. Eskander, 2Amin F. Shoukry, 3Saleh A.S. EI-Shehaby
'Faculty of Engineering, Alexandria University, Alexandria, Egypt
2Egypt-Japan University of Science and Technology (EJUST), New Borg
El-Arab City, Alexandria, Egypt
3Medical Research Institute, Alexandria University, Alexandria, Egypt

3. Improving YamCha Tool Performance
Salwa Hamada
Electronics Research Institute (ERI)

4. B palaall (o gl (e dopai gia IS (e Ao o) Aenll Jlas
An Analysis of Arabic Sentence based on a Modern Standard Arabic

Corpus (MSAC) dlwa

Balas vl (5 g/

I11. Language Engineering and Artificial Intelligence

5. AL-IMAM: A Comprehensive Database for Arabic Text Mining
Ibrahim F. Imam, Ahmed Abd-Allah
Computer Science Department, Arab Academy for Science, Technology and
Maritime Transport, Cairo, Egypt

V. Semantic Web and Ontology Languages

6. Rich Semantic Graph Generation System Prototype
Mostafa Mahmoud Aref, 2lbrahim Fathy Moawad, !Soha Said Ibrahim
1Computer Science Department, Faculty of Computer Science and

page

Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt
?Information System Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt

Ontology and its Methodology

1Susan Fisal Ellakwah, ?Passent El-Kafrawy, 2Mohamed Amin, 'El-Sayed
El-Azhary

Central Lab for Agricultural Expert Systems (CLAES), Agricultural
Research Center (ARC), Giza, Egypt

2Mathematics and CS Department, Faculty of Science, Menoufia University,

Egypt

Ontology-based Architecture for an Arabic Semantic Search Engine
Ibrahim Fathy Moawad, 2Mohammad Abdeen, *Mostafa Mahmoud Aref
1Computer Science Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt
?Information System Department, Faculty of Computer Science and
Information Sciences, Ain Shams University, Abbassia, Cairo, Egypt

V. Automatic Optical Character Recognition

9.

10.

11.

Recent Advances in Arabic Handwriting Recognition

!Mostafa G. Mostafa, 2Mohamed F. Tolba

!Computer Science Department, Faculty of Computer & Information
Sciences, Ain Shams University, Cairo, Egypt.

2Scientific Computing Department, Faculty of Computer & Information
Sciences, Ain Shams University, Cairo, Egypt

Printed-Arabic Large TExt Corpus for OCR Research (P-ALTEC)
Waleed Fakhr, tMohsen Moftah, 2Mohsen Rashwan, *Mohamed
EIMahallawy

! College of Computing, Arab Academy for Science and Technology
Ahmed Ismail street, Heliopolis, Cairo, Egypt

2 Communications Department, College of Engineering, Cairo University,
Giza, Cairo, Egypt

P17

V1. Large Corpora

12.

P16

VI1I. Evaluation of Natural Lanquage Processing Systems

13.

Ly dl diguall o Aguall Ca il gl g anill A4dl) g 4y all) puslacall
Jsm) e dran 5 jac
5 ald)) dnals — o plell 10 LS

VI1II. Machine Translation

14,

15.

UNL+3: The Gateway to a Fully Operational UNL System

Sameh Alansary!, Magdy Nagi?, Noha Adly?

!Department of Phonetics and Linguistics, Faculty of Arts, University of
Alexandria, El Shatby, Alexandria, Egypt

2Computer and Engineering Department, Faculty of Engineering, University
of Alexandria, ElI Hadara, Alexandria, Egypt

P11

IX. Speech Processing, Recognition and Synthesis

16.

17.

18.

Designing and Implementing Arabic Text-To-Speech (ArTTS)
Hassanin M. Al-Barhamtoshy, Fahd Al-Hiedary, Mansour Al-Johany and
Wajdi H. Al-Jedaibi

Faculty of Computing and Information Technology, King Abdulaziz
University, SA

On the Modeling of Non-Keyword Intervals for Spoken-Term Detection
in Arabic

M. Hesham, M. F. Abu-EL-Yazeed, and A. Toulan

Engineering Math. & Physics Dept., Faculty and University, Electronics &
Communications Engineering Dept., Faculty of Engineering, Cairo
University, Egypt

Automatic Speech Segmentation Using Genetic Algorithm Based on Best
Tree Encoding

Amr M. Gody

Electrical Engineering Department, Faculty of Engineering, Fayoum

University, Fayoum, Egypt

A Machine Learning-Based Automatic Arabic

Diacritizer, Tokenizer and Morphological Analyzer

Ramy N. Eskander’, Amin F. Shoukry ", Saleh A.S. El-Shehaby
"Faculty of Engineering, Alexandria University
Alexandria, Egypt

rami_iskander@hotmail.com

“Egypt-Japan University of Science and Technology (EJUST)
P.O.Box 179, New Borg El-Arab City, Alexandria, Egypt

“*Medical Research Institute, Alexandria University
Alexandria, Egypt
sshehaby@gmail.com

Abstract— Arabic language is a language that does not lend itself, easily, to automatic processing. This is caused by many issues such
as the affixation system in Arabic, the omission of disambiguating short vowels, and the diacritization system which may be absent
from the text. Moreover, Arabic letters are usually written in different shapes according to their positions in a word. Accordingly, an
Arabic word has about ten possible morphological solutions (analyses); with only one being the correct solution; depending on the
context of the word. Learning is required to understand context.

In this study, a machine-learning-based Arabic automatic tagger is implemented. The tagger acts as an automatic diacritizer,
tokenizer and morphological analyzer. The tagger is trained on a corpus whose Buckwalter morphological analysis is known and
depends on a set of SVMs (Support Vector Machines) for classification. Each classifier is trained, separately, on a single
morphological feature out of 13 features; which represent an extension of the set (of 10 features) provided by the Buckwalter analyser.
This divide-and-conquer technique has proved to be efficient. A best-match technique is used to pick the correct Buckwalter
morphological solution consistent with the output provided by the trained classifiers. The tagging results are promising and
competitive relative to existing systems. The authors plan to extend it to domain specific Arabic language understanding tasks.

1 INTRODUCTION

The Arabic language is one that is difficult to handle automatically. This is due to the following issues:
- the existence of affixation (prefixes or suffixes) with the Arabic words,
- the omission of disambiguating short vowels,
- the diacritization system which may be absent from the text,
- the different variants in which some Arabic letters may be written.

As a result, most of the Arabic words are ambiguous in their morphological analysis. Generally, for an Arabic word there are
about ten possible morphological solutions (analyses) on average; with only one being the correct analysis according to the
context of the word. For instance; the Arabic word '+>s' may have the meanings of 'passion’, 'and + grandpa', 'and + seriousness,
and 'found', with the following possibilities for the noun forms: nominative, accusative or genitive, and the verbal forms: perfect
or imperative.

In order to extract the correct solution of an Arabic word, it is a must to look at the context of this word. While humans
understand the meaning of the context first, machines need some kind of learning, since no direct rules can resolve the
morphological analysis of any natural language.

An Arabic word consists of 3 parts; 0-3 prefixes, 1 stem and 0-3 suffixes, where the prefixes and suffixes are called the affixes
of the word. Prefixes always have a length of 0-4 characters, while suffixes always have a length of 0-6 characters. A stem can
have any number of characters, but should have at least 1 character.

The objective of this study is to make an Arabic automatic tagger that acts as a diacritizer, tokenizer and morphological
analyzer. This is to be done through using a strong Arabic morphological analyzer. The Buckwalter morphological analyzer [2]
is the one that is recommended for this purpose due to previous related work and good results. The Buckwalter analyzer accepts

an Arabic text as an input and outputs all the possible morphological solutions for each word in the input text. A complete
Buckwalter solution contains:
- the complete POS of the word; the POS includes word diacritization, word tokenization and all the morphological
features of the word, such as basic POS, gender... etc.,
- the English gloss of the word, the English translation of the word (e.g., ktba = wrote + [he/it]),
- word vocalization (diacritization), the pronunciation of the word,
- word lemma, a distinct form of the word that has similar meanings (e.g., mdrsp = school or teacher).

These solutions correspond to the values of a large number of features, such as the basic Part-Of-Speech (POS), voice, gender,
person... etc. For Arabic, this gives us about 300,000 theoretically possible completely specified Buckwalter morphological
POS’s.

In order to train classifiers on this huge set (300,000 possible complete POS's), a divide and conquer technique seems to be a
good solution. The set of POSs is split into smaller sets, and a classifier is trained for each set independently. SVMs have been
chosen for this purpose. When testing the classifiers, their outputs are combined together in order to reach the correct POS and
select the correct Buckwalter analysis.

The remaining of this paper is organized as follows: section 2 illustrates how the presented work relates to previous known
work. Section 3 gives a general overview of the proposed system. Section 4 describes the data preparation phase while section 5
describes the classifiers training and testing. Section 6 describes the obtained results and, finally, section 7 concludes the paper.

2 RELATION TO PREVIOUS WORK

While there have been many publications on computational morphological analysis for Arabic, only Diab et al. [7] and Habash
et al. [8] performed a large-scale corpus-based (supervised) evaluation of their approach. They mainly depend on the
Buckwalter morphological analyzer, and use SVM-based learner for their automatic tagging tasks. Although the system
presented, in this work, is similar to the one used by Habash et al. [8], the main differences are:

- Habash et al. specifies a set of ten morphological features, for each word, within an input Arabic text. These features
are the basic POS: conjunction, particle, pronoun, determiner, gender, number, person, voice and aspect. These features
are not enough to specify the complete Buckwalter solution. Therefore, three more features have been added, which are
indefiniteness, case and mood.

- The target of the tagger is to make an automatic tagger that acts as a diacritizer, tokenizer and morphological analyzer.
This is to be done by automatically assigning the complete Buckwalter analysis and not just a set of morphological
features. By knowing the correct Buckwalter analysis, much valuable information can be obtained such as the complete
POS of the word, the English translation of the word, word vocalization (diacritization) and word lemma.

- Selecting the possibly correct Buckwalter analysis is done through an advanced best-match algorithm designed to deal
with morphological data and makes use of the history of previous tagging results.

- Many issues have been investigated, such as the alternatives and the different parameters values that affect the tagging
process such as the selection of the features and their possible values, and the tuning of the learning parameters while
training the classifiers.

3 OVERVIEW OF THE PROPOSED SYSTEM

The development of the proposed system necessitates three phases. The first phase is the construction of the training and testing
data sets from an Arabic Corpus. The training data is constructed by converting an annotated Arabic corpus to what is called
“Morph objects” through a “Morph generator” (implemented according to the domain of the features and their values). The
second phase is the supervised training of the SVM-based classifiers [6] using the training data set. The third phase consists in
applying the trained classifiers on the untagged input Arabic text, and processing the output of these classifiers to get the
possibly correct Buckwalter analysis. By comparing the obtained results with the known correct Buckwalter solutions, the
performance of the system is evaluated.

4 DATA PREPARATION

The source of the data (training corpus) is the Penn Arabic Treebank Corpus (PAT), developed by the Linguistic Data
Consortium (LDC). This corpus has been used in the previous Arabic automatic taggers developed by Diab et al [7] and Habash
et al [8], and proved to be an excellent source when it comes to Buckwalter-based data.

The PAT corpus is a huge collection of Arabic text, generated from different sources at different times and contexts. Each word
in the PAT corpus is associated with all the possible Buckwalter solutions, with the correct one identified. The PAT corpus is
not well-written which means that it may contain Arabic text that does not follow strict syntactical or grammatical rules. For
each word in the PAT Corpus, the corpus lists all the solutions corresponding to the possible different variants of that word, e.g.,
it tries to replace the Arabic letter ALEF with ALEF-with-HAMZA-Above and ALEF-with-HAMZA-Below plus the other
possible variants for the Arabic letter ALEF. The same is done with the Arabic letter HEH and THE-MARBUTA, and the
Arabic letter ALEF-MAKSURA and YEH. Also, the corpus lists all the solutions corresponding to the possible diacritization
marks of the word. Additionally, the analysis of a word always contains a proper noun solution whose gloss in not in the
lexicon.

The PAT corpora have three main parts. For this study, part 3 (with a size of 340,000 words) has been used. It has been initially
chosen to use 327k words for the training purpose while the remaining 13k words are used for testing and analyzing the
developed system. In general, increasing the size of the training corpus enhances the tagger performance. But at some point,
increasing the size of the corpus will not affect the final output of the tagger, which is known as a 'Saturation State". This
happens when the classifier is not capable of generating any further information from any extra training data, i.e., the
information within the extra training data is redundant.

Each word in the training corpus is converted into a Morph object by splitting the correct POS of this word into a group of
morphological features. This process is not easy in several cases, and many decisions have to be determined. This conversion
process is done by what is called a "Morph generator’. A Morph generator has as input a Buckwalter solution and outputs its
corresponding Morph object. As mentioned before, a word may have several Buckwalter solutions with one of them being the
correct one according to the context of the word. A Buckwalter solution includes the following information; the complete POS,
English gloss, vocalization and lemma.

A Morph object represents all the morphological features of a word based on a specific Buckwalter solution. For a given word,
if there are 'n' different Buckwalter solutions, then there are 'n' possible Morph objects, each corresponding to a specific
Buckwalter solution.

In order to implement the Morph generator Application, it is required to:
1. Determine the morphological features that a Morph object should contain, the selection of the features should be
sufficient to identify a unique complete Buckwalter POS out of different possible complete Buckwalter POSs
2. Determine the domain of each morphological feature.
3. Specify rules to obtain the value of each morphological feature from the input Buckwalter solution.

Morph
Generator

A

Buckwalter Analysis Morph Object

Figure 1: Morph generator

The definition of each of the 13 features used is as follows:

The basic POS of the word, e.g., noun, verb, pronoun, particle...... ete. (Al g 53
The existence of a determiner associated with the word (Jb i y=ll)

The existence of a particle associated with the word (dwaie < a 252)

The existence of a pronoun associated with the word (Jwais jrea 352 5)

The existence of a conjunction associated with the word (—ihe i 252 5)
The gender of the word (wiall & 5)

The number of the word (22~1))

The person of the word (u=3-4l)

The voice of the word (only with verbs) (J=dl +Li)

The aspect of the word (only with verbs) (J=&ll ;)

The indefiniteness of the word (&L=ayl)

The mood of the word (only with verbs - like the case in the nouns) (J=dll 1)
The case of the word (nominative -accusative - genitive) (Al e Yl Alall)

The basic POS is the most important feature. It is determined according to the stem of the word. The different types of stems are
put in different categories (see Table(1)). The other features depend mainly on the basic POS, i.e., the value of the other features

may relate to the value of the basic POS of the word (see Table(2)).

TABLE 1: BASIC POS TYPES

Basic POS Stem Types
Abbreviation (ABR) ABBREV
Adjective (ADJ) ADJ
Adverb (ADYV) ADV
Conjunction (CONJ) CONIJ
DEM
DEM_PRON_F
DEM_PRON_FD
Demonstrative Pronoun (DPRO) DEM_PRON_FS

DEM_PRON_MD
DEM_PRON_MP
DEM_PRON_MS

Interjection (INTERJ])

INTERJ

Negative Part (NEG_PART)

NEG_PART

Noun (NN)

NOUN

Proper Noun (NNP)

NOUN_PROP
FUNC_WORD
NUMERIC_COMMA
LATIN

Number (NUM)

NUM

Particle (PP)

DET

PREP

PART
EXCEPT_PART
FOCUS_PART
FUT_PART
INTERROG_PART
VERB_PART
SUB_CONJ
REL_ADV

Pronoun (PRON)

PRON_IP
PRONL_IS
PRON_2FS
PRON_2MP
PRON_2MS
PRON_3D
PRON_3FP
PRON_3FS
PRON_3MP
PRON_3MS

Punctuation (PUNC)

PUNC

Relative Pronoun (RPRON)

REL_PRON

Verb (VB)

VERB_IMPERATIVE
VERB_IMPERFECT
VERB_IMPERFECT_PASSIVE
VERB_PERFECT
VERB_PERFECT_PASSIVE

Unknown (X)

UNKNOWN

NIL Gloss: not in lexicon
TABLE 2: FEATURE DOMAINS
Feature Domain
Basic Part Of Speech (POS) See Table 1
Aspect (ASP) Perfect(PER) — Imperfect(PER) — Imperative(IMP) — Not Valid(NV)
Nominative(NOM) — Accusative(ACC) — Genitive(GEN) — Acc/Gen(AG) —
Case (CASE) Not Valid(NV) — Not Applicable(NA)
Conjunction (CONJ) True(T) — False(F) (either exists or not) — Not Applicable(NA)
Determiner (DET) True(T) — False(F) (either exists or not) — Not Valid(NV)
Gender (GEN) Masculine(M) — Feminine(F) — Neutral(N) — Not Valid(NV)

Indefiniteness (INDEF)

True(T) — False(F) (either exists or not) — Not Valid(NV)

Indicative(I) — Subjunctive(S) — Jussive — Subjunctive/Jussive(SJ) — Not

Mood (MOOD) Valid(NV) — Not Applicable(NA)
Number (NUM) Single(SG) — Dual(DL) — Plural(PL) — Not Valid(NV)
Particle (PART) True(T) — False(F) (either exists or not)
Person (PER) One(1) — Two(2) — Three(3) — Not Valid(NV)
Pronoun (PRON) True(T) — False(F) (either exists or not) — Not Valid(NV)
Voice (VOICE) Active(ACT) — Passive(PAS) — Not Valid(NV)

In order to settle the rules that assign the values of the 13 morphological features it is necessary to
determine the following information for each feature:
1- the possible POS type that may carry this feature, i.e., the feature has a 'Not valid' value for the
other basic POS types,
2- the default value of the feature in the case of not being able to assign a specific value,
3- the method of extracting the feature value based on the information from (1) and (2).

In order to obtain such information, it is necessary to take into consideration all the possible forms of the
Buckwalter POS. Since each Arabic word has 3 main parts; prefixes (0-3) stem (1) and suffixes (0-3),
hence, the Buckwalter POS of a word can have 3 POS parts, resulting in more than 300,000 [8] possible
POS forms. Therefore, to get the information regarding each feature, it is necessary to iteratively scan all
the possible Buckwalter solutions in the training corpus, and studying the relations between the features
and their corresponding basic POS types, and observing the value of each feature under all possible cases.

Some features always have a value regardless of the basic POS type of the word, while others may have
no-value with specific types; for instance, a conjunction always exists for any basic POS type (either the
word is associated with a conjunction or not), while the aspect feature is not valid except for the verbs.
Therefore, a feature domain may contain an extra value which is "Not Valid". Table (3) lists the possible
basic POS types for each feature, and its corresponding default value.

TABLE 3: POSSIBLE BASIC POS TYPES OF THE MORPHOLOGICAL FEATURES

Feature Possible basic POS Types Def. Value

Basic POS (POS) All X

Aspect (ASP) VB Perfect
Case (CASE) ADIJ, ADV, DPRO, INT, NEG, NN, NNP, NUM, PP, RPRO Nominative
Conjunction (CONJ) All False
Determiner (DET) ABR, ADJ, INT, NEG, NN, NNP, NUM False
Gender (GEN) ADIJ, ADV, DPRO, NN, NNP, NUM, PRO, RPRO, VB Masculine
Indefiniteness INDEF) | ADJ, ADV, DPRO, INT, NEG, NN, NNP, NUM, PP, RPRO False
Mood (MOOD) VB Indicative
Number (NUM) ADIJ, ADV, DPRO, NN, NNP, NUM, PRO, RPRO, VB Singular
Particle (PART) All False
Person (PER) ADIJ, ADV, DPRO, INT, NEG, NUM, NN, NNP, PP, PRO, VB Three
Pronoun (PRON) ADIJ, ADV, INT, NEG, NN, NNP, NUM, PP, VB False
Voice (VOICE) VB Perfect

From what has been given above, the number of constructed Morph objects is equal to the size of the
training corpus. These objects represent the basis for the training data, and are formatted for the training of
the classifiers. Figure 2 illustrates the conversion of the training corpus to training Morph objects.

Morph objects

PR

TRAINING MORPH |/
CORPUS GENERATOR |\

y
y

M3

\ O
J ™

4 (corpus
size)

Figure 2: Generating the training Morph objects

5 CLASSIFIERS TRAINING AND TESTING

In the data preparation phase, many thousands of Arabic words are generated; each is associated with its morphological features
in the form of a Morph object. The target of this section is to explain the training of the classifiers using these morphological
features, so that the classifiers can be tested on any text required for tagging.

Yamcha classifiers, based on Support Vector Machines (SVMs), are used for the training and testing phases. The Morph
objects, generated in the data preparation phase, are converted into training files that have the correct format required for
Yamcha. Each feature is to be learned independently, i.e., there is an independent training file and an independent classifier for

each of the 13 morphological features (see Figure(3)). Each classifier is trained independently resulting in what is called a
“Model” file which represents the trained classifier. These model files are then used for testing untagged input data and
converting them to output data. Figure 4 illustrates the usage of Yamcha in training the classifiers and outputting the model
files. Figure 5 illustrates the testing process.

A feature value of a word in a sentence is most likely correlated to the values of this feature or other features in the adjacent
words. For instance, if a word is preceded by a preposition then it is nominative, and when a word has a determiner and is
preceded with an accusative word, then it is accusative. Generally speaking, during training, it is necessary to have a look at the
grammatical context of the analyzed words. This is poNe in Yamcha through the window Size parameter and the static and
dynamic features. The window size parameter determines how many adjacent pieces of information are considered while
training the classifiers. All features have been trained under window sizes that have a range between 1 and 5.

Morph objects
Feature 1
Morph Object ——| Training
Word: Value M| e File
Feature 1: Value /
Feature 2: Value
Feature 3: Value ?
Fealure 4: Value M2 ?rz:;ﬁ; Training File
Feature 5. Value f File Word 1: Feature 1 Value
2 ; Waord 2: Feature 1 Value

— - Word 3: Feature 1 Value
M3 U =

...... —~ e

Feature n: Value o -

4] —

. 2 Waord n: Feature 1 Value

Feature n
Training
File

Figure 3: Converti-ng the Morph objects to training files

The learning process consumes much time; the bigger the window size and the learning domain are, the bigger time the learning
process consumes. This is not a problem since learning is done only once. However, testing should be fast since it is done
frequently, i.e., each time a new untagged input text is queried.

Features Training Files Features Model Files
Feature 1 Feature 1
Training File Model File
Feature 2 Feature 2
Training File Model File
Yamcha

O O

O O

O O
Feature n »| Featuren
Training File Model File

Figure 4: Training the classifiers

Features Model Files Features Tagged Files

Input Arabic | Feature1 Feature 1
Text “| Model File "l Tagged File
"4 Feature 2 Feature 2
Model File "| Tagged File
O O
O O
O O
< Featurem » Feature n
Model File Tagged File
Yamcha

Figure 5: Testing process

The untagged input Arabic text that is required for tagging should have a specific format that is acceptable by Yamcha, where a
new line character represents the sentence boundary and, the words including the punctuation marks and any individual tokens,
are space-separated.
The suggested Morph objects represent the morphological solutions provided by the classifiers. They are generated by using the
13 tagged files generated in the test phase. These tagged files are then merged together into one tagged file. Figure 6 illustrates
the merging process.

Features Tagged Files

Feature 1
Tagged File
Feature 2
Tagged File
The Merged Tagged File
a4
i
O contains the value of all the
features for each word in the
O / input text.
/
/
O y
/
/
Feature n e
Tagged File

Figure 6: Merging the tagged files

The merged tagged file is then encapsulated into a list of Morph objects using the Morph generator application that was used in
generating the training Morph objects. Figure 7 illustrates this process. There is one morph object for each word. This Morph

object is the suggested solution provided by the classifiers, and is called the suggested Morph object. The suggested Morph
objects are then compared with all the possible Morph objects resulted from the Buckwalter analysis, but first they have to get
some kind of tuning.

Suggested Morph Objects
+Word 1 |

The Merged Tagged File
/4 Word 2 |

Morph

contains the value of all the |~ Generator

features for each word in the
input text.

O
O

{Word n |

Figure 7: Generating the suggested Morph objects

The aim of the tuning process is to make the output of the classifier more consistent with the Arabic rules. For example, it has
been noted that some feature values make conflict with other features values and some feature values do not match the syntax of
the underlying word. Therefore, these values are modified in order to be consistent with Arabic morphological rules. Tuning
the morphological rules is a linguistic issue and is open for enhancement as there are many rules to be considered.

Next, the suggested Morph objects are compared with the candidate Morph objects obtained by running the Buckwalter analysis
on the input untagged text. Figure 8 illustrates the generation process of the candidate Morph object, while Figure 9 represents a
full picture of the process of automatically selecting the possibly correct Buckwalter analysis.

Input Arabic Text
‘ . . .
Buckwalter Solutions Candidate Morph Objects
|
[Solution2]
| 1 Word 1 ? \ {Word 1 [teEnc
Soltonm1]| \ Morph Obj. m1
\
Solution 1 Morph Obj. 1
v \
Solution 2
L Word2 Szl . Word 2 - Meenon
Buckwalter - O] Morph @)
Analyzer 1 Generator [Morph Obj. m2 |
O O
O O
Solution 2
{Word n ' {Word n 'po :
Solution mn Morph Obj. mn

Figure 8: Generating the candidate Morph objects

Features Modeling Files Features Tagged Files

Input Arabic | Feature1 Feature 1
Text | Modeling File Tagged File i
4 Feature 2 .| Feature2 |
Modeling File Tagged File |]
The Merged Tagged File
\
O O contains the value of all the
P features for each word in the
O O input text
@) O \
4 Featuren Feature n ¢
Modeling File Tagged File Morph
Generator
+
Yamcha Tuner
Suggested Morph Objects
Word 1
Word 2 [MorphObj.2 | |
O
O
Word n Morph Obj.n | |\
«
Buckwalter Solutions Candidate Morph Objects | The Best-
+ Match Morph
P Object
IWord 1 I word 1 — 4 Algorithm
o |\ o 7/
/ [soionmi]|\ [[Worph OB 1 | .
\ p /
\ ya.
- ; / /
) JWord 2 [-Souenz] L\ | Word 2 Y .
Buckwalter ©) ~ Morph O
Analyzer 1 Generator)
© / O ! The Possibly
/ Correct
Y Word n YWord n / Buckwalter
Analysis

Figure 9: Selecting the possibly correct Buckwalter analysis

A The Best-Match Morph Object Algorithm (BMMO)

The purpose of the BMMO algorithm is to find the best-match of a given Morph object with a list of
candidate Morph objects. Before discussing the BMMO algorithm, it is necessary to describe some
concepts that are used within the algorithm. These concepts are:

feature weight, Morph agreement, awarded and penalized Morph Objects and Morph frequency. They are
briefly explained below.

1) Feature Weight: The weight of a morphological feature describes how much the classifier of this feature is trusted. It is
equal to the maximum learning accuracy obtained from training the classifiers.

2)

3)

4)

Morph Agreement: Morph agreement is a measure of the similarity between two Morph objects. It is based on the
values of the morphological features within the two Morph objects. The agreement is either absolute or weighted. The
absolute agreement is the number of the equal features within the two compared Morph objects (an integer in the
interval [0, 13]). The weighted agreement is the sum of the weights of the equal features within the two compared
Morph objects.

Awarded and Penalized Morph Objects: When comparing the suggested Morph object provided by the classifiers to
the list of the candidate Morph objects provided by the Buckwalter analysis, some candidate Morph objects seem
preferable than others. Deciding which Morph objects should be awarded or penalized is a linguistic issue and is open
for enhancement as there are many rules to be considered. For example, a Morph object suggesting a noun with no
associated case should be penalized as this solution does not make sense. In this work, a positive or negative credit is
added to the calculated agreement. The amount of credit to be added has been determined by a trial-and-error
technique.

Morph Frequency: Morph frequency represents how frequent a Buckwalter solution is associated to a Morph object in
the training corpus or from previous tagging results. It is a simple type of statistical analysis used in natural language
processing. More precisely, Morph frequency is a function of the occurrence of the individual components of the
Buckwalter solution in the previous history. These individual components are the POS, English gloss, vocalization and
lemma. Mathematically Morph frequency is given as:

Morph Frequency = (X1.POS + X5.Gloss + X3.Voc + Xy,.Lemma) / (X; + X5 + X5 + Xy)

Where, POS, Gloss, Voc, and Lemma represent the frequencies of the occurrence of the POS, English gloss, vocalization and
Lemma respectively in the previous historical data. X;, X5, X; and X, are weighting factors that are determined by some kind of
trial-and-error technique.

The BMMO algorithm is described as follows:

The Best-Match Morph Object Algorithm — BMMO

Input

A Morph object (suggested Morph object)
A list of Morph objects (candidate Morph objects)

Output

The candidate Morph objects list sorted due to the best-match with the suggested Morph object.

The Best-Match Morph Object Algorithm — BMMO

Procedure

1- Calculate the agreement (either absolute or weighted) between each candidate Morph Object and
the suggested Morph object.

2- Add an appropriate credit (either positive or negative) to each agreement value calculated in (1)
due to the nature of the associated Buckwalter solution.

3- Calculate the Morph frequency for each Morph object according to the following equation:
Morph Frequency = (X1.POS + X;.Gloss + X3.Voc + Xy Lemma) / (X; + X5 + X5 + Xy)

4- For each candidate Morph object, add the value calculated in (1 & 2) + the value calculated in
(3) which is equivalent to:
Agreement + awarded or penalized credit + Morph frequency

5- Sort the candidate Morph objects list according to the values calculated in (4).

In the case of equality, the preference is given to the Morph object that has a higher agreement

According to the presented system, the following parameters and choices were considered while applying the best-match
algorithm:

- Agreement: The weighted agreement is used instead of the absolute agreement.

- NOT_IN_LEXICON solutions are penalized by a negative credit of 3, added to the corresponding agreement.
- Noun without cases solutions are penalized by a negative credit of 1, added to the corresponding agreement.
- Morph Frequency = (POS + Gloss + Voc + Lemma) / 4, where X;, X,, X; and X, are all set to 1.

6 RESULTS

There are two variants of the presented system; normal and strict. The normal variant expects the received Arabic input text to
be not well written, i.e., includes syntactical errors (e.g., eliminating the letter HAMZA while it is required). The normal variant
deals with training data generated from not well-written text, and has its own model files and features weights. Also, when
applying the best match algorithm, the normal variant considers all the variants generated from the Buckwalter analysis. On the
contrary, the strict variant expects the received Arabic input text to be well written, i.e., does not include syntactical errors. This
variant deals with training data generated from well-written text, and also has its own model files and features weights. Also,
when applying the best match algorithm, the strict variant eliminates the variants that do not match the original tested text, and
are generated from the Buckwalter analysis.

Table 4 lists the final obtained accuracies for all thel3 morphological features

TABLE 4: FINAL ACCURACIES OF THE MORPHOLOGICAL FEATURES

Accuracy %
Morphological Feature
Normal Variant Strict Variant
POS 96.7 96.9
Aspect 99.3 994
Case 913 91.5
Conjunction 99.9 99.9
Determiner 99.1 99.2
Gender 98.7 98.7
Indefiniteness 954 95.5
Mood 99.2 99.3
Number 98.6 98.6
Particle 99.8 99.9
Person 99.2 99.2
Pronoun 99.3 99.3
Voice 99.1 99.2

The aspect, mood and voice features have a very high accuracy of about 99.2% because these features appear only with verbs
and have an invalid value with the other POS types (verbal features). Because verbs appear less frequently than nouns and
particles, the "invalid" value within the verbal features is the major one, and hence the verbal features have high accuracies.
Notice that the learning of these features requires a relatively large window size, since the recognition of verbs requires
inspecting the surrounding words.

The conjunction, determiner, gender, number, particle, person and pronoun features have very high accuracies of 99.9%,
99.2%, 98.7%, 98.6%, 99.9%, 99.2% and 99.3% respectively. These features distinguish their associated words with static and
limited prefixes and suffixes, and hence their inspection is not difficult, and their learning has high accuracy. Notice that the
learning of these features requires a relatively small window size because the associated words have specific affixes that can
distinguish the presence of the inspected features, while a larger window size adds additional misleading information.

The POS feature has an accuracy of 96.9% which is much less than the accuracy of the previous features. This is because the
POS feature has a large domain consisting of 17 values. Moreover, the POS value depends on the context of the word which in
turn makes the learning process more difficult.

The case and indefiniteness features have low accuracies of 91.5% and 95.5% respectively. This is because these features
heavily depend on the location of the word within the sentence, which in turn makes their learning more difficult, and explains
why they need a relatively large window size.

It is noticeable that the strict variant has higher accuracies rather than the normal variant. This is because a token in the strict
variant has less features values in the training data. Moreover, when applying the best-match algorithm, the selection is done
with a less number of candidate Morph objects where the Buckwalter variants that do not match the tested token are eliminated.

Table 5 lists the percentages of the occurrence and the accuracies of the different basic POS types in the PAT testing corpus.
Ten basic POS types are detected correctly with an accuracy of higher that 95%. These types are Conjunctions, demonstrative
pronouns, interjections, nouns, numbers, particles, pronouns, punctuations, relative pronouns and verbs. Other POS types have
also good accuracies, while other types have lower but still-acceptable accuracies.

TABLE 5: FINAL ACCURACIES OF THE BASIC POS TYPES

Accuracy %
Basic POS Type Occurrence %
Normal Variant Strict Variant
Abbreviation 00.15 70.0 70.0
Adjective 10.70 90.1 91.6
Adverb 00.67 86.3 87.3
Conjunction 00.54 100.0 100.0
Demonstrative pronoun 01.07 100.0 100.0
Interjection 00.05 100.0 100.0
Negation 01.23 93.2 93.8
Not In Lexicon 01.50 79.6 80.2
Noun 36.03 98.0 97.9
Proper noun 05.73 93.5 93.2
Number 01.50 94.9 96

Particle 16.71 99.5 99.5
Pronoun 00.54 100.0 100.0
Punctuation 11.09 100.0 100.0
Relative pronoun 01.66 954 95.4
Verb 09.97 96.1 96.4
Unknown 00.89 854 86.1

Conjunctions, demonstrative pronouns, interjections, pronouns and punctuations are always detected correctly (have an
accuracy of 100%). This is because these POS types have limited forms that can be easily recognized in the input text.
Punctuations have an extra advantage that they have only one Buckwalter solution, so they are always detected correctly.

Nouns, numbers, particles, relative pronouns and verbs have good accuracies of higher than 95%. Their detection accuracies
are 97.8%, 96.0%, 99.5%, 95.4%, and 96.4% respectively. It is important to have nouns, verbs and particles with these high
accuracies, since they are considered as the basic tokens of any natural language.

Adjectives, negations and proper nouns have also good accuracies of 91.6%, 93.8% and 93.2% respectively. These accuracies
are acceptable since these types rarely occur in the natural language. Moreover, there should be conflicts among nouns,
adjectives and proper nouns. This conflict is mostly resolved for nouns, which in turn decreases the detection accuracies of
adjectives and proper nouns. This is acceptable since the occurrence frequency of nouns is the highest one among all the basic
POS types, and then the detection of nouns is the most important.

Abbreviations, adverbs, not in lexicon types and unknown types have relatively lower accuracies of 70.0%, 87.3%, 80.2%
and 86.1% respectively. The detection accuracy of the adverbs should be better than that, while the other types are most likely
to be absent in the training data, so their occurrence in any tested text is mostly surprising, and as a result their detection
accuracies are the least among the detection accuracies of the other POS types.

Table 6 lists the final overall accuracies of the presented tagger. The following may be observed: Word vocalization has an
accuracy of 87.7%, which means that diacritization can be assigned with an accuracy of 87.7% on the letter basis. Word
Tokenization has a very high accuracy of 99.6%. Tokenization is not a separate part of the Buckwalter solution, but it can be
extracted from the complete Buckwalter POS, where the words are divided to prefixes, a stem and suffixes. Finally, the tagger
can assign a complete Buckwalter solution correctly (POS, gloss, vocalization and lemma ID) with an accuracy of 84.3%. These
final results are promising, competitive and high enough to overcome the current lingual systems that deal with the Arabic
language.

TABLE 6: FINAL OVERALL ACCURACIES

Accuracy %
Solution Part
Normal Variant Strict Variant

Complete POS 84.7 85.7
English Gloss 91.3 923
Vocalization (Diacritization) 86.7 87.7
Lemma ID 94.5 95.2
Tokenization 99.6 99.6
Complete Buckwalter Solution 83.3 84.3

The tagger outputs 2 main files; the first file includes all the morphological features of the input untagged text, while the second
one outputs the input text in a diacritized format. The diacritization is complete including the main case of the word. The
following example illustrates the power of the diacritizatoin of the presented system.

Input text:

slde] g sLgio¥l e oSyl dagdl of LUl dulsydd doledl Sugdly Jobus ydao LS|
Ly LY olilally deldl gulidl Goslue gsils ¢ g e

Text after diacritization:

SIus| oo s lei¥l e oyl agl o LU DUl Dl DUl Jgbas ylae LS
’ L)LY olilally Lol g Ul Gudlio gasls g g i

Finally, it is worthy to mention that that tagger has the ability to run with an average speed of 2000 words per minute, i.e. the
tagger could assign the diacritization, tokenization and morphological analysis with a very high competitive speed. This speed
can be enhanced by loading the resources once before running the tagging process for several times for several inputs.

7 CONCLUSIONS AND FUTURE WORK

The objective of this work has been the use of machine learning to design an Arabic automatic tagger that acts as a diacritizer,
tokenizer and morphological analyzer. This objective has been reached through a supervised tagging technique, i.e., a one that
uses an annotated corpus (whose correct Buckwalter morphological analysis is known) for classifiers training.

The results are promising and competitive. The tagger can assign the complete Buckwalter POS, English gloss, vocalization
(diacritization), lemma ID and tokenization with accuracies of 85.7%, 92.3%, 87.7%, 95.2% and 99.6% respectively. The
overall accuracy of assigning a complete Buckwalter analysis is 84.3%.

Enhancement and extension of the proposed system will be the subjects of future research work. For instance, the main problem
in building corpora is the annotation process. If the annotations can be made automatically then it would save much time and
efforts. This is doable by building a corpus whose annotations are made automatically using the presented tagger. Also, the
annotations would be much rich and useful since the presented tagger can accomplish diacritization, tokenization and
morphological analyses for the corpus text.

After syntactically analyzing the text, the next step is to analyze the text semantically and understand what does an input text
means. A semantic analysis can be accomplished based on the syntactical analysis of the presented tagger. Semantic
applications have great interest due to their importance in the real life practice, such as understanding the written/spoken text,
monitoring and tracking systems, language learning programs and other several vital applications.

REFERENCES

[1] Imad A. Al-Sughaiyer and Ibrahim A. Al-Kharashi, “Arabic morphological analysis techniques. A comprehensive survey”,
Journal of the American Society for Information Science and Technology, Pages 189-213, 2004.

[2] Tim Buckwalter, “Buckwalter Arabic Morphological Analyzer”, Linguistic Data Consortium, University of Pennsylvania,
LDC (The Linguistic Data Consortium), Pages 1-5, 2002.

[3] Emad Mohamed and Sandra Kiibler, “Is Arabic part of speech tagging feasible without word segmentation?”’, The 2010
Annual Conference of NAACL (North American Chapter of the Association for Computational Linguistics), Los Angeles,
California, Pages 705-708, 2010.

[4] Kareem Darwish, “Building a shallow Arabic Morphological Analyser in One Day”, 41st Meeting of ACL (Association for
Computational Linguistics) Workshop on Computational Approaches to Semitic Languages, Philadelpia, PA, Pages 47-54,
2002.

[5] Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan, “Language model based Arabic word
segmentation”, 41st Meeting of ACL (Association for Computational Linguistics), Sapporo, Japan, Pages 399-406, 2003.

[6] Taku Kudo and Yuji Matsumato, “Use of Support Vector Learning for Chunk Identification”, Proc. of the 4th Conf. on Very
Large Corpora, Pages 142-144, 2000.

[7] Mona Diab, Kadri Hacioglu, and Daniel Jurafsky, “Automatic tagging of Arabic Text: From Raw Text to Base Phrase
Chunks”, I5th Meeting of the North American Chapter of the Association for Computational Linguistics/Human Language
Technologies Conference, Boston, MA, Pages 149-152, 2004.

[8] Nizar Habash and Owen Rambow, Arabic Tokenization, “Part-of-Speech Tagging and Morphological Disambiguation in
One Fell Swoop”, 43rd Meeting of ACL (Association for Computational Linguistics) Workshop on Computational Approaches
to Semitic Languages, Pages 573-580, 2005.

[9] Shereen Khoja, “APT: Arabic Part-of-speech Tagger”, Proc. of the Student Workshop at NAACL (North American Chapter
of the Association for Computational Linguistics), Pages 20-25, 2001.

[10] Mohamed Maamouri, Ann Bies, and Tim Buckwalter, “The Penn Arabic Treebank: Building a Largescale Annotated
Arabic Corpus”, NEMLAR (Network for Euro-Mediterranean Language Resources) Conference on Arabic Language Resources
and Tools, Cairo, Egypt, Pages 263-270, 2004.

[11] Taku Kudo and Yuji Matsumoto, ‘“Fast Methods for Kernel-Based Text Analysis”, 41st Meeting of ACL (Association for
Computational Linguistics), Sapporo, Japan, Pages 24-31, 2003.

[12] Ali Farghaly and Khaled Shaalan, “Arabic Natural Language Processing: Challenges and Solutions”, ACM Transactions
on Asian Language Information Processing (TALIP), Volume 8, Issue 4, 2009.

Al 4081 ¢ 4y all) pulaall
Ll dig Al o gl G il a)
sl ue dran 5 yae
3ol dadla - aslall Hla S

amrdaramy@hotmail.com
amr1979golyahoo.com

Jasnt DA (e s Cum daad) by | el Zg el il slaall jolias died) dlee 203 3 padla
A e @l 5 AV dallaall el 8 3 5 JSG) A8) o) Glasleall jabias (a0 aa
) (il Lalas dgiae A i€l Adass (N J s sl o3 a5 ¢ saaill 5 guiall prasall
e das e pdf Sl jpg clilas)sa o sa sl

Co i) 8 Fanadiall i@l JSA (e clilal) o3a Jie Ziad) Y dalall 3033l ey
st Al dalsdl @l 3 "OCR" Optical Character Recognition —es_all e A gl
ol ol 028 ol 4y g2l yulea

— pagadllaa o oA el juladl Ay je Uashad g Ll G) Gaadll
Coyall JS5 i Lgia il ¢y salll s Adl) (b ubaad) 3a (Ui ¢gral ll o3a Jia apl
Clad) (adid 4 sl juleal) Lal A gl<ll A0 5l 2l o) g ddlisall ada shad o1 53l 5 oo sl
N ALRYL 13 L oleY) ol Lo el 5 Leliadil 5 Ledail Cum (g0 Al Cag jall (g galll
dolee 28a% (e 3 50 (A Y] s g cleia SeuDISN (5 shunall A JSAIL Ay all Cag jal) o
Co il g 3 gall) el gl ol (s IS Ay alll ulaall (e s i jadl iy all e Capadl
ol 3 sl eUndY) mosaail Ay sad Al aladial ol gyl Cig el e

A n gall elalsly

— (Goladl) G pall o AV ol — IV g el - pad) adll - Ay jall Lo gladl)
Optical Character - claslaall jolaasdiad) — Cogyall e byl coyaill
"OCR" -Recognition

A0 Jalaill Can) 13 i jaias g
1 (S g o all Ciguad) o i il eI
ot ALt Lghg ym A0S A pal) ol G o pad) g el Aliatial) ALY -1
Lelahal da i lgle (ol Camaay o5 (e g ¢ Dlie 4y JlaiY) Jie Aliadic
Lealae) sf g yall i A jal) iy a cai @l i calas) gl g pad) i D
) 538 LapaB o yall g eig pall o o il by ey jall an W) 8 has g Jasills
3 Alega Ll g yalld cJlaa) alilia i s (i gasll A1) (5 alae) agle () séllay
e AV Gl lee e 5 A sra Qe plae Y1 ol el 138 (K15 danas
Ay o) g ualld L) 83 pall o yall e S0 Al il Ay el Cag
@) 13Sa i elall g elall g e.\ﬂls o g yad Jayswll) V) e o Ay Y ‘(C‘C‘G)
Gl sra A Cilicay La s 5 dgaangane ol Gajall o ddaaill aia g) as
cagall Je IVl

mailto:amrdaramy@hotmail.com

Cagall odd) pa Samy a p (JUll Jsaadl

Sla|d|a|b|wa|l] |||« 1 Jwial
sla|d|a|B|lali|si]a]o]= 2 Jlaial
2 A = A 3 Jlaial
R 4 Juaia)

A) dall) (2 dlagall g daarall g Al) gua (ary g g3 J g0

sda ALy (€l LS jan il gl e il Ay el i (JSSddl ol 3
Aeaidl) g danal) 5 8l LS jad ¢(£-0-1) 51 Al b i guall Allia S jall
AalSll) gting 13%a 5 Ladsa g (e Al g il pall e ciladle WIS (77 7)) oSl
SN aall ClS ja gl s Cag yal) s (pa el ASEN 231 5 0 e K0 Ay jall
Al Al 5T ¢ = o8 — adai] — B 6S) A8 A 31 48N o gladl) 4
Aslaiall Al Sl ral) () il Al A A SN Cag adl (e damy LeBs s AUS
B s AT D gaa 4yl G all pailiady
L) £ o iy GISA i g Lgadl ga iy A al) Cig al) JWSET s 5
AT (s () S0 Ul (8 S il i e (L) ot 4y 4 il
La Jla 8 die o) Jady 4S5 Caling 138 5 ¢(cu) AalSl Jans g 8 () Al
s
rdallaal) o gaill G s dalig
(Masay (8 gal) JSilly i guaal) b pasall ; Yl
(8824 @ pual) JLill ds guaal) (o gualll ;lils

s pdl digoadl Jo (Y Gl gl andlil il g 4y gadl) yulaal)

AU 8 At ual) Ay el Ja g ladl) gy ppan o il o d oY) slaaal)
ERga]
) dslant dad gad aluaa 5 o€ AL jabianal) - S5 L)
ool dasiiaual) (o)5 ciladle 9 JuSds cilade g a8)i g g sa (1) ya gaill) apand jalas
Al g ad) Ao (V) el el
el (B g Cuall (B Al glitia Ao ganal 1) Jaghid (14 Ao gana (1)
Ohgd) eladl A 8 ol all g cisall (4 Jaghadl) 48lAL Ao gana (2)
o) A
Adll) A e 4y isa Glatiua (3)
Ad A 58 sl bdll g gl Ady Galilbdd (e pai (4)
Ad AN i (b oY) Jaghad (e g 3lad (5)
Clinas Jo (aill o) giald Lasan dBlud) Ja ghdl)) pual 4dlida cliuudl (6)
S Gl s sl claliay) a5 il) sasel sae 3 5a) Jie 2l A 4le

b A Ad 5 o ALl e (A e) dadaiie e (SLel (S il sa

; ‘ u‘j);j\‘sls‘;_;i)aal\u)’_ﬂ\ﬁdpujn
eLEJ\JanJ.A)u:n3).AJ\J\j3_AJS\8AL&J\QLJ£\SAJ.£M&M(7)
(A e ST 6 5in3 Al (el 8l (e el Jada g cAlal i

2AG L) 7z Mail) Cpa JSI Jlail) dastal) ALY ciladual) B J glatu g
Al B g) B A glitia Ao ganal A} Jaghad (e A gana (1)
Q"‘""‘J') sld! Cé‘?-r}»- - d..i_.

- a8 l
P2~

\

» L - - ofe - ¥ ' e pm, 3
ML_J'L;'/A_J sl ersy € (,.:a) ‘,S;J/ o ‘:A.._.—-—:]

: Tl - - e S
e ik] Cos o fent bl T el s
‘- il - ° ~o-r » = amo =
. A st ? 3 aadls o da S, '5—‘_"
~ -
= 5t -’ - e
eI AU _lap exts het & F S o WL} S ;-_A-:—'f e
= 5 »
A 2 iE - »
st il kS et —tii

2l ol ad e iy (1) JS3
\ e 4
@S oL AN

S~z S g
SN, & P

2l 1adl a3 g Sy (2) S
A\ A

édo' Losswcslas e G0
“‘—‘:“nl\—:-_’w‘cl—/j! ——aaa e 5t
FaT eI L - L oM

c omicOra e s e iat
§ N Aay 2V, 5 A

o Bl a3 s iy (3) S8

(2 gl sladl Al B) jadl g dauall e Jagladld) Adlida de gana (2)

Alat] (LS8 q@ilaagis JEel LS il ol plall disg
ssgndl eslpe olg o3 BBLEN Aahie e] el gB Lgy el S
Ay pally AW ol lan Wl Bhea i g 38,000 I 3palia dnltl

Al alts s

Cinaall (gaa) Laal lad s e (4) U2
i s oS
bkl B i R o o

ol il g bl A rdadaalall
Lag LA e D (g 31 ikad
Al Ao Ayl gyl o iy
b3 il U1 ol b Sl
Tl ¢ nlly gy o

o IS el e i il Ly
b e dgia Yy dggpal Jpddf g
g 1+ ol pling el 1
e £ 3) Y i
" e gugs G Al Aguladl) pL NI
0 a0 g papiail iy i
Wl b e S vl bl o)
bl i g 55y (ol ol 3
])l

Al 550 a1 ey b Bl JlacH!
Al iy Gl g il
kel plaal g aiad " e gups
g elall (48 of 31 AaliNl Wlall Jgs
kil iy dasdd o] dylhay (195
rebaalall 6yl £ piadly Al |
Sl Sy
it g LIS 7 33yltnt poiisly
il Byl A8 gl A Qe
il i g9 Jaadl Jud)
Ayl sl (o gyl B il lisay
(00 (St oy Ll Slowaly Jaall o 0
il (0 d3gSliay Las Ippany of 3
SR 5 e g) At aline

bl (30 de gans 2day -lhy- Sl
536 f lally Ay 0!l Aol o (piladdl|
rhlaulh e 1 Fpdos daald LAy
90 IF gapy da Yoo ooy @llall
(i ! 18 o St (il iy
"okl " A gugs b Aludll pldY)
' gl

dylad Abyd utdy yglane o> iy
B4 1 55 S0 I Ll ugin
I (b Q0 e garws pac sl
Gpbealgdy Ay LG £ g) pplaly
A pSllall Do glal! 450 pic pguanyy
RN

5)Sall 0 Sl o il iayiy

Caneall (san) Jadd ad pai Jias (5) IS

LB ke i W1 Syl S5 RS ol Ly ke 3l s Y o o5
536 gl Jg> el 30 ST Lol g ol paig
AL g 321 Jarag 2 o lalgid ok s

Conall (s2a) Jadl lad gai iy (5) S

Sl Al fadsaguliiles bl
CygSlall S, i LS Las dassci gy
g ol asa il

agelind g g il

Lypolid olals o a5 gl ks g 6Lk Gus
woyadl elgalf Ladl, 4y cdlis] el ool
i L2 lghptlgUaliblcopalia
gahas Y SU uadl (a5 lgsdl eldudg dSaludl)
(5 a0 ol Ay ot s o
Liatagaglicl o sibadslilfpd ey
saalh il) Ly S5l 0 S ¥
(g 8580 Ly 8 J e Gl G323
At fga
oJMomhuJJhiJﬁgJ@ﬂF;MUMlhi
[E T T FPLA RER ;—Lim'!'lju‘-‘l-ﬂ'ﬂus

(il plg)ell pnad ot G Lol 53 L
STY {EFILPRRP IS UE P PESA [PP T
[T} b!.nju.i.u.n LiLa s Ly G elid dlsuny
il i o gl Y U S] S0l
l_'l.t‘,:.ll “"‘"J.?"S*““ Ju|udw!t_.w
duadally Ly psglt) Lo dlisg 3 plke y
dajatasfco gl el alad sy el
Ul Aol paad JUial dugalidas 24
UL g g Al 0 S
0 i Y|] b gk sl
AU Gyl a1

daaball Gllleill
(9 g i el s sl o
alad M g olultall slie] (s iguss piual
Liguall 0 il | st s detdhs b L]

paillglad - 23 gl
L jus u.i dalit) glh.lt bl a0 olidlad (paud
Aol o Sl (00] il Aaabac)
A el pufl pdpa] el Ly
g el bl v oo (pasaidng oLl
ALY dadull] Jiuog plis (ob 3l 00dlgdd
o] s (3 0 gy bl Al s iy
3131 a1 AAE A bl Ui vt 31
(118 Aaalgl o jlusol 4 2l Alalf QLS a9
b 0yl ol b e lad 4l i o Ui
.3._|Jk,m'ﬂ!

L] g sl dhssa el
3518 1 g S L L il 0 0508
BRI gl (ol LRI o el

M\gh\kﬂhdﬁd&(6)d&m

awﬁloé

Al Ay e 4 giSa cilatins (3)

i Ll 18 3]

ion L o 38 9dy 0d 3y 3tan 153 (imny angs) oS S oy ol)

(Y1) e BT i Lsbos 8l (0 018 0y
RS AY) La Lad e Jiay (7) JS

A AN i adl i) £ g Ak Cpbilbadl (a gai (4)

NP

R

-.._}—J‘vl/d—‘—‘:ul&é)u

=

= ~, e

(’;_/\-)\4-9./_3’ c:)L,_i,‘.’JC)“-”'é)L;..isf

/VJL/{))

~

T
(/__,;V‘l

/’ _,_‘//’ \ c;ﬁ)/)

o S /)- e ==
" l__AD /‘ 4..:4_’/’:_’
/.. = 2 2= o L

JLll U poaime dad 1 Tl L3 i Sy (8) S8

../../../Local%20Settings/Ù�Ø¤ØªÙ�Ø±Ø§Øª%20Ù�Ù�Ø¯%20Ø§Ù�Ù�Ø¸Ø±/ESOLE_2010/Ø®Ø·_Ø¹Ø±Ø¨Ù�.htm#.D8.A7.D9.84.D8.AE.D8.B7_.D8.A7.D9.84.D8.B1.D9.82.D8.B9.D9.8A

A A e 5 Leie A A 50 i oY) Jashad i (1) g

A AN 1 (ud oY) Jaghd (e g ilal (5)

Office fonts

Akhbar MT pi)l el 1 oy | MiiCrOSOft Uighur ool oayl) D ey
Andalus sl gasll alll ey | Monotype Koufi a1l o 1 alll guuey
Arabic Typesetting e o) A e | Mudir MT i 1 o 31 ! o
Arial sl e I Al s | Old Antic Bold 22 Al
Bold Italic Art . Old Antic Decorative R DI
DecoType Naskh : Old Antic Outline

ecoType Nas TR DT 1 DUt ldl Ll A g
DecoType Naskh .y Old Antic Outline .
Extensions r N | Shaded ael) G2l] g
DecoType Naskh ! PT Bold Arch .
Doy A R
DecoType Naskh e PT Bold Broken ean ol alil o
Swashgsp (N AN e pou ol (02 el i) i
SecpT%/pe Naskh o g Ml o PT Bold Dusky ey ol oo) el gt

ariants :
DecoType Thuluth o e s PT Bold Heading oo | o) Al o
Diwani Bent Kﬁ%ﬁ;%}% PT Bold Mirror ﬁ’,ﬁ ﬁg&) ﬂ} -
Diwani Letter A PT Bold Stars s ol (ot ey
Diwani Outline Shaded ’ PT Simple Bold Ruled $ oonm 1]

iwani Outline Shade @’?)Dif)} @)@a imp o ol o0 el i
Diwani Simple Outline oy, ajf)gf Simple Bold Jut Out ol | ol gl | Al ot
g)lwam Simple Outline gﬁ%@ﬁv@ﬁ Simple Indust Outline o] s) @
Diwani Simple Striped g}%&w@ Simple Indust Shaded @asyp) ey 1) 210 am)
Farsi Simple Bold Simple Outline Pat ol Gomgs Tl €l oy

Farsi Simple Outline

A A

5) /) [y
e V9]
! - I

Simplified Arabic

el el sy

Italic Outline Art

NN

T & F \L§\ A\ @sﬁs

Simplified Arabic Fixed

)

Kufi Extended Outline

el o] oy

Tahoma

PNCSN UVCN I (W

Kufi Outline Shaded

Times New Roman

?.-.‘A)ML')‘“;)”‘&\(-‘M-.’

Led Italic Font

{:..):‘_\ \}\ \ _\J::\ \}\ t:SX\ {u»..s.

Traditional Arabic

e o Al o

& Y e Lgiadlas Cuinil ¢l 531 Ja glad AailE 8 45)3 3l o shadl) Jillay Licd a3
~eabil) alaa (e (Y1 Al)

aaadl) B Ae i o (aill of giald Laan ALl Jaghidl)) gual ddlida ciliuuds (6)
G Aakiia pe cSlal & s ol el s sl cilaliay) 3 ga g s Al) Baee i Bae 3 0a) i
uj);j\‘sjr—é}d\uﬂ\cd);ujsgﬂuﬁu&uj&"u\muwc(cﬂb_);u:

(s—2);lr(s+o)] xT=gl=tp b=
1] - [
$—o) ;b (g1 0) ¥ glo= + = s
':-'—"}3—1"."{!"‘#"} %Lbr‘!'-;l.r—p -
($-) Llr(s+2) Llr ¥ == g b — pr lor
ol po e Y=Yl

el Y

=gy b

p-‘iﬂ-—"l

P P T A
e S

P e

2l b Ale i o el ol siaY a3 s Jias (9) JS

Jalas ol ¢ Alalaie LB Hi g Cag ya) Ciggaldl g gma) Baaaia o) cilall) Bamia a4 gl (7)
(A e ST 6 5ia3 Al (a gaaill 8l (e sl

-

alimented; to feed on, live on; to eat; to be fed
(with), charged (with), provided (with), supplied
(with)

nutritional

s
O

nutrition, feeding, nourishment, ((pass) Liw

nourishing, alimentation

i P
feed(ing), charging; providing {c]‘l B30 A Lss
with, supplying with ’

- & f 0 A A
feedback Lol ol Lol L1 TS
dietetics, sitology aa..u:ﬂ ;l.r.

to be glued, fixed with glue, conglutinated, i
agglutinated; to conglutinate, agglutinate

P

R AN R L R R

. .
el e
to take sides with, side with, be partial ;_,.f . u‘,;-ﬂ-'
to, be biased for, have a bias for "~

to sing, warble

Cagoall gl ga sl Banmia sl cilalll 8aaia L geai e aill o) 5iaY ad sai Jias (10) JS&

s

-

. . . o vE £z ‘e
identification Landl yl Lodl s

to ignore, disregard, overlook, be unmindful ;¢ &
of

to wrong one another; to cheat one another
to court or woo one another; to flirt with one J ;i
another

overlooking, disregard(ing), ((,<) ([".al:ﬂ) oW
condonation, connivance, winking at, bli nkiné at,
shutting one's eyes to; excuse, forgiveness,
pardon(ing)

to overlook, disregard, condone, connive o ,_,.a\....
at, wink at, blink at, bypass, pass over, let pass,
shut one’s eyes to; to excuse, forgive, pardon

to close one’s eyes

U
e gl ae 00
-t P
Jagh prl) - e Sl
(o feign inattention or inadver- dial, a5 : 5
tence, feign negligence or carelessness, pretend to

be inattentive or inadvertent, pretend to be negli-
gent or careless

Ly A8 i) 5 (JeSil) ciladie') SN lapdal) e o il 3) eal

ol Lr’l—’} oy all LS s (VOWGIS) g_a\}_a.aﬁ“u_c‘).u’_\j_au)d\d_d\)_m.u

A_ASS\LAQJ}LMJ\JSA}4(QO|ua)&PY\uw\@w\Hﬂ&mu\SF\
JSEIL bavcall S g g cag yadl Jasewd e AIKET 29 g) e ST A)

mﬂ\@d&dbh@\uu)\s CM}J(z) dra

2w z W P z ~

s sad PG | (S Gl 3 pS Gl A Cred PR
dadayg | (cpsiy datd g 5 sl daally dadlly

dasily

w w R W

A A A

Cusdig | BpmSy | Cnsily

B Sl daally

b alad) g yoail) 8 JCAL Ll Sladle 23508 ¥ §_pabeall e 22l L 3ol
U smaill 8 aALaT 5 by A€ IS m ail)) Vi ey (S ad (ay
_B)abul\

c(3-2-1) Ladl g (F-¥-) Dpighl Lt gy A) a8 Y o it) Lunal)

o2a (ff Atasdle Lia agall (a9 (v-?-s-,-‘)eéﬂ\uu)suhdﬂ$ s) sl
uLAM\oMubuu_&.medwjcd);\o)thAMYJaja)hwghM" Ciladlal)
i) sa LS 8

([o] - %o - $ - # - @) 48kl <) Laid¥l g §gall o il sualdd) jlinal)

=l aldl)) (AT 8y Lelin 5 da g) JSEN 5) guall Ao il s udlaad) jLizal)
bl e LgilSa

PR o) diguadl o AV Gail) dlae 3 4 @l i jlaal) aladiad e spabead) jlizal)
(JSAdl Japall 5 i i) g JSA) Cua (10 i g o) paibad Bl s
b 5 g Aligh SN (e guin sall 5 IS i (e ailiad gy jal) g salld
Ad e Cag ya llia g ¢ adl lgiiatiio g ledau sl 8 U5 Cag a cllia g cdadd S J
g yeall - A giall Cag yoall - AN W) oy pall) s ALK Al d ol
S g Al (o AV Cay) e 4 5 DAL il aus)y paay s (R k)
A
2elld Jlia g

(B iegd)) A G
s aall di e - L LS (3 Jagdl) Gl AUS JISii Calias
{6—15—3—‘—‘—‘—!—‘}
hac Lo ISl dglay & Sl seall 8 arand
{e—G—5—+¢} o
haele 4l Jass 5 8 Sl Lial Lgrsan
)

\
:Lﬁgm‘)ﬂ‘;};dﬂjw‘%‘ﬁeéﬁﬂdﬂ)ﬁcﬁ#ﬁ}
(J—i-5-i-iy

tlgdag g ad) (A DY) ol 20 g8 Bl pa Ludaf el (hag

Lyl b JE) N -
G sise (o olald S aie gt s bl) (5 sise o JBY (5 00 A el el
il A5
S0 el 13) Lgiihads o3y 5 €8 o (5 sna sl Il) ST Y () g pall s (S
(Osall) Ll sma s (Omaalll) (B (U)de Ladald Laia A jall A g glacd iy a3 s Ll
Ay Loy allagial) Lolali QU) jSall cajall s Sy a3 (e g
1 JaSl) g Jasdal) a0) g8 Ble) pa - JSEIL A guadll e paill e Cojaill die — L) U3 g
I Cayall) Al (e Cag yall aaal ge aen g A ¢ g8l 5 Aaidall g 5yl g Aail) -
& Lol g SU
L Vs (0eaY Gapall o) dais 2K il e Sl dadal g 8 puasl) g Aailly oy 558 -y
Jia (3 A Jd gl Al N85) Ledan s (A sl (U1 caoall o) ZalSl Ay e o il
(Al G sll LUS) g (g3a) o Jad daially oy o)
ol sl Ada s pe ol Lugiall e ARKN e CalY) a1 a2y 3 Aaily ¢ ol -
Y 15 seie Y 840 galll saclall g dn jall 3 AN & Y1 el e b Y ¢esad) -
(=) Ayl 8 sl N5 Y - A
oy romd ya e b lae 3l o el Ay jall B AN & N Gall Je sy saddi o
)) & jatie G s oSk
JRall b ¥ Jua gl Al -
e YU e jall slady AN paail) (e LSl dasiia 4y gl 44085 392 g (ol Larall
(5 pane) A o sl (G Jlas Lo ading SO (380 e
aladl) o V) G jadl) gal g qu a0 g addiieeal) Cilagaual (e SAELWY) (s2a s paldd) laal)
A3l dildad e
[‘L\AJL\J\MUJ:(u;ﬂ\uiﬁgly\uﬂ\e\j)é\yw]ﬁu)’h\}\é\y

ac Lo 4l 4305 8 3 LelS Lgnpan

http://www.caere.com
http://www.irislink.com
http://www.sakhr.com
http://www.textbridge.com
http://www.novodynamics.com

http://www.caere.com/
http://www.textbridge.com/
http://www.novodynamics.com/

http://www.ocr-systeme.de
http://www.olduvai.com

JAMASU Pb'd‘
iy gall) el sl N gl

21422 1.b dalall KU Gy sty Jua) 2 GaaT (Jaaddl) TS Uy o)
. 22001

Ol padl gtlaall hall Jpal) 8 4 paill diaall oy sell i bl gl
#2005 /21426 «(1) 1 g 35l 5 il Calud o) sl

c:\:\.‘dﬂ\ g._ﬁ\ﬁ\ _)\J cu)sg d:m\ A L'é:xsaﬁ “._\.;\AJ\ Og\ 4:\51...'2: CJ.JZ: cg.ﬂ\g\‘)ﬁu\g\ ‘;..4)3\ .
21419 <1 b
qu‘;X'\ pa 3 _alall c‘ﬁiﬁj\ OSa A yell 3l AKEe gl e las
/199621417

1998 ¢ geayall s ey yall s yall laladian ¢ b ladle
Goym Al b eVl Yl acld (8 dulpn cuhll dlsall e
21986/21406

21425 «Js¥) by sl ddsall Gty oDyl aeld ole aSldl ae
22004

21975 G alal) ey je AiSa Ay yal) LUKT 3 2 51l 5 oY) el) alall e

2003 g5l

A1

2

8
ol g debdall Al dise Aada «cd pall (8 A Copall 1A (g sDaall 2aaa 9

c:\éﬁﬂ\'&‘)\‘}j c(;_j‘):d\ ;)ua:ﬁ\ djmiju‘)#j@)ﬂ\%m‘@‘)u ‘UMCLAJ)AM].O

22004 (50

?1990 5 yalall ¢dn gal Al H) Ay y=ll ARl (_s‘°‘ 3 gl c(é..'\}ﬂ\ Lﬁk&ﬁll

Laaalad) Jilesyl) 2Ll

— A 681 Al 5 dw gulall Aallaall g (5.1)31\ 8 pall 4aglaia ce:uz\),\g\ dasna ‘54):1\12

1488 a8 aslall Hla 4Sy Hiuale Al

dalaly) G

Caulall o sle LIS AU 3 sr 0 2 alel] Andls Aliisall Y15 ol ISLY)
e sleall il 3 and e slaall

¢50 222l ¢j8 al) Alsa ‘?-'3)5” UYJSM L;AJ.I\.MAS\ agyallelall ¢ s é) dana 14

2006)\
— Olas ‘@)A‘M\M@M‘M}A\ ‘@jﬂ\}@)ﬂ\d)ﬂ\ c)mé)w
2001 « sy

http://www.ocr-systeme.de/englisch/plus50.htm
http://www.olduvai.com/readit62.html

Rich Semantic Graph Generation System Prototype

Mostafa Mahmoud Aref ™, Ibrahim Fathy Moawad ™2, Soha Said Ibrahim™

“Computer Science Department, Faculty of Computer Science and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt
ltaref 99@yahoo.com

3sohaelshafey@yahoo.com

“Information System Department, Faculty of Computer Science and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt

2ibrahim moawad@hotmail.com

Abstract— Information nowadays has become more and more accessible, so much as to give birth to an information overload issue. As
it is impossible to read all the relevant content that helps one stay informed, a possible solution would be condensing data and
obtaining the kernel of a text to explore, analyze, and discover knowledge from documents. In this paper, a system prototype is
proposed to analyze text and represent valuable information in an ontology-based representation form. The main objective is to
propose a system that transforms an input text to semantic graph representation called ""Rich Semantic Graph™ (RSG) in which
verbs and nouns of a document are represented as nodes along with edges corresponding to semantic and linguistic relations between
them. The rich semantic graph can be exploited in several applications like information retrieval, text summarization, and text
mining applications. This work is a part of an ongoing research to create an abstractive summary for a single input document.

1 INTRODUCTION

The explosive growth in the number of electronic documents produced daily increases the need for intelligent filtering
approaches. It becomes impossible to manually search, sift and choose the needed information. Knowledge representation and
discovery is the non-trivial extraction of implicit, unknown, and potentially useful information from document such that it is
easily accessed and manipulated [1], [2]. Different Natural Language Processing (NLP) applications (e.g. text summarization,
machine translation etc.) entail different internal representations that lead to different implementation techniques. Therefore, a
common semantic representation is needed to unify application representation techniques. Ontology has evolved in computer
science as a formal explicit specification of a shared conceptualization of vocabularies. It provides a shared and a common
understanding of vocabulary that can be communicated between people and distributed systems. By defining shared and
common vocabularies, ontology helps both people and machines to communicate and support the exchange of semantics but
also syntax [3].

In this paper, a new ontology-based system prototype is proposed to generate unified semantic representation from the input
document. The provided representation consists of document concepts as nodes along with edges corresponding to semantic and
linguistic relationships between them. This semantic graph representation is called "Rich Semantic Graph” (RSG). It can be
exploited in several applications like information retrieval, text summarization, and text mining applications. This work is part
of a novel approach to create an abstractive summary for a single input document using the "Rich Semantic Graph" (RSG). The
method summaries the input single document by creating a rich semantic graph for the original document, reducing the
generated graph to smaller graph, then applying a natural language generation technique on the reduced graph to generate the
final abstractive summary [4],[5]. In section 2, problem definition and related work are presented, while section 3 presents the
RSG generation model. Section 4 describes the system prototype, and finally section 5 concludes the paper.

2 PROBLEM DEFINITION AND RELATED WORK

Several research activities are related to this work. One of the most recent research methods is extracting summary sentences
based on the document semantic graph representation. This method generates semantic representation from the input document
by a machine learning technique to extract full sentences suitable for creating summaries. It starts with deep syntactic analysis
of the whole text, then for each sentence extracts logical form triples (subject-predicate-object). After that, it applies cross
sentence pronoun resolution, co-reference resolution, and semantic normalization to refine the set of triples and merge them into
a semantic graph. This procedure is applied to both document and corresponding summary extracts. Finally, linear support
vector machine will be trained on the logical form triples to learn how to extract triples that belong to sentences in document
summaries. The classifier is then used for automatic creation of document summaries of test documents [6] - [11].

On the other hand, another approach incorporates the object-orientation techniques in knowledge representation. This approach
supports data abstraction and hence increases the modularity of natural language processing applications. It organizes
knowledge into classes of objects (subclasses and super classes), which is an important issue in knowledge representation to
avoid redundant declarations or specifications. This approach assumes the presence of an object-oriented lexicon where

language words represent objects, and their semantic characteristics are expressed in terms of attributes and behaviors. For a
given sentence, set of words, the model instantiates the word objects using some lexicon program. These word objects search
for their suitable partners to come up with a semantically consistent structure that reflects the meaning of the sentence. At the
end, the model gives an output of some weighted representations of the input sentence. These weights reflect the most likely
meanings of the sentence [12], [13].

Finally, an Interlingua is proposed to represent and exchange information called "Universal Networking Language (UNL)".
UNL is equipped with lexical, grammatical, and semantic components as any natural language. Therefore, it can describe the
entire world of natural language. UNL system consists of Universal Words (UW), relations, attributes, and the UNL knowledge
base (UNLKB). In the UNL approach, information conveyed by natural language is represented by a hyper graph. This hyper
graph is composed of a set of hyper nodes (UWSs) and directed binary labeled links (relations) between these nodes. The process
of representing natural language sentences in UNL graphs is called "the enconverting process”, while the process of generating
natural language sentences out of UNL graphs is called "the deconverting process" [14], [15], [21] - [23].

Nevertheless, semantic graph representation in its traditional form is incomplete due to the limitation of explicit operational or
procedural knowledge, so it needs to assign more structure to nodes as well as to links [3]. On the other hand, object-oriented
(O0) modeling reflects the structure of data and the software's object behavior not the world concepts and its structure.
Therefore, only traditional object-oriented technique is not enough for a good knowledge representation. It is difficult to build
large coherent and complete knowledge representation [16], [17]. Finally, the granularity is an important issue in knowledge
representation. It concerns with the level of knowledge details that should be represented and what are the primitives
(fundamental concepts) needed to be constructed [3]. UWSs primitives in UNL consider most natural language elements: nouns,
verbs, adjectives, and adverbs. However, the UNL hyper graph generated to represent a short document will be a very huge due
to the low granularity of UNL system concepts.

In this paper, a system prototype is presented to transform an input document to a Rich Semantic Graph (RSG) which is based
upon ontology. The ontology primitives (concepts) are language nouns and verbs only. It preserves words hierarchies and their
semantic constraints and ontological relations among each other. Therefore, the output graph is not complex, and not huge, but
rich, because each concept has its own linguistic and semantic attributes and relations that can be deduced from the analyzed
input text. This prototype is the implementation for previous proposed model [5].

3 RSG GENERATION MODEL

Input Text

1. Preprocessing
phase

System mode

Word Senses Instantiation

2. Rich semantic
sub-graphs phase

Inferencing & RSG
generation
3. RSG generation
v

Phase

Ontology

Figure 1: RSG Generating Model Architecture

Fig. 1 illustrates the overall model architecture of the proposed model [5]. It shows four main components: the input text, the
system model, the ontology, and the rich semantic graph. The model ontology represents natural language concepts in a

hierarchical structure. Each concept has its own attributes and relations which describe its semantics and syntax constraints.
Also, inference rules are applied on the whole ontology to reason out more advanced representations. In this ontology, Wordnet
lexicon has been exploited [18], [19]. As the case with any natural language, any word may have more than one sense
(meaning). Therefore, there is a word concept to each sense. The word senses are classified according to their attributes which
are chosen in a way to handle various semantics and linguistics issues. The rich semantic graph generation model involves three
phases:
= Preprocessing phase - It is responsible to accept the input text, and converts it to preprocessed sentences. This phase includes
one module called "Preprocessing Module", which consists of four main steps: named entity recognition, morphological and
syntactic analysis, cross-reference resolution, and pronominal resolution. The main objective of this phase is to resolve the
syntactic ambiguity and retrieve both set of tags (syntactic and morphological). It also retrieves typed dependency relations
between words for the input text.
= Rich semantic sub-graphs generation phase - It is responsible to transform the input preprocessed sentences to set of ranked
rich semantic sub-graphs. This phase includes three modules which are repeated for each input preprocessed sentence:
o"Word Senses Instantiation™ - This module instantiates a set of word concepts for both nouns and verbs based on the used
ontology. According to the input word syntactic category tag (e.g.: verb, or noun), the ontology is accessed to instantiate a
concept for each word sense that is corresponding to the word syntactic category.
o"Concepts Validation" — The sentence concepts instantiated in previous module are interconnected and validated through
the semantic and syntactic constraints and relationships using the ontology and the input preprocessed tags.
o "Semantic Sentences Ranking" - This module aims to rank and to threshold the highest ranked rich semantic sub-graphs for
each sentence.
= RSG generation phase - It is responsible to generate all possible rich semantic graphs of the whole input document. It consists
of a module called "Inferencing & RSG Generation Module" that generates all possible combinations of the sentence rich
semantic sub-graphs for the input document after applying inferencing rules in the ontology. These rules conclude more
similarities and advanced relations between concepts in the final representation.

?m

'/- R50 Generation System '

4 RSG GENERATION SYSTEM PROTOTYPE

Preprocessed Sentences

r-" ______________ b1 SRR ,
I wloope I Eequentials ':
| Ondology i
| |
| I
I
. l
I I
| I
| |
: | sdatasiongs 1
: \J/ : i Oniology :
I i I
| | ! :
| (Ranking & Thresholding) i : I
L 1 | I
L — £ | Recsive | |
1
O |
% i

Document Sentences R3Gs | » / ~"———======

(In‘flunemg & RSG Gnmm‘hnn__\;l

Enhanced_Document_Sentences R 5303
g r

Figure 2: Overall RSG Generation System Activity Diagram

Rich Semantic Graph (RSG) system prototype is the implementation of the RSG generation model shown in figure 1. Protégé-
OWL editor is used as a platform for building ontologies and knowledge-based systems with support for the Ontology Web
Language (OWL). OWL is a standard ontology language to generate a common and unified text representation that can be used
by different natural language applications [20], [23]. Fig. 2 shows an overall activity diagram of the RSG generation system
prototype. The input is the document sentences preprocessed. Subsequently, each preprocessed sentence passes through three
modules: Instantiating, validating, and ranking modules respectively. In the instantiating module, sentence concepts are
instantiated from the system's ontology, and the sentence concepts are combined and validated to form different sentence rich
semantic sub-graphs in the validating module. Then, the sentence rich semantic sub-graphs are ranked and threshold to get most
semantically accepted sub-graphs in the ranking module. In the final stage, inference is applied to reason out the enhanced
document RSG representations.

As the case with any natural language, any word may have more than one sense (meaning). Therefore, there is a word concept
to each sense. The word senses are classified according to their attributes which are chosen in a way to handle various semantics
and syntactic issues. One of the semantic issues is that different word meanings may lead to reason out different semantic
representations. On the other hand, syntactic issues include sentences and words structures which may need special treatment
and may lead to different sentence semantic representations. According to these issues, the RSG generation system uses
ontology which is supplied with different rules to reserve concepts semantic and syntactic representation. Fig. 3 shows a partial
noun ontology hierarchy. During RSG generation process, there are variant semantic representation cases can be met. In this
system ontology, different rules and constraints are supplied to handle these cases. These cases are categorized as direct cases,
indirect cases, and error detection cases. These cases are discussed briefly below:

-

Entity)
Physical_Entity Abstract_Entity)
Y -
Object Abstraction
Living_thing Unit Group
d .
Qiganism Natural_Object) Collection
Y
. 1 L
| Pemson_S1) Body Class
— v
) 1
Human_Bedy) Grammatical_Category
T
13] e a
Peson_S2) Person_S3

Figure 3: Partial Noun Ontology Hierarchy in Protégé

A. Direct Cases

In direct cases, no special action or rule needs to be applied to get RSG representation from the input sentences. In these cases,
the RSG output of the system is not affected by the ontology inference rules. The sentences have direct semantic and syntactic

relationships between sentence's words. For example, the sentence "Chris eats an apple” is a direct case. Semantically, each
word in this sentence has more than one sense in the system ontology, but the highest familiar senses to each is the most
accurate to relate sentence's words with each other. In the instantiation module, each noun and verb word in the example
sentence instantiates its senses from the system ontology. If this word is referred in a previous sentence before, then the
instantiated word senses are used, else the system ontology is searched and the word sense is instantiated. The detailed activity
diagram of instantiating word senses is shown in Fig. 4.

Prepfocessed sentence

V

4 Instantiating Word Senses Module -‘\1'

P e e e -
| wloops ‘LI
| Loop Sentence Words |
| | Refesred before or NOT) Houn of \Verh i
' < > I
|
i [na] :
| Continue o next I
| [referes before] word 1
' = I
| [mot reffered] |
| Copy Reffered Concepts i
l \\; '

I
I N
i Search Onlology Nodes I
I == v sttt et . I
: |I uloopn [|
Al Check Loop Ontology Nodes 1 :
| : Concept : I
: I Instantiate concept I :
| : and continue : i
H adatasiores il
: I Ontology - '::.m 1| !
Dl (found) searching I :
i | 1 i

| 1

: | [net found) il

|
| : Canospt : I
| I Message i I
: llll-. .-'J I
L —————————————— A3

g g ———— - "J

Sentence_Concepts

Figure 4: Detailed Activity Diagram of Instantiating Module

The output of this module is as follow: the subject "Chris" is a kind of person and it has three instances, the verb "eats" has six
instances, and the object "apple" has two senses. In the validation and ranking modules, the instantiated instances are
interconnected and validated to form different semantic representations to the same sentence, then the validated sentences
representations are ranked and threshold to conclude most highest RSG representation. According to the output of instantiating
module, there will be 36 possible semantic representations to the example sentence. After validation and ranking, the final
output will be only one representation. Fig. 5 shows the final RSG output of the above sentence, where instances' names are
formed of word lemma, number of sense, and automatic generated instance number. For example,
"Person_S1_11285833693833" is the first sense of word "Person" and represents the sentence's subject "Chris",
"Eat_S1 1128583364328" is the first sense of word "eat" and represents the sentence's verb "eats", and
"Apple_S1 11285833694871" is the first sense of word "apple" and represents the sentence's object. At the end, the RSG
system composes the sentence RSG directly without any inference rules.

* & Apple_S1_112858
33694871

Apple_S1_1128583360487 1
URI: hitpdivwan s emantioweb. org/ Test/Ontology_beta owWApple_S1_[128583360487 1
Dataproperty assertions:

Apple_S1_1128583368467 1 noun_function "@ 0BJ"

Apple_S1_1128583360487 1 case "Nom”

Apple_S1_1128583608487 1 noun_number "SG"

Apple S1_|128583360467 1 det "an"

& Person_S1_11285
833693833

L]
|
‘u
- '.'
i Person_S1_|1285933603833
\ UR | htp.iwas. s emantiove b, o1g/T est/Ontology_beta owl#Person_S1_| 1285833003833
‘ Data property assertions:
‘ Person_S1_11285833803833 noun_type "Proper”
\ Person_S1_|12B5833003633 case "Nom"
\ Person_S1_|1285833603633 name "C hiis"
Person_S1_11285833803833 noun_number "SG"
‘\ Person_S1_112858368036833 noun_function "@Subj*
|

& Eat S1_11285833
694328

Eat_S1_1128%583300408
URL http /i s emantiowe b, o1g/Test/Ontology_beta awl#E at_S1_11285833804328
Object property assertions:
Eat_S1_|1285833604328 nvsubj Person_S1_|1285833603333
Eat_S1_11285833004328 D Obj Apple_S1_11285833004871
Data property assertions:
Eat_S51_|1295833504328 verb_form "WFIN®
Eat_S1_|1288333504328 verb_number "SG3"
Eat_S1_M2B5e330040B terse "PRES"
Eat_S1_|1285833504328 verd_function " @+F MAINV"
Eat_S1_|1285833604328 transitive " SV
Eat_S1_|12858330064328 transitive " SVO"

Figure 5: Sentence "Chris eats an apple" Final RSG
B. Indirect Cases

These cases represent sentences where concepts are related with more complicated semantics and syntactic relations than direct
cases. In these cases, the output of RSG system is affected by ontology inference rules. These rules are applied to detect
similarities between concepts, so redundant relations and concepts are deleted and merged. For example, the sentence "Chris is
a graduate Student” is an indirect case, where it includes the copular verb "is". The copular verbs are verbs that connect the
subject to their complements, which are adjectives or nouns for the subject. In this sentence, the verb "is" links between noun to
noun, where the subject is "Chris" and its complement is "student”. After passing the sentence through the rich semantic sub-
graph phase, the intermediate sentence RSG is generated as shown in Fig. 6. This RSG needs to be enhanced by applying
inference rules. Fig. 7 shows a sample of the copular verb inference rules. Finally, the RSG generation phase will apply "Rule
1" to infer an enhanced RSG representation as shown in Fig. 8. It shows that "Chris" and "student" are similar instances.
Therefore, these concepts have been merged in the final RSG representation output as shown in Fig. 9.

* @ Person_S1_1285
835711647

Person_S51_|1285335711647
URL httpiivwn semantioweb.org/Test/Ontology_beta owl#Person_S1_11285335711647
Data property sssertions:

Person_S1_I128583571 1847 noun_function "@Subl®

Person_S1_112858357116847 noun_type "Propes”

Person_S1_1128583871 1847 noun_number "SG”

Person_S1_[1285835711847 name "Sally"

Person_S1 112853357116847 case "N om"

|
|
¢ Be_S1_112858357
L 12173
| Be_S1_1286835712173
“ URE: hitp/hmws s e mantioweb. org/Test’Ontology_beta owBe_S1_[1285835712173
Daa property assertions:
| Be_S1_|1285835712173 verb_number "SGZ'
| Be_51_11285835712173 vesb_function "@+FMAINV"
Be_S1_|1285835712173 transitive "SV"
| _S1_| 7
| Be_S1_|1285835712173 verb_form "VFIN'
| Be_S51_|1285835712173 copula_with "SVC/N"
1 / Be_51_11285835712173 copula_with "SVC/A'
| ,, Be_S51_|1285835712173 tense “PRES"
|)
& Student_S1_1128
5835713031

Student_S1_112858357 13031
UR|: hitp:fwwen.s em anticweb.or g/ TestOntology_beta owl¥ Student_S1_112858357 13031
Object property assertions:
Student_S1_N2858357 13031 cop Be_S1_I1285835712173
Student_S1_N2858357 13031 nnsubj Person_S1_I12858357 1864
Data property assertions:
Student_S1_H2856357 13031 noun_function " @PC OMPL- 8"
Student_S1_N2858357 13031 case "NOM'
Student_S1_N2858357 12031 amod "graduate
Student_S1_12858357 13031 noun_number "S6*
Student_S1_112858357 13031 det"A"

Figure 6: The "Chris is a graduate student" RSG Output before applying Inference

Rule 1: " If some noun (x), and some noun (y), and some copluar verb (z), and y is subclass x, and y is subject to x, and y
has copular z then x is same as y".

Rule 2: "If some noun (x), and some copular verb (z), and some thing (y), and y is copular z, and y is adjective subject to x
then x has adiective v"

Figure 7: Sample of Copular Verb "Be" Inference Rules in Ontology

Student_S1_1128 }

Person_S1_[1265 .
BE35T 13031 o

B3ET 11647

Be_S1_112853357
12173

Figure 8: Intermediate RSG of the "Chris is a graduate student" Sentence

* @ Student_S1_1128
5835713031

Figure 9: Final RSG of the "Chris is a graduate student" sentence

The sentence "Sally is beautiful” is another indirect case. The verb "is" links the subject "Sally" and its adjective "beautiful”.
Firstly, if direct case is applied, the output will be like the shown Fig. 10. Then, "Rule 2" in Fig. 7 needs to be applied to
improve representation output (see Fig. 11). Finally, the final RSG graph will be like the shown Fig. 12.

& Beautiful I Be autiful

URI: hitp:dvwsw.s emantiowe b.or g/ TestOntology_beta owBe autiful
Cbject property assertions:
Beautiful acop Be_S51_|128583754 547
s Beautiful asubj Person_S1_I1285837 541258
“| Dt aproperty assertions:
Be autiful adjective "Beautiful®

* @ Person_S1_11285
837541258

I Person_S1_|1285837541258
URL hitp: s s emantioveb. o rg/T est/Ontol ogy_beta, owl#P erson_51_| 1285837 541258
I Data property assartions:
I Person_51_|12859837541 258 noun_funclon “@Subf'
| Person_S1_|12B5837541258 case "Nom”
I Person_51_| 1285837541 258 noun_type "Froper”
I| Person_51_|1285837541 258 name "Saly"
l Person_51_|11285837 541 258 noun_number 56"
|]

* @ Be_s51_/12858375
41547

Be_S51_l1285837541547

URI: hitpdivessn s emantics eb.ongl Test/Ontology_beta o8 e_S51_1N285837 511547
Dataproperty assertions:

Be_51_I1285837 541547 tense "PRES™

Ble_51_I12B5837 541547 verb_function "@+F MAINY

Be_S1_I1285837541547 copular_with “S\CIA"

Be_S1_|1ZB5837 541547 verb_numb er "S53’

Ble_51_I12ZB5837 541547 tramsitive "SW™

Ble_51_I1285837 541547 verb_form "WFIN"

Be_S1_|1285837 541547 copular_with “SVWCIN"

Figure 10: RSG Output of the “Sally is beautiful" sentence

& Person_S1_11285 .
B3T541 258 ; § Goamtil

0 F.
\ #
LY /

N /
+\ j'

% /

N\
5 /
* & Be_S1_|12858375
41547

Figure 11: Inference Rule 2 output of the “Sally is beautiful" sentence

* @ Person_S1_11285
837541258

Figure 12: Final RSG of Sentence "Sally is beautiful"

C. Error Detection Cases

C.A.1 Syntactically Rejected Cases

The error detection cases have an empty list or error message output. This message describes that there is no available RSG
output. In syntactically rejected cases, the parser and syntactic analyzer reject the sentence, and then the input to RSG system
will be an empty list. This list means that a syntactic error found and the representation must overcome. For example, " Chris
eating apple", this sentence has a syntactic error in verb "eating", and then parser sends an empty message to the system. The
system handles it by displaying this message "No RSG available for the input system sentence".

C.A2 Rejected and Low Semantically Cases

Sentence_Concepls

v

Validation Module

(Sentence Combination Generalor)

Sentence Combinations List |

aloopn
Loop senlence combinations

hesMoreCombination
[ves] [me]
(Get Hext Embmauun) @eleu Rejected C-M-beﬂa

|
|
|
|
|
|
|
|
|
|
|
|
| Checdk
|
|
|
|
|
|
|
|
|
|
|
|
|

End Maodule

Sawe sentence and
continue o next

Consistency

\-"l——-———-—--———-———--——-—-

[consistent]
sdatasiores
Oniology
Continue to next
i § ~ combination
Consistenoy [inoonsistent]
X MMazsage
| -

Validated Sentence Sub-Graphs

Figure 13: Detailed Activity Diagram of the Validation Module

These cases include unaccepted and weakly related semantic input sentences. The system ontology states some ontological rules
and constraints on word senses and linking properties and attributes, these rules preserve the correct semantic relations between
sentences' concepts. If the input sentence is rejected or low semantically related, it will be rejected in the validation module due
to absence of acceptable relations between sentence's senses, where the instantiated sentence concepts are combined to form
sentence rich semantic sub-graphs. For each concept combination, the system ontology is checked to confirm combination
consistency. The inconsistent combination is rejected. The validation module detailed activity diagram is shown in Fig. 13. On
the other hand, the input sentence may also be rejected in ranking module due to its low rank value. For example, "Chris eats
wood", "Chris" is a kind of person which has three senses, "eats" is a verb and has six different senses, and "wood" is a noun

and has eight different senses. Finally, there will be 144 different combinations between the sentence's concepts. Some of these
combinations can be rejected in validation phase or in ranking phase. In validation phase, if verb "eats" means to swallow and
noun "wood" means a plant material, it will be rejected because "eats" object must be an edible food. On the other hand, if verb
"eats" means to use up or to exhaust and "wood" means a musical instrument, it will be rejected due to low semantically
relatedness. The RSG system shows the log of each representation combination, it displays accepted and rejected combinations
and rejection reasons.

5 CONCLUSION

This paper presented Rich Semantic Graph (RSG) generation system prototype. It transformed the input text to a graph called
"Rich Semantic Graph" (RSG). In RSG, verbs and nouns of a document are represented as nodes along with edges
corresponding to semantic and linguistic relations between them. "Rich Semantic Graph" (RSG) is a common rich semantic
representation to be exploited in different natural language processing applications such as report abstraction and machine
translation. The RSG has the following features:

= Each node corresponds to a concept verb or noun in the input text.

= Each node is associated with semantic and linguistic issues which reserves concepts' meaning.

= Each node has additional attributes which are supplied from the input preprocessing tags.

= Relations between nodes are semantic or syntactic connections between concepts to reserve text coherence and
sequence.

The RSG generation system prototype discusses different cases with some examples. These examples reflect some natural
language ambiguity and the solutions are suggested to overcome it. The RSG system has the following capabilities:

= The RSG represents simple and unambiguous semantic texts without any special rule or constraint.

= The RSG uses inferencing rules and constraints to reason out more acceptable text semantic representations.

= The RSG detects and rejects unsemantically related or low semantically related concepts.

On the other hand, the RSG generation system has some limitations:

= Some input sentences haven't any output due to small semantic rank values. If some sentence's concept replaces
with any of its synonym and this synonym has better rank value, then some representation can be deduced to this
sentence better than nothing.

= Some RSG sentences output need to be smaller or condensed with reserving context meaning. It can be achieved
through more semantic inferencing rules.

= Other input sentences haven't any output due to syntactic errors. These errors can be autocorrected, and then
some RSG representation output can be reached.

These limitations may be considered as the following future work.

REFERENCES

[1] Mostafa Aref, “A Multi-Agent System for Natural Language Understanding”, Proceedings of the International Conference
on Integration of Knowledge Intensive Multi-Agent Systems, 1-3, Cambridge MA, PP 36-40, 2003.

[2] Elaine Rich, Kevin Knight, "Artificial Intelligence", Second Edition, McGrawHill Inc, Chapter 4-11, 1991.

[3] Robert Stevens, Carole A. Goble and Sean Bechhofe, "Ontology-based Knowledge Representation for Bioinformatics",
IBM Systems Journal, volume 40, issue 2, February 2001.

[4] Tbrahim F. Moawad & Mostafa Aref, “A Semantic Graph Reduction Approach for Abstractive Text Summarization”, the
Ninth Conference on Language Engineering, Cairo, Egypt, December 6-7, 2009,

[5] Ibrahim F. Moawad, Mostafa Aref, Soha Said, “ONTOLOGY-BASED MODEL FOR GENERATING TEXT SEMANTIC
REPRESENTATION”, to be published in International Journal on Intelligent Computing and Information Sciences
(IJCICIS), Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

[6] D. Rusu, B. Fortuna, M. Grobelnik, D. Mladeni¢ , "SEMANTIC GRAPHS DERIVED FROM TRIPLETS WITH
APPLICATION IN DOCUMENT SUMMARIZATION", an international journal of Computing and Informatics , Volume
33, Number 3, 2009.

[7] Lorand Dali, Delia Rusu, Blaz Fortuna, Dunja Mladeni¢, Marko Grobelnik, "Question Answering Based on Semantic
Graphs", Semantic Search 2009 Workshop, 18th International World Wide Web Conference WWW2009, Madrid, Spain,
April 21%, 2009.

[8] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling , "Extracting Summary Sentences Based on the Document
Semantic Graph", Microsoft Research, Technical Report No. MSR-TR-2005-07, January 2005.

[9] Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Impact of Linguistic Analysis on the Semantic Graph
Coverage and Learning of Document Extracts”, Proceeding of the 20th National Conference on Artificial Intelligence
(AAALI), vol. 3, Pittsburgh, Pennsylvania, 2005.

[10]Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Learning Semantic Sub-graphs for Document
Summarization”, Proceedings of the 7th International Multi-Conference INFORMATION SOCIETY IS, Jozef Stefan
Institute, Ljubljana, Slovenia, Volume B, 2004.

[11]Jure Leskovec, Marko Grobelnik and Natasa Milic-Frayling, "Learning Sub-structures of Document Semantic Graphs for
Document Summarization™, Workshop on Link Analysis and Group Detection (LinkKDD), 2004.

[12] M. Aref, "Object-Oriented Approach For Morphological Analysis", Proceeding of the 15" National Computer Conference,
Dhahran, Saudi Arabia, pp. 5-11, 1997.

[13] Mostafa Aref, "Object Orientation in Natural Language Processing”, Proceedings of the 13th International Conference
on IEA/AIE 2000, New Orleans, PP. 591-600, June 19-22, 2000.

[L4]UNDL Foundation, "The Universal Networking Language (UNL) Specifications”, Version 3, Edition 3, UNL Center,
UNDL Foundation, Geneva, Switzerland, December 2004.

[15] Luis iraola ,"Using Wordnet for linking UWSs to the UNL UW System", International conference on the convergence of
knowledge, culture, language and information technologies, December 2- 6, 2003.

[16]Dr. Waralak V. Siricharoen, "Ontologies and Object models in Object Oriented Software Engineering"”, IAENG
International Journal of Computer Science, 33:1, IJCS_33_1 4, 2005.

[17] Lisiane Goffaux and Robert Mathonet, "A technique for customizing object-oriented knowledge representation systems,
with an application to network problem management", Proceedings of the Eleventh International Joint Conference, vol. 1,
August 20-25, 19809.

[18] Fellbaum, C." WordNet: An Electronic Lexical Database”, MIT Press, May 1998.

[19] Miller,G., Beckwith,R., Fellbaum,C., Gross,D., and Miller,K, Five Papers on WordNet. Cognitive Science Laboratory,
Princeton University, Princeton, 1990.

[20] Michael K. Smith, Chris Welty, Deborah L. McGuinness (10 February 2004), “OWL Web Ontology Language Guide”,
W3C Recommendation, Available from: www.w3.0rg/TR/owl-guide, (accesses 1 November 2010)

[21]UNL Specification Web Site: http://www.undl.org/unlsys/unl/unl2005/, (accessed 1 November 2010)

[22] UNL Universal Words Ontology Web Site: http://www.undl.org/unlsys/uw/unlontology.htm, (accessed 1 November 2010)

[23] Protégé Web Site: http://protege.stanford.edu, (accessed 1 November 2010)

http://www.w3.org/TR/owl-guide
http://www.undl.org/unlsys/unl/unl2005/
http://www.undl.org/unlsys/uw/unlontology.htm
http://protege.stanford.edu/

ON THE MODELING OF NON-KEYWORD INTERVALS
FOR SPOKEN-TERM DETECTION IN ARABIC

M. Hesham™, M. F. Abu-EL-Yazeed™, and A. Toulan™
“Engineering Math. & Physics Dept., Faculty of Engineering, Cairo University

1" mhesham@eng.cu.edu.eg
" Electronics & Communications Engineering Dept.,
Faculty of Engineering, Cairo University, 12613, Egypt

Abstract— There are two approaches followed in searching/indexing an audio stream, namely; key word spotting and spoken term
detection. First one is the keyword spotting approach based on searching through the acoustical-features domain while the other is
the spoken-term detection (STD) where the searching is through string domain. The task of spoken term detection is defined as being
a two-stage process in which the audio stream is, firstly, indexed according to word or sub-word units (e.g. phonemes), and then
search is performed over the indexed audio. One major problem of searching, through audio streams, is the presence of
unpredictable or unexpected words in incoming utterances. For resolving this problem, a direct approach is to split the training data
into keyword and non-keyword data. The keywords are represented by models trained using the keyword speech, and the non-
keyword models are trained using non-keyword data. Two problems arise in this approach that it may overly detect keywords, or
misrecognize non-keyword in the sentence as keywords. In order to overcome these problems, we propose a method for modeling the
non-keyword intervals or out-of-vocabulary (OOV) for Arabic. In the proposed method, the OOV models are defined based on
pattern structure in Arabic phonology.

Firstly, a hidden-Markov modeling (HMM) approach is used in the training of an automatic-speech recognition (ASR)

engine for modern standard Arabic (MSA). The phoneme-based ASR engine is, then, employed in the keyword spotting system. The
acoustic features of the pattern structure of Arabic is exploited in a distributed a model to cover non-keyword intervals in a task-
independent manner. The distributed structure models are used to capture out-of-vocabulary words belonging to all possible patterns
in Arabic, while keyword models are built based on exact phonemic structure of significant words or words combination. This
improves the system’s ability to detect non-keyword vocabularies independently. Additional class of fillers associated with different
word classes reduces false alarm of keyword detection.
The system is trained to detect about 20 Arabic keywords using both techniques; keyword spotting and STD approaches. The
keyword spotting approach is built based on HMM models concatenation for phonemes while the STD employed 1-best lattice-search
approach. The obtained results for the spotting system, achieves 90% precision rate for keyword spotting approach while the recall
rate is smaller. The other approach of spoken-term detection reached the 80% in recalling and smaller rate for precision.

Keywords: Keyword Spotting, Spoken-Term Detection, Arabic Speech Recognition, Hidden Markov Model (HMM).

1 INTRODUCTION

The Searching for a keyword within a speech utterance is one of important applications of speech recognition
technology. Ability to perform such searching/indexing task, together with typical automatic speech recognition for speech
utterances whose underlying word sequences follow fully-defined syntaxes, effectively is crucial to the development of human-
machine spoken dialog systems. There are two approaches followed in searching/indexing an audio stream, namely; key word
spotting and spoken term detection, as discussed recently in [1][2][3] and [4]. One major problem with using speech recognizer
for delivering sequence of words to other modules in spoken dialog systems is its robustness [3]. Another problem is the
presence of unpredictable or unexpected words in incoming utterances. Therefore, a speech recognizer must cover a large
number of vocabularies, as well as grammars, in order to support every sentence possibly spoken by the users. This also
includes un-precedently-used words and non-speech sounds, such as fillers, that are rather common in spoken languages.

The techniques of key-word searching try to detect of all occurrences of any given word in a speech signal. Trying to
uncover these keywords, it may overly detect keywords, or misrecognize non-keyword in the sentence as keywords. The
misrecognition may be called false alarm. One factor contributing to a high false alarm rate is that there are some non-keyword
elements (or may be called out-of-vocabulary(OOV)) that have similar pronunciation to some of the keywords in the system.
These elements may confuse the keyword spotting system to confirm the presence of a keyword, even though none of them
exist[3].

Although several approaches exist for modeling of keyword spotting system, the most common ones are based on
HMMs. In such approaches, a set of HMMs (nonkeywords or filler models) is chosen to represent the OOV intervals and
another one for the keywords [4]. The performance of an HMM-based keyword spotter strongly depends on the ability of the
OOV models to represent non-speech intervals without rejecting the correct keywords (false rejections). Therefore, the choice

mailto:mhesham@eng.cu.edu.eg

of an appropriate OOV model set is a critical issue. A survey on the topic can be found in [4]. The most common approaches
are as follows:

e The training corpus for a specific task is split into keyword and non-keyword (extraneous) data. The keywords are
represented by HMM s trained using the keyword speech and the OOV models are trained using the extraneous speech.
The main disadvantage of such approaches is the task dependence. Model retraining is required when the vocabulary
changes. Moreover, the training data must include a large number of keyword occurrences to achieve robust training.

e The OOV models are selected from a set of common acoustic models. In this case, a speech corpus for a separate task is
used to train only one common acoustic set. A subset of this set is used for OOV models. A typical case is to represent the
keywords by context-dependent HMMs, and the non-keyword portions by context-independent HMMs. In some works, a
subset of context-dependent models is also used as OOV models. The main disadvantage of such methods is the high rate
of false rejections (percentage of keywords rejected). The higher local likelihood of the OOV models causes the OOV
entries to be decoded instead of keywords. Most keyword spotters use two sets of acoustic models trained using keyword
and non-keyword speech. The performance of a keyword spotter may be increased by training phonemic OOV models
using a large corpus of non-keyword speech [4]

e Modeling the non-keyword intervals based on the use of bilingual HMMs. In this case, the OOV models may be trained
using a speech corpus of a language other than the target one. This can introduce a task-independent keyword spotter, and
to overcome the problem of the high rate of false rejections[4].

e The work in [3] illustrates the use of acoustic modeling of three different structures, including syllables, fillers and
keywords. Filler models and syllable models are applied to capture OOV words, while keyword models extract significant
words from speech utterances. Filler models associated with syllable models reduce false alarm of keyword detection.
Three kinds of filler models were described in [3].

As most keyword spotters use a set of Hidden Markov Models (HMM) for their components (keywords and non-
keywords), many HMM parameters still need to be re-estimated and tested for Arabic speech via different applications.

On the other hand, the task of spoken term detection is defined as being a two-stage process in which the audio stream
is, firstly, indexed according to word or sub-word units (e.g. phonemes), and then search is performed over the indexed audio.
The indexing may be as a 1-best string, or as an N-best lattice. Lattice-based methods offer significantly faster search, as the
speech is processed just once by a speech-recognition engine. Some works adopt the approach of searching for terms in the
output of a large-vocabulary speech recognition (LVCSR) system, though a common finding is that these approaches yield high
miss rates (i.e., low recall). Hybrid methods based on the combination of keyword-spotting (which gives high recall) and sub-
word lattice search have proven successful in combining the strengths of both methods [1].

In this work, a new model is defined for building linguistic structures which can cover an efficient OOV set for Arabic. We
propose a method for modeling the non-keyword intervals or (OQV) for Arabic. In the proposed method, the OOV models are
defined based on pattern structure in Arabic phonology.

The HMM phoneme models along with the proposed OOV structure are used to build a task-independent system for
spoken-term detection of Arabic. Experiments are conducted through an audio content of ELRA database [5]. The results are,
then, compared to elicit the efficacy of both searching approaches and the proposed OOV structure for Arabic.

2 PATTERN STRUCTURE OF ARABIC MORPHOLOGY

Arabic is marked by a limited vocalic system and a rich consonantal system. There are typically three basic vowels /a i
u/ which are attested in both their short and long forms [6] chl. Arabic operates by what is known as the root and pattern system
[7]. The root is a semantic abstraction consisting of two, three or (less commonly) four consonants from which words are
derived through their superimposition of template patterns. Roots may be used in association with a particular vowel pattern
which determines phonological structure and specifies lexical and syntactic function.

Basic noun and verb stems in Arabic comprise a consonantal root and pattern. The pattern can be further divided into
two elements: a prosodic template and a vocalic melody. [6]. The consonantal root is always fully independent of the prosodic
template, the vocalic melody by contrast shows independence for relatively few morphological categories. For verbal noun, the
prosodic template CVCVVC, and the vocalic melody i-a, comprises the combination of both [8]. These separate out the
linguistic information carried by the word pattern into two components labeled the vocalic melody — the sequence of vowels
specified by the word pattern — and the CV-Skeleton — the overall abstract pattern of consonants (C) and vowels (V) that it also
specifies. The vocalic melody conveys syntactic meaning such as voice (active/passive). The CV-Skeleton contributes a rich
variety of other syntactic information, as well as specifying the phonological shape of the word. [9].

The root-and-pattern morphology of Arabic is most commonly described using examples of derivational verbs. One form of
trilateral verb has the stem pattern CVCCVC with a geminate middle radical. In standard Arabic, the imperfect is formed by
changing the quality of the right most stem vowel and adding an imperfect prefix. The passive is formed by a change in the
vocalic melody [6].

Another example, one of these patterns may take the form C,aC,aCsVC, where C;, C,, C3 represent three consonants of the
root in relation to the sounding vowel. Many patterns are the result of a series of derivations. Accordingly, some of these
patterns are, totally, predictable, and if the form does not already exist, will be given predictable meaning when coined [6].

In general, Arabic has a limited number of patterns which are pronounced according to similar acoustical configuration
(parameters). This pronunciation follows the same phonological pattern which has close resemblance to acoustical features of
the utterance. Specifically, we can propose that they share same spectral characteristics. This property results in some sort of
clustering in vector-quantization space of related features. The mel-frequency cepstarl coefficients (MFCC) are the used
features in most of speech recognition algorithms [10]. These feature are of spectral-type, accordingly, we expect that the words,
sharing the same pattern, may easily tend to group to the same cluster in feature space. This fact is also attested by the
conceptual basis of MFCC which, closely, manifests the source-excitation state of vowel production. This concept can help in
proposing a comprehensive model for OOV. This pattern-based model can be a better candidate for the minimum OOV set of
words due to a limited number of patterns in Arabic.

3 ADISTRIBUTIVE MODEL OF OOV

The problem in defining OOV models is the trade-off between false alarm and miss-detection rates. Using OOV
models with less acoustic details introduces high false alarm rate, while using models with more acoustic details raises the miss-
detection rate. A survey on this topic was presented in [4].

In this work, the non-keyword domain is divided into two main classes namely; non-keywords and fillers. Each class is,
then, divided in distributive subdomains. Each subdomain is restricted by closer acoustic features. This distribution is proposed
to solve the problem of biased decision on nonkeyword class. This condition is ensured by choosing closer pronunciation of the
elements of any subdomain. The pronunciation condition is based on pattern structure of Arabic —discussed in the previous
section- for non-keyword subdmoain.

Another subclass; filler models are acoustic models trained on phonemes that is not repeated frequently in Arabic
words. These phonemes are used, even, if they were included in the targeted keywords. Filler elements also include words that
are rarely to be included in keywords like prepositions. This was done based on speech data in our training set.

In the proposed model, two approaches are considered for choosing the nonkeyword elements; syllabic and shuffled
nonkeyword models.

A. Pattern-nonkeyword Model

The pattern-nonkeyword model is built for the patterns known in Arabic. We used many words as examples for each
pattern. As mentioned above, any word is composed of two parts; the first part corresponds to a root consisting of two or three
syllables. The other part is the pattern or vocalic melody. They are aggregated in about 16 classes representing, approximately,
most of pattern structures which are frequently used in Arabic. This ensures the distributive nature of the model over the
language domain.

B. Shuffled-nonkeyword Model

The other nonkeyword model is based on replacing the starting-consonant of syllable each word defined in the
previous section. These words did not have any meaning within Arabic. We denote them as having shuffled structure since we
shuffle the consonants through the used words. The inherent distribution is proposed to solve the problem of biased decision on
nonkeyword class. The keyword, the non-keyword and filler models are constructed from the acoustic models of phonemes.

Examples on the shuffled nonkeyword are shown in TABLE I. The syllable /$a/ is replaced by /Fa/ and, then, the new
word has no meaning in Arabic. The idea is to construct OOV model from meaningless words that are acoustically different
from the keywords. This property prevents false alarms when the pronunciations of two words are close to each other.

TABLE | Shuffled nonkeyword Examples

Nonkeywords of Meaning in Arabic Shuffled version . _—
. e . - Arabic Transcription
one class English Transcription with no meaning
$axS Person padd FaxS gt
$axSan A person Ladd FaxSan Ladd
$axSy personal (il FaxSy adS

* The words are transcribed in Roman of ELRA [5].

4 KEY WORD SPOTTING

Several approaches exist for modeling both keywords and non keywords in a keyword spotting, the most common ones
are based on HMMs. Keyword spotting systems generally use HMMs of phone-based sub-word units [11]. In such approaches,
a set of HMMs is chosen to represent both the keywords and the non-keyword intervals [4]. In this keyword spotter, the
keywords and OOV units are modeled through a concatenation of monophone HMMs [12]. The system usually consists of
several steps. The first step is to train an HMM based speech recognition engine. Secondly, a dictionary is built for the
keywords models and the OOV models. OOV words are built the same way as the keyword models, but are used to represent
non-keywords in our recognition network. Finally, to detect the keywords in an audio stream, the file is passed through the
speech recognizer. The output should define which words were detected and the places where they were detected in the stream.

The speech recognition network for this method consists of a number of paths from the beginning node to the end node.
Each of the paths passes through a model corresponding to a sound segment from the set of all possible non-keywords, possible
keywords, and the set of all possible outputs from the filler models [3]. This network is shown in Fig. 2. In this network, nonkw;
means one of the non-keyword classes. Also, fil; represents a filler model while KW; is the model of i" element.

nonkw;

fily

Fig. 2 Keyword spotting network.

5 SPOKEN TERM DETECTION

For the spoken term detection system [1], lattice-search approach is used. The lattice-search system provides the

flexibility that we don’t need to refer to the original audio streams each time the streams are searched, which can increase the
system speed when searching large amount of data.

In N-best lattice search, Viterbi algorithm [12] is known to provide all path fragments that matches a certain model. The
method is based on confidence measure calculation for a certain keyword from a Viterbi network. Equation (1) illustrates how
the confidence measure is calculated,

CpKk\1/r\]/ = Lgkllgha (KW) + I—phn (KW) + L%gqa (KW) - L%:r;t (1)

where Ly (KW) is the log likelihood of the keyword, computed from the summation of the acoustic log likelihood of its

constituent phonemes. '—%TSha(KW) is the forward likelihood of the best path from the beginning of the lattice to the keyword.

L%*;':a(KW) is the backward likelihood from the end of lattice to the keyword. L%Z’;t is the 1-best likelihood path over the

complete lattice. In 1-best lattice search method [1], also called lexical access. It involves the calculation of costs for recognizer
errors. The distance between two strings is defined as the minimum number of error transformations used to derive one from
the other [17] when the error transformations are defined in terms of substitution, deletion and insertions errors as defined by
Levenshtein metric [18]. A threshold on the confidence score is calculated on a training portion of the database to give the
required system performance [1]. We consider another error type for continuation as in [1] beside deletion, insertion and
substitution errors. Continuation error simply indicates that the character inserted is the same as the character preceding it.
Levenshtein distance is, then, calculated between the recognized string and targeted keyword string using Dynamic
Programming Algorithm. Dynamic programming solves small, constrained versions of the problem. When the constraints are
tight, the function is simple to compute, and then the constraints are systematically relaxed until finally they yield the value of
the desired answer [19]. The algorithm uses an effective yet rather brute-force approach that essentially looks at every possible
way of transforming the source string to the target string to find the least number of changes.

Later in the testing phase we use these costs as defined in equation (2) to spot the actual keywords. We start by
selecting a small window referred to as WIQ“”, calculate the total cost from this window. The window cost is based on
individual errors costs calculated previously from the training phase. Then we grow linearly by a single phoneme and redo the
process until we reach Wlf‘ax then we shift by one phoneme and repeat till the whole utterance is finished. We remove any

overlaps, by selecting the window with the least cost between intersecting windows. Finally, we decide whether or not we
detected a keyword by a threshold, also calculated from the training phase. We repeat this procedure for every keyword defined
in our dictionary.

Ngup (h, K) _ Nins (h, K)
C. ., = —log-—sub , Cips = —log—1ms-——=
sub = TIO9 N e (1, K Nor (M, K)
N gorp (D, K) _ Ncon (h, k)
C.., = —log_—delb\"1. %) and C =—log 2
del =719 N e (0,) N ot (P, K) @

Where Cqyp, is the subsititution cost and Nsyn(h, K) is defined as the total number of substitutions of test symbol k for
reference symbol h, Nins (h, k) is defined as the total number of insertion of test symbol k for reference symbol h, Nge (h) is the
total number of deletions of reference symbol h, Ncon (h, K) is the total continuation of test symbol k for reference symbol h and
Nt is the total number of occurrences of reference symbol h.

The dynamic programming algorithm is used again to calculate the overall cost of matching keyword against
recognizer output.

For example, consider the following recognizer output EwzirHFax.... So we will start with Wl?“” =3 and end with Wlf‘ax =8.
So we will have the following windows sequence [Ewz, Ewzi, Ewzir, EwzirH, EwzirHF, EwzirHFa, wzi, wzir, wzirH,]

The cost comparison of 2 of these windows is shown in the tables TABLE Il and TABLE IlI

TABLE Il Costs of W&“i“ window

Searched w z
Keyword

0 0.6310 0.9335
w 0.4662 0 1.3998
a 0.8023 0.3361 1.7359
1.5839 1.1176 0.3361
E 2.0794 1.6131 0.8316
r 2.6218 2.1555 1.3740

TABLE Il Costs of Wg‘a" window

Searched w z i r
Keyword

0 0.6310 0.9335 2.0938 2.6674
w 0.4662 0 1.3998 2.5601 3.1337
a 0.8023 0.3361 1.7359 2.7086 3.4698
1.5839 1.1176 0.3361 1.9898 4.1663
E 2.079%4 1.6131 0.8316 1.2854 3.4216
r 2.6218 2.1555 1.3740 1.8278 1.2854

So the cost for the window wz is 1.3740 and for the window wzir is 1.2854 . The window wzir will be considered as the window
with minimum cost and if it's below the threshold calculated on the training database it will be considered a match or spotted.

6 EXPERIMENTS AND RESULTS:

The automatic speech recognition (ASR) engine is trained using an Arabic Globalphone database from ELRA [5]. The
provided database has approximately 4908 speech sentences from about 84 speakers. The recording sampling frequency is 16
ks/s with 16 bits quantization.

The database is divided into two subsets; one for training and the remaining part is preserved for testing. The training
set is composed of about 3069 recorded waves. Each recording is associated with an Arabic transcription composed from about
35 phonemes. The HTK toolkit [12] is used. The frame size is 25 ms with overlapping of 15 ms. The feature vector is taken of
length 39 including 12 mel frequency cepstrum coefficients (MFCC), and the zero MFCC coefficient, which is proportional to
the total energy in the frame and their corresponding delta and acceleration coefficients. Each phoneme is modeled with 3 states
with 16 gauss-mixture model (GMM). The accuracy of phoneme recognition approaches the order of 65%. A word recognizer
is built based on concatenations of phoneme HMM models.

The keyword searching is conducted through the structures described in section Il. The first one is the syllabic non-
keyword (OOV) model. The second structure has both syllabic OOV with interchanged and shuffled consonant in syllables.
The third considers different variants of keyword transcription besides the shuffled syllables in OOV word classes.

According to pattern structure and variations in pronouncing vocalic melody of different words, we used more than one
transcription for each keyword. Examples on keyword variants are listed in TABLE IV according to different pronunciations of
vowels according to neighboring phonemes.

Table IV KEY-WORD variants

Keyword sy sy

Meaning in English European Union

CilCitiHAd CilCUrUbE

CalCitiHAd CilCUrUbE

Variants of Keyword transcription CalCittiHAd 1CalCUrUbE

CilCitiHAd ICalCUrUbE

CalCitiHAd CalCUrUbE
CalCittiHAd CalCUrUbbE

TABLE V KEY-WORD SEARCHING FOR 20 KWs

CONDITION RECALL PRECISION
SYLLABIC OOV MODEL FOR NONKEYWORDS 70.39% 86.9%
SHUFFLED OOV MODEL FOR NONKEYWORDS 64.25% 82.14%
SHUFFLED OOV MODEL CONTAINED IN ONE SET 45.25% 93.10%
(NONDISTRIBUTED)
SHUFFLED OOV MODEL AND KW VARIANTS 74.3% 82.61%
SyLLABIC OOV MODEL AND KW VARIANTS 75.42% 83.85%

The results presented in TABLE V are summarized from many experiments using sufficiently-repeated words through
the used database. The results shows the effect of replacing the consonant of original words used in hon-keyword models, these
results ensure that the vocalic melody is not sufficient to model the OOV. Despite that the shuffling of syllables in OOV model
did not, significantly, reduce the false alarms, it will help for more generic spotting system.

For spoken term detection system using Lattice search method, the correct detection depends on the ability to correct
recognizer output. To do that we calculate all the recognizer errors on a portion of the database, associate costs to different
errors, store them and consider this as the training phase. This portion should be big enough to represent all expected errors
from the system. We use the 3069 utterances of our speech database for the training purpose [5]. HResults is a tool provided by
the HTK toolkit [12]. It provides a good implementation for Levenshtein distance. It mainly calculates insertion, substitution
and deletion errors, but no continuation errors. So, a modified version of HResults was made to provide all the results we need
from Levenshtein algorithm.

For the spoken term detection system, we, applied the 1-best lattice search approach. In this trial, we used a general
rule for window lengths, and the rule was applied on all keywords. TABLE VI shows the results from spoken term detection
experiment where W™ = Nks2 + 1, Nk is defined as the number of phonemes in dictionary entry for keyword K, and ™ =

Wlf“” + Nk and Wlf‘i” and Wlf"ax defined for each keyword where N is the length of keyword k. The recall rate was 79.33%

and the precision rate was 64.84%. After trying several experiments we chose specific window lengths for each keyword, the
recall rate reached 75.98% and precision rate reached 75.14%. We also experienced a great enhancement in system speed by
reducing the number of used windows.

TABLE VI STD searching for 20 KWs

Condition Recall Precision
Fixed widow length 79.33% 64.84%
Variable window length 76.54% 75.69%

7 DiscussioNs AND CONCLUSIONS

This work considers the problem of keyword searching through Arabic speech. Two approaches are tested through this
work for keyword spotting in Arabic. First one is the keyword spotting approach based on searching through the acoustical -
features domain while the other is the spoken-term detection where the searching is through string domain. One essential
problem in building this searching system is the definition of out-of-vocabulary (OOV) words beside the searched keywords.
To solve this problem for Arabic, the pattern structure of Arabic is exploited in building a model for OOV part of the system.
The OOV model is chosen acoustically homogenous and distributed over a wide range of frequently used words in Arabic. The
elements of OOV were chosen in a distributive manner according to pattern structure of Arabic.

The proposed OOV model is tested in two versions; one of them is based on words covering most of Arabic patterns
which are limited. The other is called shuffled nonkeyword model in which the consonants are interchanged between training
non-keywords. This concept is partially tested due to lack of data. Also, we include different transcriptions for a keyword as
pronounced in practice. This model of keyword-spotting helps in improving the spotting accuracy. The obtained results for the
proposed systems, achieve more than 90% precision rate for keyword spotting approach while the recall rate is smaller. The
other approach of spoken-term detection approaches 80% in recalling and smaller rate for precision.

The obtained results show the efficacy of employing the pattern structure of Arabic in defining OOV words. Also it is
proved that hybrid methods based on the combination of keyword-spotting and sub-word lattice search is needed for Arabic as
reported for other languages [1].

Acknowledgement

The authors would like to thank ITIDA, Egypt (Information Technology Industry Development Agency) for its support
via provided fund. They are, also, fully indebted for the valuable discussions and help provided by Prof. Dr. Waleed Fakhr,
Arab Academy of Sciences & Maritime.

References:

[1] J. Tejedor, D. Wang, J. Frankel, S. King and J. Colas, “ A comparison of grapheme and phoneme-based unitsfor Spanish
spoken term detection”, speech comm, 50 (2008) 980—991.

[2] J. Keshet, D. Grangier, S. Bengio, ‘“Discriminative keyword spotting”, Speech Communication 51 (2009) 317-329

[3] S. Tangruamsub, P. Punyabukkana, and A. Suchato, “Thai speech keyword spotting using Heterogeneous acoustic
modeling”, Research innovation and Vision for the future, IEEE International Conference, 2007.

[4] P. Heracleous , T. Shimizu, “ A novel approach for modeling non-keyword intervals in a keyword spotter exploiting
acoustic similarities of languages”, Speech Communication 45 (2005) 373-386.

[5] ELRA, ELRA-S0193, GlobalPhone Arabic, ELDA S.A., 2006.

[6] J. C. E. Watson, The Phonology and Morphology of Arabic, Oxford university press Inc., NewYork, ch.6, 2002.

[7] M. C. Bateson, Arabic Language Handbook, Gorgetown university press, Washington D. C., ch.1, 2003. Washington D. C.,
ch.1, 2003.

[8] K. Brown and S. Ogilive, (edited by), Concise Encyclopedia of Languages, J. C. E., Watson, Arabic as an Inflecting
Language, Elssevier, pp. 431-434, 2006.

[9] S. Boudelaa, and W. D. Marslen-Wilson, “Abstract morphemes and lexical representation: the CV-Skeleton in Arabic”,
Cognition, International Journal of Cognitive Science, vol. 92, pp. 271-303, 2004.

[10] J. Benesty, M. Sondhi, and Y. Huang (EDs), Springer Handbook of Speech Processing, Springer Berlin-Heidelberg,
2008.

[11]Y. Ling, “Keyword spotting in continuous speech utterances,” Master’s thesis, McGill University, Montreal, 1999.

[12] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, “The HTK Book” (for HTK Version 4.30),
Cambridge University Engineering Department, England, 2006.

[13] K. Schulz and S. Mihov, “Fast string correction with levenshtein-automata,” International Journal of Document Analysis
and Recognition, vol. 5, pp. 67-85, 2002.

[14] Z. Su, B.-R. Ahn, K.-Y. Eom, M.-K. Kang, J.-P. Kim, and M.-K. Kim, “Plagiarism detection using the levenshtein distance
and smith-waterman algorithm,” in Proceedings of the 2008 3rd International Conference on Innovative Computing
Information and Control (ICICIC *08), (Washington, DC, USA), p. 569, IEEE Computer Society, 2008.

[15] A. A. Kanso, “An efficient cryptosystem delta for stream cipher applications,” Comput. Electr. Eng., vol. 35, no. 1, pp.
126-140, 20009.

[16] P. Caballero-Gil and A. F uster-Sabater, “A simple attack on some clock controlled ~ generators,” Comput. Math. Appl.,
vol. 58, no. 1, pp. 179-188, 2009.

[17] A. V. Aho and T. G. Peterson, “A minimum distance error-correcting parser for context-free languages,” SIAM Journal
on Computing, vol. 1, no. 4, pp. 305-312, 1972.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet Physics Doklady, vol.
10, no. 8, pp. 707-710, 1966.

[19] G. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell. O’Reilly, 1st. ed., 2009.

Designing and Implementing Arabic Text-To-Speech
(ArTTS)

Hassanin M. Al-Barhamtoshy™, Fahd Al-Hiedary”, Mansour Al-Johany” and Wajdi H. Al-Jedaibi”

Faculty of Computing and Information Technology, King Abdulaziz University, SA

lhassanin@kau.edu.sa

Abstract - This article presents a new approach to analyze mixed-text that includes Arabic words
and numeral texts. Therefore, Arabic digits and numbers pronunciation included in this article with
the associated related rules. Also, the different rules of Arabic graphemes pronounced letters are
presented, designed and implemented in ArTTS.

ArTTS concatenated these pronounced graphemes and produced sounded Arabic words. The result
that produced from numbers matches the Arabic pronouncing of numbers. The result produced
from letters is accepted and understood to the listener. ArTTS deals with about 90 rules of numbers
and diactrize rules.

This approach centers on a modular, mixed-lingual morphological and syntactic analyzer, which
additionally provides accurate language identification on morpheme level, word and sentence
boundary identification in mixed-lingual texts. This approach can also be applied to word
identification in languages without a designated word boundary.

1 INTRODUCION

Speech refers to the processes associated with the production and perception of sounds used in spoken
language [1]. In recent years, the massive development of information and technology provides a special
technique for speech that is used in applications and used by the computer to implement some of the tasks
that need to be voted.

Speech technology relates to the technologies designed to duplicate and respond to the human voice. They
have many uses: to aid the voice-disabled, to communicate with computers without a keyboard, to market
goods or services by telephone and to enhance game software [2]. Speech technology uses several
processes that study speech signals and the processing methods of these signals. These signals are usually
processed in a digital representation, whereby speech processing can be seen as the intersection of digital
signal processing and natural language processing.

1.1. Speech Recognition (SR)

Speech recognition, also known as automatic speech recognition or computer speech recognition [3].
Where the computer utilizes audio input for entering data rather than a keyboard. Speaking into a
microphone, for example, produces the same result as typing words manually with a keyboard. Simply
stated, voice recognition software is designed with an internal database of recognizable words or phrases.
The program matches the audio signature of speech with corresponding entries in the database. Though
turning speech into text might sound easy, it is an extremely difficult task [4]. The problem lies in the
virtually infinite array of individual speech patterns and accents, compounded by the natural human
tendency to run words together. Some Speech recognition systems, called discrete speech systems, require
the user to speak clearly, slowly and to separate words [4]. Speech recognition is especially useful in
business where it can replace a live operator to funnel calls, disseminate information, take orders and
perform other highly useful functions.

http://en.wikipedia.org/wiki/Speech_production%20/%20Speech%20production
http://en.wikipedia.org/wiki/Speech_perception%20/%20Speech%20perception
http://en.wikipedia.org/wiki/Sounds%20/%20Sounds
http://en.wikipedia.org/wiki/Spoken_language%20/%20Spoken%20language
http://en.wikipedia.org/wiki/Spoken_language%20/%20Spoken%20language

1.2. Text To Speech (TTS)

TTS, or Text-To-Speech, is the digitized audio rendering of computer text into speech, synthesized speech
through computer's speakers; Figure (1). TTS programs can be useful for a variety of applications. For
example, proofreading with TTS allows the author to catch awkward phrases, missing words or pacing
problems. TTS can also convert text files into audio MP3 files that can then be transferred to a portable
MP3 player or CD-ROM [5]. This can save time by allowing the user to listen to reports or background
materials in bed or while performing other tasks [5]. The quality of a speech synthesizer is judged by its
similarity to the human voice, and by its ability to be understood.

<)

Figure 1: Text To Speech (TTS) Digitizing

1.3. Speech Properties

1.3.1. Phoneme

In human language, a phoneme is the smallest posited linguistically distinctive unit of sound. Phonemes
carry no semantic content themselves [6, 7]. An example of a phoneme is the /& / sound in the words (<_8)
and (o=#). (In transcription, phonemes are placed between slashes). Even though, most native speakers
don't notice the different of speech [6].

An example of different phoneme that would cause a change in meaning, producing words like («_-=)
(substituting /¢/), («=_<) (substituting /¢/). In many languages, each letter in the spelling system represents
one phoneme [6, 8].

1.3.2. Allophone

Allophone is one of several similar speech sounds (phones) that belong to the same phoneme [9]. An
example of allophone /</ and /%/ sound in the words (i=\is) and (A=Uxs), the two letters have different
phoneme but they have the same sounds. Changing the allophone won't change the meaning of a word, the
result may sound non-native [7, 8, 9].

1.3.3. Morpheme

Morpheme is the smallest linguistic unit that has semantic meaning. In spoken language, morphemes are
composed of phonemes and in written language, morphemes are composed of graphemes (the smallest
units of written language) [9, 10]. The word "unbreakable" has three morphemes: "un-", a bound
morpheme; "break", a free morpheme; and "-able", a bound morpheme. Different morphs representing the
same morpheme are Allomorph [7, 10].

1.3.4. Syllable

Syllable is defined as a unit of organization for a sequence of speech sounds. Syllables are often considered
the phonological (building blocks) of words [7, 11]. An example of syllable is the word (+=!8) the two
syllables here are (158) and (=), Figure (2).

http://www.wisegeek.com/what-is-a-computer.htm
http://www.wisegeek.com/what-is-an-mp3.htm
http://www.wisegeek.com/what-is-an-mp3-player.htm
http://en.wikipedia.org/wiki/Phone_(phonetics)
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Meaning_(linguistics)
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Grapheme
http://en.wikipedia.org/wiki/Speech_communication
http://en.wikipedia.org/wiki/Phonology
http://en.wikipedia.org/wiki/Word

ac | 68

Figure 2: Example of Arabic Syllable

1.4. Research Scope and Background

The scope of the research project converts Arabic text to speech, by analyzing the input text and using
special characteristics of Arabic language, generate Arabic phonemes, match between the Arabic
phonemes and the stored ones in the computer, then produce digitized audio of Arabic text. Consequently,
a study of Arabic grammars and properties of speech will be included.

TTS has many benefits, including scientific and journalized texts, automated reader, telephone response,
searching in web, online audio player, music and media player.

1.4.1. Acapela TTS Program

The first model is provided by Acapela Group using high quality TTS [12]. The Acapela voice solutions
speak 25 languages using over 50 characters voices. It allows any company to acquire its own exclusive
voice at an affordable price. See Figure (3).

]

acapela
Home Demos Application Fiolds Products & Sorvices . Mews EEvents Rofersnces Compary, Conkact Us
*l About Text-to-speech Acapela HQ TTS Interactive Demo

acapel.a tv

LEAPELR, T IS OUF e MEETInG place
fur mice characters that finally can

: £ < Wil
chat, speak for "“:' and play with T 5 provided gy acapels Group esing Algh Qeelity TTS.
winrde; the waty' they lIka e aern G G I0R 00 DD ORt, SONIMENCInt wii af BenesaTad sound fiies

Figure 3: Acapela TTS demo [12]

1.4.2. Sakhr TTS Program
The second model is presented by Sakhr TTS [13]. Such demo works on Arabic language only. The

3

special characters of Arabic language like (&_, &_, &) are used (Figure 4). The model has two male
voices and two female voices. Such program has different pitch.

- e A BB gl s i

DS HORMAL »

Figure 4: Sakhr TTS demo [13]

Most attempts to provide text-to-speech for Modern Standard Arabic (MSA) have concentrated on solving
the problem of diacritic assignment. The paper [14] described an approach to the task of generating speech
from MSA text, which provides the information required for imposing an appropriate intonation contour
in Arabic text.

Voice conversion, i.e., modification of a speech signal to sound as if spoken by a different speaker, finds
its use in speech synthesis with a new voice without the necessity of a new database. The paper of [15]
introduces two new simple non-linear methods of frequency scale mapping for transformation of voice
characteristics between male and female or childish. The frequency scale mapping methods were
developed primarily for use in Czech and Slovak text-to-speech (TTS) system designed for the blind and
based on the Pocket PC device platform. It uses cepstral description of the diphone speech inventory of
the male speaker, using the harmonic speech model. Three new diphone speech inventories corresponding
to female, childish and young male voices are created from the original male speech inventory. Listening
tests are used for evaluating voice transformation and quality of synthetic speech [15].

Text-to-speech synthesis systems have to deal with texts containing inclusions of multiple other languages
in the form of phrases, words or parts of words in multilingual countries. In such multilingual cultural
settings, listeners expect a high-quality text-to-speech synthesis system to read such texts in a way that the
origin of the inclusions is heard. The challenge for a text analysis component of a text-to-speech synthesis
system is to derive, from mixed lingual sentences, the correct polyglot phone sequence and all information
necessary to generate natural sounding polyglot prosody [16]. The article [16] presents a hew approach to
analyze mixed-lingual sentences. This approach centers on a modular, mixed-lingual morphological and
syntactic analyzer, which additionally provides accurate language identification on morpheme level and
word and sentence boundary identification in mixed-lingual texts. To date, this mixed-lingual text analysis
supports any mixture of English, French, German, Italian and Spanish. Because of its modular design, it is
easily extensible to additional languages.

2 ArTTS ANALYSES AND ORGANIZATION

2.1. Object-Oriented Analysis and Design - UML Diagrams

UML consists of nine different diagram types, each focused on a different way to analyze and define the
system. These diagrams are summarized briefly here [18]:

= Use Case Diagrams show the externally visible behavior of the system.

» Activity Diagrams show an elaboration of the behavior of the system.

= Component Diagrams show architecture of the system.

= Sequence Diagrams show object interactions over time.

= Collaboration Diagrams show object interactions with emphasis on relations between objects.
= Class Diagrams show class definition and relations.

» Statechart Diagrams show state changes in response to events.

= Deployment Diagrams show physical architecture of the system.

= Package Diagrams show the design hierarchical.

2.2. Requirement Scenario of ArTTS Design Screen

Type a text into the “Text box”

Press on “Speak" button to listen to the text words.

Copy a text from anywhere and paste it in the “Text box”.
Clear the “Text box”.

Cut a text from anywhere and paste it in the “Text box”.
Import a text file and export the text.

oA~ E

2.3. Use Case Model

Figures (5) and (6) show the use case model and screen design of the ArTTS. User deals with the system

by using User Screen, which includes many operations of the ArTTS.

O e e w = =fhinClude e e o /!_P_ﬁ\

Fast v
z<inclyde>> -7 User Screen . Lser
o i . ' z<include ==
il =<ingludes> . _ ’
O <<includes> z<includess &
Export = -::::inn:lydeb:: :I
O L O Clear
Cut
I rrport Copy

Figure 5: ArTTS Use Case Diagram

2.4. Description of “User Screen” Use Case
1. “User Screen” is created and displays the following screen

S

@ TS o

Figure 6: ArTTS Screen Design

If (Speak) button is selected, text in text box will be split into words.

2.1. Each word will be split into graphemes.

2.2. If grapheme is a letter, each letter in Arabic format will call its phoneme path from “Phoneme
Path Table” that has the following structure:

2.3 If grapheme is a number, each number will call its number path from “Numbers Path Table” that
has the following structure:

2.4. ArTTS will play the paths- stream of phonemes (the process of speak button).

If (Copy) button is selected, the system will make a copy of the selected text in computer memory.

If (Paste) button is selected, the copied text in memory will be pasted in the “TEXT BOX”, where the

pointer is.

If (Clear) button is selected, all text in “TEXT BOX” will be selected and deleted.

If (Export) button is selected, the file will be saved in the selected location as text format.

If (Import) button is selected, the imported text file will be shown in the “TEXT BOX”.

2.5. Analysis Model

The analysis model is specified as an initial object structure in the form of class and object diagrams,
which is able to realize the behavior specified in the use cases. Therefore, many UML diagrams are
created to describe the proposed system and the main interface of ArTTS.

Sequence diagram is the most popular UML artifact for dynamic modeling, which focuses on

identifying the behavior within the proposed system. Such diagram describes the user sequence diagram of
the ArTTS.

3. STRUCTURE OF ArTTS ENGINE
The proposed ArTTS engine is a model that synchronizes Arabic speech output by:

1.
2.

Breaking down Arabic text into orthographic words, by the scanner/parser module.

The orthographic words are analyzed and then broken down into phonemes, using the following sub-

steps:

a. Analyze the input of numerals of text that require conversion to pronounced phonemes, using
Arabic numeral conversion rules.

b. Analyze the input orthography words and convert this stream into phonemes, using Arabic
phonological rules.

3. Concatenate the stream of phones via concatenation module, using the builder module.
4. Generate the digital audio.

3.1. ArTTs Layout Architecture

ArTTS Engine is a concatenative engine that uses linguistic rules to generate artificial sounds. The ArTTS
produces output by concatenating recordings of units of real human speech. These units are phonemes that
have been extracted from larger units of recorded speech, but may also include words. Figure (7) shows
the proposed engine of ArTTS model using several steps.

Suond card

and " <
Audio Output

Synthesizer Audio output
y
TR

ArTTS DB

Figure 7: ArTTS Engine Structure
3.1.1. Text Input

In this step input, text box is needed to enter Arabic text. This entered text is used as input to the second
step of speech synthesizer.

3.1.2. Speech Synthesizer
The description of speech synthesizer of ArTTS is illustrated in the following. Figure (11) shows 5 phases,
including Scanner (Tokenizer) which contains Stream of words, Generation Rules and Builder. This step
includes entire 4 phases:
Phase 1 (Scanner) or (Tokenizer)
In this phase, text will break down into words (tokens).
Phase 2 (Splitter)
The splitter will break words into graphemes.
Phase 3 (Generation Rules)
These rules are used to determine the most special cases of the pronunciation of Arabic text [8] that ensure
the appropriate representation of the text with the rules of Arabic pronunciation. To do this phase, ArTTS
Engine will use two sum phases each phase will use 3 sequential processes for words and numbers.
A. Diactrize Rules
1. Process Using Fags
This process is to check each rule if it will be applied or not.
2. Process Look Ahead
This process is for checking forwards for next grapheme.
3. Process Phoneme Sound Path
Connect to database to get the phonetic grapheme path.
B. Numbers Rules

1. Process Using Fags

This process is to check each rule if it will be applied or not.
2. Process Look Ahead

This process is for checking forwards for next letters.

3. Process Phoneme Sound Path Generator

Connect to database to get the phonetic letters path.

Phase 4 (Builder)

A complete phonetic word will be generated, therefore full phonetic words will be ready to be sent to the
sound card. Consequently, sound card converts digital audio (sound file) to acoustical signal and amplifies
through speaker. Therefore, users hear these spoken words.

The ArTTS system is based on the source-filter speech model or the diphone and allophones description is
shown in Figure (8). Arabic text to be synthesized is entered as an input sequence of characters. It is
converted to the combination of diphones and phone units, through the prosody generator. Each of these
units has its collection description in the speech database.

According to Arabic language, prosody rules are applied. The resulting synthetic speech is generated
pitch-synchronously. We have used the original male voice database and two derived databases with given
formant modification factors according to: (1) Allophones knowledge base, (2) Diphone knowledge base
and (3) mapping methods. The basic pitch frequency and the corresponding description of the speech
database are selected and attached for synthesis by the choice of a voice.

The synthetic speech is generated as a sum of sine waves with given frequencies, amplitudes, and phases.
The frequencies are multiples of pitch frequency, amplitudes and phases that are given by sampling the
frequency response of the vocal tract model, given by the default stored voices.

s ——
v
Arabic Facts Avrabic Facts
_/
A A
A 4 - y N
Allophones Diphones
Knowledge Base Knowledge Base
N\ Y,
A 4 A 4
Arabic Text | ArTTS Engine Arabic Speech
A
: I
Arabic Numerals Prosod)
Knowledge Base KnowledgeyBase
J

Avrabic Prosody

Facts

Figure 8: The Proposed Model Structure of ArTTS

This architecture of the ArTTS strictly separates language-independent algorithms from language-
dependent linguistic and acoustic data. Furthermore, voice-independent and voice-dependent parts are
separated. The voice-independent part includes text analysis and phonological processing. It transforms
the Arabic input text into the so-called phonological representation, i.e., a minimal, voice-independent
abstract description of the speech to be synthesized. On the other hand, the phonological representation
includes the phonetic symbols and the abstract descript on of stream of sentence to be uttered. The voice-
dependent part, composed of concatenation control and speech signal generation, produces the speech
signal from phonological representation.

The ArTTS engine transforms a text paragraph by paragraph in four steps into speech. Figure (9)

illustrates these steps. The applied methods of the four corresponding system components are as follows:

1. Arabic text analysis derives the morphological structure of Arabic words and delivers the phonetic
transcription and language identification of each morpheme. For Arabic text analysis, strictly rule-
based processing is applied, which uses word and sentence grammars and two-level rules for lexicon-
to-surface mapping implemented: Allophones and Numerals knowledge bases.

2. Phonological processing applies phonological transformations, which are formulated using the so-
called multi context rules. It also assigns sentence stress and phrase boundaries, based on the
syntactic structure of a sentence. This abstract description, together with the phonetic transcription of
each word, constitute the phonological representation.

3. Concatenation control generates, from the phonological representation, the physical stream sequence
parameters. These are the stream values of all phones and the equivalent waves files of a sentence.
Phone duration and wave file control are realized by means of stored models, which directly map the
symbols of the phonological representation onto wave file index and fundamental frequency values.

4. Speech signal generation is based on concatenation of diphone units extracted from natural speech
(files stream). Prior to concatenation, the diphones have to be modified such that they match the
specified phone duration and fundamental frequency values.

Speech (Voice) Independent

Arabic Text Analysis

|

Phonological Processing

v

Speech (Voice) Dependent

[Concatenation Processing]

A\ 4
[Speech Signal Generation]

v

Figure 9: The Architecture of the ArTTS

3.3. ArTTS Knowledge Base

3.3.1. Look up Database
A database is used in ArTTS to store all paths of letters and numbers. To get the path of letters or
numbers, ArTTS will (Look up to Database) by using two classes.

1- Letters path class: for letters paths.

2- Numbers path class: for numbers paths.

3.3.2. Numbers Path Table

The numbers Path Table contains 3 columns (ID, Number, Number Path). Although, the number path
column contains the paths of sounded numbers files (.wav files). So, the goal of this table is to call the
paths of numbers to play it as a sound. This table contains two sections, these sections will be described in
the following.

A. Needed Sounds
Start from ID (0-9) containing the paths of the most used sounds in numbers system in Arabic language
such as follow

ID Word in English Word in Arabic Word pronounce in English
0 And) Waa
1 Ten e Ashar
2 1 hundred e Me'aa
3 1 thousand alf Alf

4 thousands Y Aalaf
5 1 thousand Lalf Alfan
6 2 hundreds Ol Me'atan
7 2 thousands ol Alfan
8 One AN Ehda
9 two Ll Ethna

So, when the input text is a number, those paths will be called and stored in an array to use them directly
when ArTTS needs to use these sounds.

B. Numbers Sounds
Start from ID (10 to the end of table's rows), containing the paths of sounded numbers from (1-9) in
two types:
1. First Type
For Individual numbers such as (1, 2, 3)
2. Second Type
For tens, hundreds and thousands numbers, this type is divided into two modes :
2.1. First mode
Numbers needed to be spoken as individuals in a stream of numbers (133" last 3 will be
spoken mLESE" not i)
2.2. Second mode
For tens numbers (20, 50, 80)

Now, all sounds of numbers and sounds of words used in Arabic numbers speech are ready to create the
sound of any stream of numbers in the range of (1 —99999). As an example, (53082) will be structured in
ArTTS as follows:

LD () smsed il o 4 540 il (from left to right)
Thalathato waa Khamsoon Aalfan waa Ethnan waa Thamanoon.
All special cases of Arabic numbers speech are included in Numbers Rules at Speech Synthesizer level.

3.3.3. Letters Path Table

This table also includes 3 columns (ID, Letters, Path), and each letter has 8 different types of sounds (2-::
-22:). So, the received grapheme that is sent by (Diactrize Rules) will be compared inside the table to get
the path, not inside the code. Then, the path will be sent to (Mapping Phase) to play it.

4 ArTTS IMPLEMENATION AND TESTING
As mentioned, the ArTTS structure is composed of 4 stages. The second stage is the very important one.
Therefore, the following section describes the C# code to operate with speech synthesizer mechanism.

4.1. ArTTS Implementation

C Sharpe language is used to implement ArTTS, including scanner, splitter, generation rules and builder
modules. The scanner is used to break down into words (Tokens). The splitter will break words into
graphemes. Figures (10-a) and (10-b) include two examples to test ArTTS.

T ATTS ey oy 5 od ol e | AT

Pw’;;] ubv‘;“ alll p-mu

s »~”9 vhxlhl Jwa uDJ\JIB
s.’>.!u| 9.& ugJ.Lo.a P2 IS)J.LS ,_,_;.J|
J-/‘IS \L)| _5\0.9 o u;b oo 05_0.1_7
9dg uﬂ).uu Q.u[p.l (R Q\A.A.nw
uo,\” 599 u|9ln_m.“ e all

lo pl-ws PIvED Sy, plsu
ul.;lu.oCLJu.npg‘u Los ugA_u._,.:
o y20 lpic g8 Ul P

Figure (10-a) Figure (10-b)

27 Jgasll Sic

In Figure (13-a), input text will be represented by ArTTS as follow: s s+ sHaasrt +0+ sart it HH +343+18

5 RELATED WORKS

An ARABTTS system was judged, well acceptability and visually impaired listener has accepted the
system very well [17]. The intonation lacks naturalness that is explained by the fact why the prosodic
model does not take yet counts the micro-prosodic phenomena. The pauses are well located and perceived
well. The objective was to conceive and carry out a system of voice synthesis starting from diacritized
Arab texts as understandable and naturalness as possible. The first criterion of intelligibility is reached by
to the linguistic module of treatment, which makes it possible to carry out the pre-treatments necessary on
the chain of entry to be synthesized and to carry out conversion graphemes to phonemes.

A new technology of VoiceXML as a markup language has presented among human speech over the
network. Some suggestions to add Arabic support to this technology [18]. They introduce this technology
and its methodology (how to work). Since that this technology requires the user to own some major

9

components such as VoiceXML browser, Arabic TTS and Arabic ASR, the paper describes these
components in some details. It firstly introduces the Voice XML, then it explains the architecture of the
VoiceXML browser in details, after that it discusses the specifications of Arabic language, next it
discusses the method of building Arabic TTS and Arabic ASR and their architecture.

A rule-based hybrid synthesis Arabic TTS system was developed in [19]. Phonemes were the essential
elements of the synthesizer, the proposed Arabic TTS system is vocabulary independent with intelligible
output speech, so it can handle all types of input text. It has the flexibility of changing the speaker from
male to female and other sound variants like whispering. The standard Arabic text is mostly unvowelized,;
hence the need of vowelization (Tashkeel), the proposed system omits the need to some of the
vowelization symbols like sukoon and has the ability to enrich the exception dictionary by listing the exact
pronunciation of the common words, there, no need to vowelize them. Comparing with other available
Arabic TTS systems, the proposed Hybrid TTS has small size, high accuracy, and vocabulary
independence features which make it in general more reliable than other TTS systems. The system is free
for distribution and for development.

The objectives in the work of [20] consisted in improving the naturalness of an Arabic Text To Speech
Synthesis system (ARAVOICE). To reach this result, a proposed approach for the automatic generation of
the stress presented. The rules used in the phonological module are founded primarily on an algorithm of
stressing. Its represents the core of the tonal rules which are employed in the phonetic module. The
proposed model adapted, in another point, diagrams generated for the text processing and that while acting
on the size of the sentences of the text to reading.

In the paper of [21], a proposed mini-transliteration system for Arabic-numeral expressions is presented. It
can efficiently and correctly convert Arabic numeral expressions found in Korean text into phonemes for
embedded TTS systems. For the purpose of building grapheme-to-phoneme rules, components of ANEs
are deduced, and investigated their pattern and arithmetic features based on the analyzed corpus. A word
sense disambiguation was developed to resolve ambiguities and minimized the amount of memory used. It
reduced the process time without any serious loss of accuracy, and showed high accuracy, [21].

6 CONCLUSIONS

The project analyzed, designed, implemented and tested an Arabic Text-to-Speech (ArTTS) model to be
used in Arabic text pronunciation. Introduction to speech is introduced, includs speech recognition and
speech synthesizer. The analysis and design models are described, taken in our consideration the object
oriented analysis and design, using UML diagrams. Also, the layout structure of ArTTS is designed and
implemented using C sharp language in visual studio .Net 2008.

Arabic digits and numbers pronunciation included in ArTTS are associated with related rules. Also, the
different rules of Arabic graphemes pronounced letters are included and designed in ArTTS.

ArTTS concatenates these pronounced graphemes and produced sounded Arabic words. The result that
produced from numbers matches Arabic pronouncing of numbers.

The result produced from letters is accepted and understood by the listener. ArTTS is dealing with about
90 rules of numbers and diactrize rules. ArTTS can deal with more rules by putting the new rules in (Rule
Phase) for both numbers and letters. Using more rules will enhance the output and make it more similar to
Arabic pronunciation. Also, ArTTS will be enhanced using prosody technology.

ACKNOLEDGEMENS
I would like to thank IT department, faculty of computing and IT deanship for their support and guidance

and insights that contributed tremendously to this paper. Also, | would like to acknowledge Fahd Al-
Hiedary, Mansour AlJohany Seef Al-Harthi for their programming efforts.
10

REFERENCES

[1] Ahmed Mokhtar Omar, (2006). "l & sall 40 50", Publisher: Alam Alkotob, Cairo, Egypt.

[2] Mansour Mohammed ALghamdi, (2006). "4l La sl 5 8l oyl & Publisher: King Abdulaziz City for
Science and Technology (KACST), Saudi Arabia.

[3] Wikipedia "speech”, (15/3/2009): http://en.wikipedia.org/wiki/Speech

[4] Wikipedia "speech technology", (16/3/2009) http://en.wikipedia.org/wiki/Speech_technology

[5] Wisegeek "speech recognition”, (17/3/2009) http://mww.wisegeek.com/what-is-voice-recognition.htm

[6] Wisegeek "text to speech”, (20/3/2009) http://mwww.wisegeek.com/what-is-tts.htm

[7] Wikipedia "Phoneme", (29/3/2009) http://en.wikipedia.org/wiki/Phoneme

[8] Wikipedia " Allophone", (30/3/2009) http://en.wikipedia.org/wiki/Allophone

[9] Wikipedia " Morpheme ", (19/3/2009) http://en.wikipedia.org/wiki/Morpheme

[10] Wikipedia " syllable", (19/3/2009) http://en.wikipedia.org/wiki/Syllable

[11] Acapela TTS: http://www.acapela-group.com/text-to-speech-interactive-demo.htmi

[12] Sakhr TTS : http://www.sakhr.com/TTS/TTS.asp

[13] Site Pal TTS: http://www.oddcast.com/home /demos/tts/tts_example.php?

[14] Allan Ramsay and Hanady Mansour (2008). Towards including prosody in a text-to-speech system
for modern standard Arabic, Computer Speech and Language 22 (2008) 84-103.

[15] Anna Priibilova, and Jir1” Priibil, (2006). Non-linear frequency scale mapping for voice conversion
in text-to-speech system with cepstral description, Speech Communication 48 (2006) 1691-1703.

[16] Harald Romsdorfer and Beat Pfister, (2007). Text analysis and language identification for polyglot
text-to-speech synthesis, Speech Communication 49 (2007) 697—724.

[17] Zemirli, Z. (2006). ARAB_TTS: An Arabic Text To Speech Synthesis. Computer Systems and
Applications, 2006. IEEE International Conference.

[18] Kosayba, B.; Alkhedr, H.; Jdeed, F.; Shriedi, A.; Al-mozaien, E. (2008). Arabic Phonetic Web Sites
Platform Using VoiceXML, Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3" International Conference.

[19] Mustafa Zeki, Othman O. Khalifa, A. W. Naji, (2010). Development of An Arabic Text-To-Speech
System, International Conference on Computer and Communication Engineering (ICCCE 2010), 11-
13 May 2010, Kuala Lumpur, Malaysia, IEEE.

[20] Zouhir ZEMIRLI, Salima KHABET, M'hamed MOSTEGHANEM, (2007). An effective model of
stressing in an Arabic Text To Speech System. IEEE

[21] Youngim Jung, Aesun Yoon, and Hyuk-Chul Kwon, (2007). Grapheme-to-Phoneme Conversion of
Arabic Numeral Expressions for Embedded TTS Systems. IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2007.

11

http://en.wikipedia.org/wiki/Speech
http://en.wikipedia.org/wiki/Speech_technology
http://www.wisegeek.com/what-is-voice-recognition.htm
http://en.wikipedia.org/wiki/Allophone
http://www.acapela-group.com/text-to-speech-interactive-demo.html
http://www.sakhr.com/TTS/TTS.asp
http://www.oddcast.com/home%20/demos/tts/tts_example.php

Ontology and its Methodology

Susan Fisal Ellakwah ", Passent El-Kafrawy™?, Mohamed Amin™?, El-Sayed EIl-Azhary™

“Central Lab for Agricultural Expert Systems (CLAES)
Agricultural Research Center (ARC)
Giza, Egypt
lfisalsusan@yahoo.com

‘sayed@Qclaes.sci.eg
“*Mathematics and CS Department, Faculty of Science,
Menoufia University, Egypt

’passentmk@gmail.com

Abstract— Ontology is used for communication between people and organizations by providing a common terminology over a
domain. This work presents a method of establishing ontology from existing ontologies. Establishing ontology from scratch is hard
and expensive. This work establishes ontology by matching and merging existing ontologies. Ontologies can be matched and merged
to produce a single integrated ontology. Integrated ontology has consistent and coherent information rather than using multiple
ontologies, which may be heterogeneous and inconsistent. Heterogeneity between different ontologies in the same domain is the
primary obstacle for interoperation between systems. Heterogeneity leads to the absence of a standard terminology for any given
domain that may cause problems when an agent, service, or application uses information from two different ontologies. Integrating
ontologies is a very important process to enable applications, agents and services to communicate and understand each other.

1 INTRODUCTION

The term ontology refers to a wide range of formal representations, including taxonomies, hierarchical terminology vocabularies
or detailed logical theories describing a domain [1]. For this reason, a precise definition of the term is rather difficult whereas
different definitions have appeared in the literature. One commonly used definition is based on the original use of the term in
philosophy, where ontology is a systematic account of Existence. For artificial intelligence (Al) systems, what “exists” is that
what can be represented [2]; therefore, an ontology in the Al context is a structure that specifies a conceptualization, or, more
accurately, a specification of a shared conceptualization of a domain [3]. "An Ontology is a formal, explicit specification of a
shared conceptualization [4]. Conceptualization refers to an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon. Explicit means that the type of concepts used, and the constraints on their
use, are explicitly defined. Formal refers to the fact that the ontology should be machine-readable. Shared reflects the notion
that an ontology captures consensual knowledge, that is, it is not private of some individual, but accepted by a group.

In recent years, the Al community has borrowed that term and used it to refer to a set of concepts or terms that are useful in
describing or modeling a certain area of knowledge. It provides a source of precisely defined terms and relations. The role of
ontologies is to capture domain knowledge in a generic way, provide a commonly agreed upon understanding of a domain and
transform the implicit into the explicit knowledge.

Two important challenges facing current communities of researchers and practitioners in the field of software engineering and
technology (SET) are knowledge integration and computer-based automatic support. The first challenge implies wasting a lot of
time and effort and this is due to one of the difficulties in human relationships, namely the lack of explicit knowledge shared
among members of a group/project, with other groups and with other stakeholders. The second challenge arises as many
projects include the design and/or construction of advanced tools for supporting different software engineering activities. These
tools should provide as much functionality as possible with the smallest cost of development. Both challenges can be solved and
more easily approached by using ontologies.

Ontologies provide a shared and common understanding of a domain that can be communicated between people and across
application systems. Ontologies play a major role in supporting information exchange processes in various areas. Informally,
ontology specifies common vocabulary between different systems. It tries to identify and overcome the barriers for sharing and
reusing knowledge represented by Al programs. Ontology is used for knowledge sharing and reuse. It improves information
organization, management and understanding.

The starting point for creating ontology could arise from different situations. An ontology can be created from scratch; from
existing ontologies (whether global or local ontologies); from a corpus of information sources; or a combination of the latter two
approaches. Various degrees of automation could be used to build ontology, ranging from fully manual, semi-automated, to

mailto:fisalsusan@yaoo.com

fully-automated. At present, the fully automated method only functions well for very light weight ontologies under very limited
circumstances. This work presents semi-automated method for establishing ontology.

Currently, ontologies are widely used in knowledge engineering, artificial intelligence and computer science, in applications
related to knowledge management, natural language processing, e-commerce, intelligent integration information, information
retrieval, database design and integration, bio-informatics, education, etc.

There are several reasons for developing ontology. First of all, sharing common understanding of the structure of information
among people or software agents. Second, enabling the reuse of knowledge. Third, making domain assumptions explicit.
Fourth, separating domain knowledge from the operational knowledge. Fifth, analyzing domain knowledge. Sixth, increasing
interoperability among various domain of knowledge. Seventh, enhancing scalability of new knowledge into the existing
domain. Finally, searching and reasoning a specific knowledge in domain knowledge can be done using ontology.

This section introduces the notion of ontology and the benefits of developing ontologies. Next section defines the main two
processes for merging an ontology from preexisting ontologies. In section 3 the related work is reviewed. Section 4 presents the
proposed semi-automated technique for developing ontology. Finally, in section 5 the conclusion and future work.

2 ONTOLOGY MATCHING AND MERGING

Ontologies, which are used in order to support interoperability and common understanding between the different parties, are a
key component in solving the problem of semantic heterogeneity, thus enabling semantic interoperability between different web
applications and services. Recently, ontologies have become a popular research topic in many areas, including electronic
commerce, knowledge management, knowledge engineering and natural language processing. Ontologies provide a common
understanding of a domain that can be communicated between people, and of heterogeneous and widely spread application
systems. In fact, they have been developed in Artificial Intelligence (Al) research communities to facilitate knowledge sharing
and reuse. The goal of an ontology is to achieve a common and shared knowledge that can be transmitted between people and
between application systems. Thus, ontologies play an important role in achieving interoperability across organizations and on
the Semantic Web because they aim to capture domain knowledge and their role to create semantics explicitly in a generic way
and provide the basis for agreement within a domain. Ontology is used to enable interoperation between Web applications from
different areas or from different views on one area. For that reason, it is necessary to establish mappings among concepts of
different ontologies to capture the semantic correspondence between them. However, establishing such a correspondence is not
an easy task.

Multiple ontologies need to be accessed from different systems; the distributed nature of ontology development has led to
dissimilar ontologies for the same or overlapping domains. Thus, various parties with different ontologies do not fully
understand each other. To solve these problems, it is necessary to use ontology matching and geared for interoperability.
Ontology matching aims at finding correspondences between entities of different ontologies, these correspondences may stand
for equivalence as well as other relations between ontology entities. Matching is an essential aspect of merging and could also
be used to initiate merging. Ontology merging is a first natural use of ontology matching. Ontology merging is the process of
creating a new single coherent ontology from two or more existing source ontologies related to the same domain, the new
ontology replaces the source ontologies. This paper presents a system to establish global ontology in specific domain from
existing ontologies by matching and merging techniques to obtain a high quality result. Global ontology allows users to avoid
querying the local ontologies one by one, and to obtain a result from them just by querying a global ontology. Global ontology
has standard and shared terminology. It is consistent and coherent. It has no redundancy. This section presents some of the basic
matching methods for assessing the similarity or the relations between ontology entities. These basic techniques that can be used
for building correspondences based on terminological, conceptual, extensional and semantic arguments. The following basic
techniques are the building blocks on which a matching solution is built, these techniques cannot be used in isolation, but that
each of them can take advantage of the results provided by the others. Another part of the art of ontology matching relies on
selecting and combining these methods (matchers).

a. Name-based techniques

Name-based techniques compare strings. They can be applied to the name, the label or the comments of entities in order to find
those which are similar. This can be used for comparing class names and/or URIs.
e String-based methods
String-based methods are often used in order to match names and name descriptions of ontology entities. These techniques
consider strings as sequences of letters in an alphabet. They are typically based on the following intuition: the more similar
the strings, the more likely they are to denote the same concepts. Usually, distance functions map a pair of strings to a real
number, where a smaller value of the real number indicates a greater similarity between the strings. Some examples of
string-based methods which are extensively used in matching systems are prefix, suffix, edit, and n-gram distances.
e Language-based methods

Language-based methods rely on using natural language processing techniques to help extract the meaningful terms from a text.
Terms are phrases that identify concepts; they are often used for labeling concepts in ontologies. Comparing these terms and
their relations should help to assess the similarity of the ontology entities they name and comment upon. These are based on
linguistic knowledge; indeed, there are two general techniques, one relying on algorithms only, while the other can use external
lexicon-based resources such as dictionaries. As a consequence, ontology matching can take great advantage of recognizing and
identifying them in strings; in other words, it uses the internal linguistic properties of the instances, such as their syntactic
properties. In general, extrinsic linguistic methods are used for finding extra similarities between terms; external linguistic
resources such as dictionaries and lexicons increase the chances of finding matching terms. Lexical information (e.g. names,
definitions and distance between strings) can help with reclassification of matching results. Auxiliary information (e.g.
WorldNet) provides semantics for the elements in ontologies.

b. Structure-based techniques

In this method of matching, instead of comparing their names or identifiers, the structures of entities that can be found in an
ontology are compared. In this kind of matcher, information is used about the structure, such as subclass and super-class
relationships, domain and range of properties, and the graph structure of ontologies. In fact, this information provides insight
into ontologies. This kind of comparison can be divided into the following:
e Internal Structure: this method is comparing the internal structure of entities, in other the words, the
similarities between the names of their properties (e.g., the value range or cardinality of their attributes).
e External Structure: this method is comparing the relations of the classes with other classes like compute
the similarity the super-classes of the two classes.

c. Extensional techniques

In a case where two ontologies have similar instances, finding corresponding concepts based on checking similarities between
the individuals is required. If the similarity level of two instances reaches a threshold, then the two individuals can be
considered as matched. The matching can be based on instance comparisons. To identify the similarity level of two instances,
string similarity methods may be used.

d. Semantic-based techniques

The key characteristics of semantic methods are that model-theoretic semantics is used to justify their results. They are
deductive methods. Of course, pure deductive methods do not perform very well alone for an essentially inductive task like
ontology matching. They hence need a preprocessing phase which provides ‘anchors’, i.e., entities which are declared, for
example, to be equivalent (based on the identity of their names or user input for instance).The semantic methods act as
amplifiers of these seeding alignments.

3 RELATED WORK

Several tools exists for ontology establishment, ranging from fully manual to fully automated. Many of the semi-automated
ontology merging and alignment tools are listed in this section. PROMPT [5] begins with the linguistic-similarity matches for
the initial comparison, but generates a list of suggestions for the user based on linguistic and structural knowledge and then
points the user to possible effects of these changes. SMART [22] looks for linguistically similar class names through class-name
matches, creates a list of initial linguistic similarity (synonym, shared substring, common suffix, and common prefix) based on
class-name similarity, studies the structures of relation in merged concepts, and matches slot names and slot value types. It
makes suggestions for users, checks for conflicts, and provides solutions to these conflicts.

OntoMorph [6] provides a powerful rule language for specifying mappings, and facilitates ontology merging and the rapid
generation of knowledge-base translators. It combines two powerful mechanisms for knowledge-base transformations such as
syntactic rewriting and semantic rewriting. Syntactic rewriting is done through pattern-directed rewrite rules for sentence-level
transformation based on pattern matching. Semantic rewriting is done through semantic models and logical inference. A concept
hierarchy management for ontology alignment and merging is provided in Hierarchical Concept Alignment system [7] (HICAL),
where one concept hierarchy is aligned with another concept in another concept hierarchy. HICAL uses a machine-learning
method for aligning multiple concept hierarchies, and exploits the data instances in the overlap between the two taxonomies to
infer mappings. It uses hierarchies for categorization and syntactical information, not similarity between words, so that it is
capable of categorizing different words under the same concept.

Another system that employs machine learning techniques to find ontology mappings is GLUE [8]. If given two ontologies, for
each concept in one of the ontologies, GLUE finds the most similar concept in the other one. GLUE works with several
similarity measures that are defined with probabilistic definitions. Multiple learning strategies exploit different types of
information from instances or taxonomy structures. GLUE can also use common sense knowledge and domain constraints
instead of relaxation labeling. It is a well-known constraint optimization technique adapted to work efficiently. Quick Ontology
Mapping (QOM)[9] is based on the hypothesis that mapping algorithms can be streamlined so that the loss of quality is

marginal, but the improvement of efficiency is tremendous for the ad-hoc mapping of large-size light-weight ontologies. The
process model shown in Figure 1 defines QOM in steps.

Iteration @ \
2 I 3 e 4 S Qutput

Search Step Similarity Similarity Inter-
Selection Computation Aggregation pretation ~

Figure 1: Quick ontology mapping

Input
Feature
@ Engineering

A generic ontology mapping system, called LILY [10], is based on the extraction of semantic subgraph. LILY exploits both
linguistic and structural information in semantic subgraphs to generate initial alignments. After that, a subsequent similarity
propagation strategy is applied to produce more alignments if necessary. Finally, LILY uses the classic image threshold
selection algorithm to automatically select the threshold, and then extracts final results based on the stable marriage strategy.
LILY has different functions for different kinds of tasks: for example, Generic Ontology Matching method (GOM) is used for
common matching tasks with small size ontologies; Large scale Ontology Matching method (LOM) is used for matching tasks
with large size ontologies; and Semantic Ontology Matching method (SOM) is used for discovering the semantic relations
between ontologies. The two limitations of LILY are that it requests the user to manually set the size of subgraph according to
different mapping tasks and the efficiency of semantic subgraph is very low in large-scale ontologies.

A multi-strategy learning approach is employed in Learning Source Description (LSD) [12]. In the training phase, LSD chooses
one learner among several base learners, such as Name Learner, Content Learner, and XML Learner, based on their confidence
score. In the matching phase, ontology matching is performed using the learner chosen in the training phase, in order to improve
matching accuracy.

Mediator Environment for Multiple Information Source (MOMIS) [13] creates a lexical matrix using WordNet. A lexical matrix
consists of rows storing word forms and columns storing word meanings. Relations between words such as SYN (synonyms),
BT (broader terms), NT (narrower terms), and RT (related terms) can be represented using the developed lexical matrix.

LOM (Lexicon-based Ontology Mapping) [14] LOM is a semi-automatic lexicon-based ontology-mapping tool that supports a
human mapping engineer with a first-cut comparison of ontological terms between the ontologies to be mapped, based on their
lexical similarity. It proposes four phases of a lexical similarity measurement in ontology matching: (1) Whole term matching,
(2) Word constituent matching, (3) Synset matching, and (4) Type matching.

Combining match algorithms (COMA++) [15] is a well-known ontology-matching tool providing a graphical user interface.
COMA++ adopts multi-match strategies to perform matching of relational schemas, W3C XSD, and OWL. The implemented
multi-match strategies utilize fragment-based matching and reuse-oriented matching. Unlike the previous ontology matching
methods focusing on 1:1 mapping. Risk Minimization based Ontology Mapping (RiMOM) [16] automates the process of
discoveries on 1:1, n:1, 1:null and null:1 mappings. Besides, RiIMOM solves the problem of name conflicts in mapping process
using thesaurus and statistical techniques. Integrated Learning In Alignment of Data and Schema (ILIADS) [17] proposes an
ontology matching algorithm based on logical inference. ILIADS integrates the previous ontology matching approach and the
logical inference similarity measure to achieve better matching of ontologies. ONtology compositlON system (ONION) [18]
resolves terminological heterogeneity in ontologies and produces articulation rules for mappings. The linguistic matcher
identifies all possible pairs of terms in ontologies and assigns a similarity score to each pair. If the similarity score is above the
threshold, then the match is accepted and an articulation rule is generated. After the matches generated by a linguistic matcher
are available, a structure-based matcher looks for further matches. An inference-based matcher generates matches based on
rules available with ontologies or any seed rules provided by experts.

Multiple iterations are required for generating semantic matches between ontologies. A human expert chooses, deletes, or
modifies suggested matches using a GUI tool. A linguistic matcher fails when semantics should be considered. CROSI Mapping
System (CMS) [19] is an ontology alignment system. It is a structure matching system on the rich semantics of the OWL
constructs. Its modular architecture allows the system to consult external linguistic resources and consists of feature generation,
feature selection, multi-strategy similarity aggregator, and similarity evaluator. FCA-Merge [20] is a method for ontology
merging based on Ganter and Wille’s formal concept analysis-28, lattice exploration, and instances of ontologies to be merged.

The overall process of ontology merging consists of three steps: 1) instance extraction and generation of the formal context for
each ontology, 2) the computation of the pruned concept lattice by algorithm TITANIC29, and 3) the non automatic generation

of the merged ontology with human interaction based on the concept lattice. CHIMAERA [21] is an interactive ontology
merging tool based on the Ontolingual ontology editor. It makes users affect merging process at any point during merge process,
analyzes ontologies to be merged, and if linguistic matches are found, the merge is processed automatically, otherwise, further
action can be made by the use. It uses subclass and super-class relationship. Ontology Mapping Enhancer (OMEN) [23] is a
probabilistic ontology mapping tool which enhances the quality of existing ontology mappings using a Bayesian Net. The
Bayesian Net uses a set of meta-rules that represents how much each ontology mapping affects other related mappings based on
ontology structure and the semantics of ontology relations. Existing mappings between two concepts can be used for inferring
other mappings between related concepts. P2P ontology mapping [24] proposes a framework that allows agents to interact with
other agents efficiently based

on the dynamic mapping of only the portion of ontologies relevant to the interaction. The framework executes three steps: 1)
Generates the hypotheses; 2) Filters the hypotheses; and 3) Selects the best hypothesis.

4 METHODOLOGY OF ESTABLISHING ONTOLOGY

This section presents a new semi-automated method for establishing global ontology by merging pre-existing ontologies. This
technique consists of two main components: matching process and merging process.

A. System Structure

The structure of the two main components, matching process and merging process, are shown in figure 2. Ontology matching
tries to identify similarities between heterogeneous ontologies and to automatically create suitable mappings for transformation.
Matching is an essential aspect of merging and could also be used to initiate merging. Ontology merging is the process that will
create a single global coherent ontology by unifying two or more existing ontologies.

B. System Components

As mentioned before the system is composed of two main components: the matching process component and the merging
component.

1) Matching Process: Matching process component receives source ontologies and computes similarities between the
ontological entities. A matching process uses an algorithm or matchers. This allows selection of the matchers depending on the
application domain and schema types. The ontological entities in an ontology consists of concepts, properties and values [25].
Matching process consists of two parts: The first part (I) computes alignment suggestions and the second part (I1) interacts with
the user to decide on the final alignments as shown in figure 3.

Source
ontoloagies : Matchers
Combination
Filter
|
Suggestion Il

P Accepted . Conflict User
Alignments [* Suggestion . checker

Figure 3 matching process components

An alignment algorithm includes several matchers. 'Matchers' calculate similarities between the ontological entities from the
different source ontologies. The matchers implement the strategies based on linguistic or structure techniques. '‘Combination’

combines matchers' similarities and derive the correspondences between the entities. 'Filter' filters out the matched pairs.
'Suggestions' are determined by combining and filtering the results generated by one or more matchers. The interactive
component of the alignment algorithm presents the suggestions to the user who accepts or rejects them. The acceptance and
rejection of a suggestion may influence further suggestions. Conflict checker is used to avoid conflicts introduced by the
alignment relationships. The output of the alignment algorithm is a set of alignment relationships between terms from the source
ontologies. Alignments are a set of correspondences between two or more ontologies. The ‘alignments' is the output of the
matching process.

2) Merging Process: a global merged ontology is to be established from the source ontologies and their identified alignments,
as shown in figure 4. 'Checker' is used to avoid conflicts as well as to detect non-satisfying concepts and, if so desired by the
user, to remove redundancies.

|Sourceonto|oqies | |Alianments
\

\ -
Merging
computation

Computed ontology User

!
A

Y
Global merged ontology

Figure 4 merging process components

5 CONCLUSIONS

This paper presents a system to build a global ontology from different ontologies in the same domain. The process of
building ontology is a high-cost process. Building global ontology from scratch is hard, cost and time-consuming. This work
presents a method for reusing and sharing existing ontologies by matching and merging them.

In the future work, we will apply this method on the agricultural domain to obtain a global agricultural domain. The
algorithms of matching and merging will be established and implemented. The agricultural domain will be established by using
not only existing ontologies but also we will establish a tool to help in building the not existing ontologies and integrating them
together.

ACKNOWLEDGMENT
I would like to thank Dr. Passent El-Kafrawy and Dr. Mohamed Amin. Special thanks to Dr. El-Sayed El-Azhary. Many thanks

to my friends at CLAES.
REFERENCES

[1] Noy, N. & Klein, M. "Ontology Evolution: Not the Same as Schema Evolution" Knowledge and Information
Systems, 6 (4), pp. 428-440, 2004. also available as SMI technical report SM1-2002-0926.

[2] Gruber, T.R. "A Translation Approach to Portable Ontology Specifications" Knowledge Acquisition, 5 (2),
pp.199-220, 1993.

[3] Gruber, T.R. "Toward Principles for the Design of Ontologies Used for Knowledge Sharing," Formal Ontology
in Conceptual Analysis and Knowledge Representation™ 1993, also available as Technical Report KSL-93-04,
Knowledge Systems Laboratory, Stanford University

[4] Borst P, Akkermans H, Top J. "Engineering ontologies," International Journal of Human-Computer Studies
46:pp.365-406,1997.

[5] N. Noy and M. Musen, "PROMPT: Algorithm and Tool for Automated Ontology Merging and Align,ment," in
Proc.of17th National Conference on Atrtificial Intelligence,(AAAl,), pp. 450-455, Austin, Texas 2000.

[6] H. Chalupsky. "Ontomorph: A Translation System for Symbolic Knowledge", Principles of Knowledge
Representation and Reasoning, 2000.

[7]1 R. Ichise, H. Takeda, and S. Honiden. "Rule Induction for Concept Hierarchy Alignment", Proceedings of the
Workshop on Ontology Learning at the 17th International Joint Conference on Artificial Intelligence (IJCAI),
2001.

[8] An-Hai Doan, J. Madhavan, Pedro Domingos, and Alon Halevy. "Learning to map ontologies on the semantic
web,". In Proceedings of the International World Wide Web Conference (WWW), pages 662-673, 2003.

[9] Marc Ehrig and Steffen Staab. "QOM: Quick ontology mapping,”. In Proceedings of the 3rd International
Semantic Web Conference (ISWC), pages 683-697, 2004.

[10] Peng Wang and Baowen Xu."Lily: Ontology alignment results for oaei 2009.In Shvaiko et al. [11].

[11] Pavel Shvaiko, J er"ome Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt, Natalya Fridman Noy, and
Arnon Rosenthal, editors. Proceedings of the 4th International Workshop on Ontology Matching (OM-2009)
collocated with the 8th International Semantic Web Conference (ISWC-2009) Chantilly,USA, October 25, 2009,
volume 551 of CEUR Workshop Proceedings. CEUR-WS.org, 20009.

[12] AnHai Doan, Pedro Domingos, and Alon Halevy, "Learning to Match the Schemas of Data Sources: A
Multistrategy Approach," Machine Learning, Vol. 50, No.3, pp 279-301(2003)

[13] Domenico Beneventano, Sonia Bergamaschi, Francesco Guerra, and Maurizio, (2003) "Synthesizing an
Integrated Ontology,"IEEE Internet Computing, pp 42-51.

[14]John Li, "LOM: A Lexicon-based Ontology Mapping Tool,"” Proc. of the Performance Metrics for Intelligent
Systems Workshop (PerMIS. *04), pp 1-5, 2004. and Erhard Rahm, (2005) “Schema and ontology matching

[15]David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm, "Schema and ontology matching with
COMA++ ,"Proc. of the ACM SIGMOD International Conference on Management of Data, pp 906-908, 2005

[16] Jie Tang, Juan-Zi Li, Bangyong Liang, Xiaotong Huang, Yi Li and Kehong Wang,"Using Bayesian decision for
ontology mapping," Journal of Web Semantics, Vol. 4, No. 4, pp 243-262 (2006).

[17]Octavian Udrea, Lise Getoor, and Renée J. Miller, "Leveraging data and structure in ontology integration," Proc.
Of ACMSIGMOD International Conference on Management of Data, pp 449-460, 2007.

[18] Mitra, P and Wiederhold, G, "Resolving Terminological Heterogeneity in Ontologies", Proceedings of the
ECAI’02 workshop on Ontologies and Semantic Interoperability, 2002.

[19] Yannis Kalfoglou, Bo Hu, “CROSI Mapping System(CMS) Results of the 2005 Ontology Alignment
Contest”,K-CAP Integrating Ontologies Workshop 2005, Banff, Alberta, Canada, 2005.

[20] Gerd Stumme, Alexander Maedche, "FCA-Merge: Bottom-Up Merging of Ontologies,” In proceeding of the
International Joint Conference on Artificial Intelligence 1IJCA101, Seattle, USA, 2001.

[21] D. McGuinness, R. Fikes, J. Rice, and S.Wilder,"The Chimaera Ontology Environment”, In Proceedings of the
17th National Conferenceon Artificial Intelligence (AAAI), 2000.

[22] Natalya Fridman Noy and Mark A. Musen,"Smart: Automated Support for Oontology Merging andAlignment",
Proceedings of the Twelfth Banff Workshopon Knowledge Acquistion, Modeling, and Management,Banff
Algeberta, 1999.

[23] Prasenjit Mitra, Natasha F. Noy, Anju Jaiswals, “OMEN: A Probabilistic Ontology Mapping Tool”,

International Semantic Web Conference 2005: 537-547.

[24] 32. Paolo Besana, Dave Robertson, and MichaelRovatsos, "Exploiting interaction contexts in P2P ontology
mapping"”, P2PKM 2005.

[25] Bon J. Wielinga, Expertise Model Definition Document, University of Amsterdam, 1994,

Improving YamCha Tool Performance

Salwa Hamada

Electronics Research Institute (ERI)
hesalwa@hotmail.com

Abstract---NE involves identification of proper names in texts, and classification into a set of predefined categories of interest. Three
universally accepted categories: person, location and organization. Other common tasks: recognition of date/time expressions, measures
(percent, money, weight etc), email addresses etc. YamCha is a Named Entity Recognition (NER) tool available as an open source to help
the researchers [1]. Unfortunately the YamCha tool cannot deal with words that are preceded by Arabic prepositions or conjunctions if
there is no space between the word and any of them [2]. This is because YamCha’s model cannot detect that the preposition or
conjunction character is not a part of the word. This paper presents a hypothesis that improves the YamCha’s tool performance. It
assumed that we can improve the performance of YamCha by using the RDI-POST in the preprocessing phase. It claims that it is possible
to raise the accuracy rate of YamCha by applying some preprocessing steps to YamCha’s input text. The paper also presents an
experiment that shows that by applying this preprocessing step, the accuracy rate of the YamCha tool increased from 57% to 88%.

1 INTRODUCTION

The YamCha tool is based on making a training phase and generating a model to test the corpus. It is created as generic,
customizable, open source text chunker. It can be adapted to a lot of other tag-oriented NLP tasks. It uses state-of-the-art machine
learning algorithm called Support Vector Machines (SVMs), first introduced by Vapnik in 1995[3]. YamCha tool takes the model
and data in Roman format as inputs. In this paper Yassine Benajiba model had been used for training data. The RDI Part-Of-Speech
(POS) tagger RPOST tool has been used to tag parts of speech before using YamCha tool. Then some devolved program had been
applied to YamCha’s input text after that. To use YamCha first we use the RPOST. Second a converter program to convert from
Arabic to Roman format. YamCha generates it output in Roman format, so we used a program to convert Roman characters to
Arabic ones so that the output will de readable as shown in section4.

The rest of this paper is divided as follows: section two descibes RPOST, section three presents that proposed steps for improving
the YamCha tool. YamCha tool in processing is discussed in section four. Section five shows how to change YamCha output to a
user readable format. A case study has been applied in section six and followed by an Evaluation to YamCha performance. Section
seven introduces the final conclusion.

2 THE TAGGER YAMCHA TOOL

The NER task is one of the most important subtasks in Information Extraction. It is defined as the identification and classification of
Named Entities (NE's) within an open-domain text. YamCha is a generic, customizable, and open source text chunker-oriented
towards a lot of NLP tasks, such as POS tagging, Named Entity Recognition, base NP chunking, and Text Chunking. YamCha uses

SVM a state-of-the-art machine learning algorithm.

In this paper Yamcha is used to tag named entities. As we mention before YamCha cannot deal with word preceded with a
preposition or a conjunction [2].

for example:
Omall s Ol s QY5 eae
YamCha succeeded to tag the first word “_»<a<” as a location but it fails to tag the rest of locations “C2 ¥ | “O) 2 and “Cpall”

because it considers the preceding “5” as a part of the word*“. RPOST can help in that as it can define the conjunctions and the
prepositions as separate characters.

mailto:hesalwa@hotmail.com

This paper focuses on improving YamCha’s performance with conjunctions and preposition characters. Let us take the
/AlwAw/ (‘and’) as a case example. The /AlwAw/ (‘and") is the most commonly used coordinating conjunction in Arabic and a
common source of morphological ambiguity. According to a manual evaluation of a random sample of 100k Arabic tokens from
newswire articles [4], it has been found that /AlwAw/ (‘and’) alone accounts for approximately 8.6% of any written text (i.e. every

100 words include s and 8.6 /wAw/ (‘and”)).

3 RDIPOS TAGGER TOOL (RDI-POST) [5]

RDI’s NLP core engine can carry out Arabic morphological analysis, Arabic POS tagging, and Arabic Lexical Semantic
Analysis. Arabic POS tagging is a fundamental linguistic analysis process where POS tags that convey the basic context-free
syntactic features of input surface text words are extracted. POS tags are the most essential input features for all kinds of natural
language computational syntax parsers which are a step towards language understanding and machine translation as well. Based on
that definition the position of POS tagging is obviously a middle sub layer between the two fundamental lexical and syntactic ones
on the NLP ladder

Appendix (1) below shows a sample of Arabic POS tags set along with the meaning of each tag verbalized in both English
and Arabic. The RDI-POST tagger tool tags each word with its appropriate features tag as shown in the below example.

Example:

The input sentence is 2 siall s>

The output:

AL NullPrefix Noun Nounlnfinit Femin Single }2 s:sl{Definit Noun NullSuffix}

4 STEPS TO IMPROVE YAMCHA PERFORMANCE:
A. Collecting the data: Steps has been mentioned in details in [1].

B. YamcCha tool features:
1) Moderately high performance chunker based on Support Vector Machines (SVM).
2) Independent from the given task, training/testing with any data which can be seen as a "generic" text chunking task.
3) Use PKE/ PKI, which make the classification (chunking) speed faster than the original SVMs.
4) Can redefine feature sets (window-size), parsing-direction (forward/backward) and algorithms of multi-class problem (pair
wise/one vs. rest).
5) Practical chunking time (1 or 2 sec. /sentence. it highly depends on the task).
6) Can perform partial chunking.

C. Input
The input of YamCha tool is two parameters. The first is the model, this model represent the training data. In this case use Yassine
Benajiba Model. The second input is the data file in roman format.

D. The Proposed steps

RPOST
Arabic data—*|

POS tagged data

-

| Preprocessing phase |

Data line by line J.

| AR eanverter Program |

Omts in Roman charscters l

| Yamcha Tool |

Mamed Entity tagged data in Roman

| R-A converter Pragram |
,

Mamed Entity tagged Data in Arabic

E. Filtering Data
1) We use a java program to change RPOST output format to YamCha format which need Roman letters

The RPOST output produces in the form:
{cima auil}ad) { cibe Gia) of e pul }man

2) Then we need to split conjunction and the following word in different lines to be accepted in YamCha tool as shown
below:

3) We use a java language program to remove the arches and put each word in a different line.

F. Character Converter (Convert from Arabic to roman):
YamCha can only process Roman characters, so we’ve implemented a java program to convert Arabic characters to roman
characters. Appendix (2) presents a table that shows each Arabic character with its corresponding Roman one.

1) Program input file format: (Plain Arabic text)

Slans Laalall 84 sell A geae Fin 50 o sially ual I3) 55 8 Jspase Hdaa
2) Program output file format:

The Roman | The Arabic
transliteration word
(file output)

>fAd e

mSdr Jlas
ms&wl Jsme
fy o
wzArp [BIBY)
AldAxlyp Aalal
Ams ™
bAIEvwr o5y
ElY e
50 50
Hvp s
mHhwlp U s
Alhwyp 4 ell
Fy %
AIEASmMp daalall
bgdAd. e,

G. Test file formats [2]:

Generally speaking, training and test files must consist of multiple tokens. In addition, a token consists of multiple (but fixed-
numbers) columns. The definition of tokens depends on tasks; however, in most of typical cases, they simply correspond to words.
Each token must be represented in one line, with the columns separated by white space (spaces or tabular characters). A sequence of
token becomes a sentence. To identify the boundary between sentences, just put an empty line (or just put 'EOS'). However the
number of columns must be fixed through all tokens. Furthermore, there are some kinds of "semantics" among the columns. For
example, 1st column is ‘word’; second column is 'POS tag' third column is 'sub-category of POS' and so on.

Symbols of the output:

O O O O O

B-ORG: represents the beginning of an organization’s name

I-ORG: represents the middle Intermediate of an organization’s name
B-PER: represents beginning of a person’s name

I-PER: represents the middle of a person’s name

B-LOC: represents beginning of a location’s name

5 A CASE STUDY APPLYING PAPER APPROACH YAMCHA TOOL
A. The input:

As mentioned before the input represents each word in a single line and the file must be in roman format (output of the program in
section 4.2).

B. The output:

The word The tagging symbol
>fAd 0
MSdr 0

ms&wl 0]
fy 0
wzArp B-ORG

AldAxlyp I-ORG
Ams 0

@)

BAIEvwr

@)
ElY
0]
50
0]
Hvp
0]
MHhwlp
@)
Alhwyp
@)
Fy
@)
AIEASmMp
bgdAd. B-LOC

C. Support Vector Machines (SVM) and Tagging scheme in the IOB format[4]

The NER task in Arabic is relatively different from performing the task in English due to the inherent characteristic linguistic
differences of Arabic, most notably, the lack of a direct signal such as capitalization in Arabic orthography to mark a named entity.
This tool solves the problem of NER for Arabic. We adopt a discriminative approach to the NER problem. SVMs have yielded the
best results when compared to other machine learning approaches to the problem. SVMs are robust to noise in the data and they

have powerful generalization ability especially in the presence of a large number of features. Moreover, SVMs have been used
successfully in many NLP areas of research in general, and for the NER task in particular YamCha is one of them that converts the
NER task to a chunking task using the Inside-Outside-Beginning (IOB) tagging scheme.

Tagging scheme in the 10B format:

Arabic Roman English Trans. Tag
s Wiy And in 0
Sy Byrwt Beirut B-LOC
, , , (0]
ay wSf Described o]

258 F&Ad Fouad B-PER
5 sl Alsnywrp Siniora I-PER
) R}ys president)
g8l AlwzrA’ The ministers 0
Sl AllbnAny Lebanese 0]

D. Changing YamCha output to a user readable format

Now after the NER task to the input file using YamCha tool, we need to change the output format in a form that the user can read
and understand. This is done by what we called a format adaptor program which returns the Arabic character and put the file in
XML format.

The Input of program is the output of the program in section 4.4.

The output of program:

<AO>J e <O> <\O> Haae<O> <\O>2 <O>

<AO>wl<O> <\ORG>4ulalall 5, 5 5<ORG> <\O>& <O>

<QA0>Je<0> <\0>) fll<0> <\O>4 s420<0> <\0>432<0> <\0>50<0>

<LOC>23<LOC> <\O>4aalxll<O> <\0>8<0> <\O>4 5¢ll<O>

6 A CASE STUDY AND EVALUATION

Our hypothesis has been tested using a random sample of 2000 tokens from newswire articles (1998), among which one finds 353
instances of /AlwAw/. This sample has been manually evaluated. Tablel shows the results of using our preprocessing task by
comparing output of YamCha before and after applying our preprocessing. Improving tokenization has reduced error rate in POS
tagging by approximately 90%. Examining errors in our output, we have found that they are due to a problem related to the training
data. May be it does not cover all names.

1) A sample of the output before improving the YamCha tool’s performance:

Words Output from YamCha before
improving

) O

e B-LOC

Gl 0

=
o
O

L
oY

ladls
PRYLINON

O|O0|0|0|0(0|m|O

2) The same sample of the output after improving the YamCha’s tool performance:

Words Output of YamCha after
improvement

D) O

rae B-LOC

o 0

ol o]

o @)

L g B-LOC

) O

G O

) O

ol B-LOC

) O

KBl B-LOC

J 0

3ac Lusa O

Cpiauddl) 0
0

7 FINAL RESULTS:

Precision Recall F-measure
YamCha before our | 100 40 57
preprocessing
YamCha after our preprocessing 100 80 88

Tablel: Experimental Results

8 CONCLUSION:

We believe that incremental development where existing tools are built upon and improved is a much better approach than -
inventing tools to address limitations of existing ones. In this paper, we assumed that we can improve the performance of YamCha
by using the RDI-POST in the preprocessing phase. This can be applied to all clitics, such as coordinating conjunctions,
prepositions; pronouns, etc. Testing and the results it had been found that the preprocessing task succeeded in raising the accuracy
rate from 57% to 88%.

ACKNOWLEDGMENT
Thanks a lot to the programmers Gada Mohamed Fathi and Maii Gad who helped in writing the programs code.

REFERENCES

[1] YamCha: Yet Another Multipurpose CHunk Annotator,

http://chasen.org/~taku/software/yamcha/

[2] Dina Mostafa Mahmoud Nassif, Ghada Mohamed Fathy Mohamed, Rowan Tarek Ahd El-Hamed, Shimaa Hassan
Mohamoud, Zeinab Fayez Ahmed, “Search Engine For Emotions In Arabic”, Graduation project, Cairo university,2010.

[3] Yassine Benajiba, Mona Diab, Paolo Rosso, “ARABIC NAMED ENTITY RECOGNITION: AN SVM-BASED
APPROACH”, ,2008

[4] Alahram Newspaper: http://www.ahram.org.eg

[5] RDI POS tagger tool on:
http://www.rdi-eg.com/technologies/papers.htm ,not available for free.

http://www.ahram.org.eg/
http://www.rdi-eg.com/technologies/papers.htm

Appendix(1): A part of RDI Features Table:

Mnepnonic Meaning in Fnslish Deaning in Arabic
——
SO Staft-O - Word marker d_:..._.lﬁ— ..Ln.J_.
FPadding FPadding siring e
TNullPrefix Mull prefix l_;_a'n_._.. =~
Clomy Clomjunciive il
Confinmn Confirmation by Laam .J__.__‘u’_g;_'nl- ,.‘a'Y

Interrog

Tnterrogarion by Hamea

Features

MMullSunfix Tl snffis e TN
z Dyject oI posscss1I00] - P i
OmPossPro PG el et _promds
MMARF 1% Arabic syntractic case EogAa
MANSS 20 Arabic syntactic case et gmzo
Diefinit Definitive article par rge e LR

Appendix (2) : Arabic-Roman characters table.

e T
o
Vo=
R
1 =

= ¥
LI -

— b
I =

<t

[

= 1

- H

T x
a 4

Eo L leerbprdd oo o

AR ok

£]

o

Q

Jd o1

& m
Ly
= h
a W
s b
[
Z F
= W
= K
— a
2 u
- i

UNL™*3: The Gateway to a Fully Operational UNL System

Sameh Alansary™, Magdy Nagi™2, Noha Adly3
TBibliotheca Alexandrina, P.O. Box 138 EI Shatby, Alexandria 21526, Egypt.

* Department of Phonetics and Linguistics, Faculty of Arts, University of Alexandria
El Shatby, Alexandria, Egypt

lsameh.alansary@bibalex.org

“"Computer and Engineering Department, Faculty of Engineering, University of Alexandria, Alexandria, Egypt

magdy.nagi@bibalex.org
Snoha.adly@bibalex.org

Abstract— In this paper we present the UNL*® program; the latest phase of development in the UNL project. UNL*® has been
introduced in order to cure the limitations and problems encountered in the 15-year life of UNL. UNL*3 proposes new components to
the system in addition to introducing enhancements and improvements to the existing ones. Enhancements encompass the general
linguistic infrastructure of the system as well as the specific technicalities of its components. The paper, consequently, compares and
contrasts the earlier UNL specifications to the ones proposed by UNL*3 highlighting how they would drastically improve the
adequacy and efficiency of the system. More importantly, by putting its propositions into effect, UNL* would finally render the UNL
system fully operational by the end of 2011, ending by that a long phase of experimentation and research, and starting a new phase of
development and evolvement. UNL*2 is designed and implemented by the UNDL foundation in Geneva, Switzerland and Bibliotheca
Alexandrina in Alexandria, Egypt.

1 INTRODUCTION

The UNL project was launched in 1996 in the Institute of Advanced Studies in the United Nations University (UNU), Tokyo,
Japan under the auspices of the UNESCO. In January 2001, the United Nations University set up an autonomous non- profit
organization in Geneva, Switzerland to be responsible for the development and management of the UNL Program; the
Universal Networking Digital Language (UNDL) Foundation?. 15 different languages joined the project, with each responsible
for the development and maintenance of the components of its respective language module.

Since 1996, the UNL program has passed through many phases of development and enhancement and crossed
important milestones (More information about the earlier system can be found in [3]; [5]; [7] and [12]. However, after 15 years
of development, and after the massive project of converting parts of the Encyclopedia of Life Support Systems? into UNL [9]
[14], many problems have surfaced and several questions about the construction and components of the UNL system have been
raised.

Solutions to these problems as well as other enhancements are proposed in a comprehensive renovation project called
the UNL*3. UNL™® does not only offer improvements to the existing infrastructure, it changes some of the core fundamentals of
UNL. The change encompasses the linguistic components (Universal Words, Relations, Attributes and Features) as well as the
non-linguistic ones (tools, engines and applications). Also, the structure of the linguistic resources (grammars, dictionaries,
corpora..etc.) that handle these components has been drastically changed.

This paper examines the UNL*® program; its ideology and architecture, and the changes and innovations it introduced
to the UNL system. The scope of the program is divided into five main areas; and, thus, the paper is arranged in accordance
with this division, but first, section 2 briefly introduces the UNL*® program and these five areas. Then, section 3 of the paper
tackles the first area; that of UNL philosophy and specifications, emphasizing the changes UNL*® entailed in the linguistic
components of the UNL system, starting with Universal Words (UWSs), then, Relations and Attributes, and ending by discussing
the Universal Tagset proposed in UNL*3. Section 4 discusses the change within the second area; the linguistic resources
employed by the system; the dictionaries, analysis and generation grammars, ontologies and corpora, all of which have
witnessed drastic change in their ideology, structure and components and ends by introducing the new environment used to
produce all of these resources; the UNL?®™\™, Section 5 approaches the third area; the engines and tools employed in analyzing
and generating natural language. This section also presents the wrapper environment used to produce, develop and utilize these

1 More information can be found at_http://www.undl.org
2 http://www.eolss.net/

mailto:sameh.alansary@bibalex.org
mailto:3noha.adly@bibalex.org
http://www.undl.org/
http://www.eolss.net/

tools as well as the applications that are to be based on UNL technology; the UNL®". In section 6, the paper explores the fourth
area; UNL applications. UNL-based applications include the machine translation system LILY, the digital library of texts, TUT,
and the knowledge extraction system, KEYS. Section 7 of the paper discusses the fifth area of interest in the UNL*® program,
the UNL strategy for promoting the UNL system; the UNL world. Finally, having explored the five areas of change, section 8
briefly examines some of the projects that are being carried out according to the specifications of UNL™*3,

2 UNL™*

The UNL™ is a three-year (2009-2011) plan to fulfill the initial goals of the program that previous versions failed to completely
achieve and to make the UNL infrastructure fully operational by the 15™ anniversary of UNL to be celebrated in 2011, UNL*®
should be able to advance the long-term mission of the UNDL foundation as mandated by the United Nations: to provide the
UNL system world-wide for the benefit of all peoples.

The main enhancements brought about by the UNL*® program can be summarized in making the UNL system more
linguistic than pure engineering. As will be explained later in the paper, the older structure of the system’s components -
especially the tools (analysis and generation engines) and the language resources (dictionaries, grammars, etc.)- was too
inflexible to accommodate the linguistic complexity of natural languages. Numerous linguistic phenomena had no place to fit in
this rigid structure, and, therefore, many problems were left unsolved.

Thus, the first and most significant step in resolving such issues was the provision of the set of tools employed in the
system as open-source software. Before, the source codes of the component engines and tools were protected by copyrights and,
therefore, were not open for adjustments to suit the individual requirements of different languages. Hence, this new
improvement allows developers to make the best use of the available tools in a way that facilitates the processing of the
particular language they are working on. Similarly, the language resources (lexicons, grammars and corpora) are now also
available for exporting and importing for free at the UNL*"™ (discussed in section 4 E), a fact that allows the different UNL
developers to share their resources and experience for the benefit of the UNL system as a whole, and, thus, facilitates the
integration of new languages into the system.

A different improvement that has to do with the promotion of the UNL system is encouraging the participation of the
general public in the development the system. The UNL"K is introduced, it is a collaborative website for providing and
exchanging information and experience related to the UNL system. It contains all the specifications and documentation that new
participants need to know about the UNL system. Browsing the UNLwiki does not require any registration or certification; it is
freely accessible at (http://www.unlweb.net/wiki/index.php/Main_Page). In addition to the UNL"K, the VALERIE (VirtuAl
LEaRnIng Environment) is also introduced to teach those wishing to be part of the project how to deal with natural language
phenomena -especially in connection with the Universal Networking Language- in order to be actual certified developers and
contribute in the construction of the system. VALERIE is free and open for the general public at
(http://www.unlweb.net/valerie/).

The UNL™® program is divided into five main scopes of interest, each of them covering a specific area of projects. They are:

o UNL Philosophy and Specifications: It is devoted to defining the formalisms of the linguistic components used by the
UNL system such as the syntax of Universal Words; the structure of UNL documents and UNL sentences; and the set of
Relations and Attributes...etc.

o UNL Resources: These are the set of linguistic and knowledge resources necessary for the analysis of natural language
texts in order to form the UNL documents, and the generation of natural language out of UNL documents. The UNL
system comprises four different types of language resources: lexica, grammars, ontologies and corpora.

e UNL Engines and Tools: These are the back-end software developed to perform UNL-based tasks such as analysis,
generation, knowledge extraction, etc. and to assist linguists in producing UNL resources.

o UNL Applications: These are the front-end software based on UNL technology. They are designed to allow end users to
accomplish natural language processing tasks, such as translating, summarizing, rephrasing, retrieving or extracting
information.

e UNL World: This category involves the overall strategy for disseminating the knowledge on UNL, and for UNL
promotion.

Figure 1 shows the general architecture of the UNL system according to the new specifications of UNL*3, and the stages and
tools involved in transforming a natural language text into a UNL document, and then into a natural language text in a different
language. Each of the components shown will be subsequently discussed in the paper.

http://www.unlweb.net/wiki/index.php/Main_Page
http://www.unlweb.net/valerie/

Natural
language
text

UNL
Document

Enumerative
Dictionary

Natural
language
text

Figure 1: The overall architecture and components of the UNL system according to the specifications of UNL*®

3 UNL PHILOSOPHY AND SPECIFICATIONS

This area of the UNL system has been subject to drastic change at the hands of the UNL*® plan. The change encompassed the
logic and structure of the Universal Words, and the set of Relations and Attributes. Innovations, on the other hand, include
introducing a universal tagset of the linguistic features to be utilized in the language resources of the system.

A. Universal Words (UWSs)

Universal Words, or UWSs, constitute the vocabulary of the Universal Networking Language. They are labels that stand for
abstract language-independent units of knowledge (concepts) belonging to any of the open lexical categories (nouns, verbs,
adjectives and adverbs). However, unlike natural language vocabulary, UWs should be free from any form of ambiguity, and -
as implied by their nomenclature- universal and not biased to any particular language or culture. And for processing purposes,
UWs should also be as efficient as possible.

Unfortunately, these criteria were not sufficiently fulfilled in the previous versions of UNL. In earlier versions, UWs
were composed of an English headword written in Latin characters, and a constraint list that indicates the intended meaning of
the headword, also written using English words. On the other hand, the new representation of UWs as specified in the UNL*3
program is a numerical 1D that stands for the exact sense of the concept. Figure 2 shows the old and new UW representations of
the concept “a writing implement with a point from which ink flows”. In the figure “poor” is the headword while “(aoj>thing)”
is the constraint list.

Having litls monsy or f=w posssssions (adjective)

poor{zoj=thing) 302022933

Figure 2: The older UW representation of the above concept (left) and the new UW representation (right)

Clearly, the older representation did not fulfill the unambiguity criteria; for example, it could not differentiate between
"poor" the adjective describing lack of money or wealth, "poor" meaning miserable or sad, or even “poor” meaning
unsatisfactory since all would have the same adjectival representation “poor(aoj>thing)”. As unambiguity is the main
characteristic of UWs that sets the Universal Networking Language apart from natural languages, UNL* has set out to confront
this problem with the help of the English WordNet 3.0. The WordNet is a large lexical database of English developed at the
Cognitive Science Laboratory of Princeton University, it is widely used in the fields of computational linguistics and natural
language processing [16]. In the WordNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct universal concept and each assigned a distinct ID number, a gloss, examples and a
frequency number. The new representation, thus, has used these synsets, glosses and, more importantly, 1Ds to differentiate
between even the slightest nuances in meaning. Thus, “poor” with the three previous meanings would be represented by the
following three IDs in table 1, respectively.

TABLE |
Two WORDNET IDS REPRESENTING THREE DIFFERENT SENSES OF THE WORD "POOR"

ID Number: [Synset: Gloss: Examples: Frequency: Part of Speech:
302022953 |Poor having little "deplored the gap 12 ADJ
money or few |between rich and poor
possessions countries", "the

proverbial poor artist
living in a garret"

301050890 |hapless, miserable, |deserving or "piteous appeals for 24 ADJ
misfortunate, inciting pity help", "pitiable
pathetic, piteous, homeless children", "a
pitiable, pitiful, pitiful fate", "Oh, you
poor, wretched poor thing", "his poor

distorted limbs", "a
wretched life"
301128719 |Poor unsatisfactory ["a poor light for 0 ADJ

reading", "poor

morale", "expectations
were poor"

As for Universality, in the older phase of UNL development, UWs were represented in the form of an English
headword modified by an English constraint list that restricted its meaning to a particular universal sense. Evidently, this
representation with its use of English words to stand for a universal concept severely undermined the supposed universality of
UWs and, consequently, of UNL. Luckily, UNL*® has put an end to this issue by employing a representation made entirely of
numbers, and, hence, free from any bias to one language or another. Using such a representation, the concept referring to “solid-
hoofed herbivorous quadruped domesticated since prehistoric times” that would have been previously defined using English
words as “horse(icl>mammal)” is now represented as “102374451”

We then come to the third criteria of efficiency. The older UW representation suffered from many redundancies that
rendered it inadequate. One form of redundancy was due to the fact that synonymous words had to be defined independently.
For example, the words “execution”, “carrying out” and “implementation” were represented by three distinct UWs, although, in
fact, they share a single abstract conceptual sense equivalent to the gloss “the act of accomplishing some aim or executing some
order”. In UNL*, this redundancy has been eliminated since -as mentioned earlier- each 1D extracted from the WordNet is
assigned to a set of Headwords (a synset) that this ID as well as the gloss and examples apply to. Hence, the three UWs that

were previously used to define this concept are now unified into a single UW as shown in figure 3.

the act of accomplishmg some 2im or executmg some order
Synset sxecution, mplementztion, carrying out

mplementztion (1cl=action)

101127379

carrying out (icl=action)

execution(icl=action)

Figure 3: The older three UWSs previously used to represent the above concept (left) and the new combined representation (right)

Another form of redundancy also remedied by WordNet IDs was a result of the lack of consistency and conformity in
the definition of UWs. Different developers would define the same exact concept differently, and, thus, the same concept would
be listed in the dictionary multiple times. For example, the concept “a writing implement with a point from which ink flows”
referred to above could have been defined using any of the equivalent UWSs shown in figure 4 (left). On the contrary, adopting
the new form of UW representation, only one ID would be applicable to this sense and, thus, such redundancy would be
eliminated.

2 writing implement with 2 pomt from which mk flows

penficl=functionzl thing) \

302022933

penficl=writmg nstrumesnt)

pen(icl=stticnary)

Figure 4: The older three equivalent UWs previously used to represent the above concept (left) and the new unified representation (right)

This form of inconsistency, at any rate, can be ascribed to personal differences in opinion and the lack of clear rules for
defining UWSs. However, due to the numerous problems with the older UW representation, a more systematic kind of
inconsistency started to take shape. Some of the language centers spread around the world decided to come up with solutions to
these problems and devised new ways to define their UWSs. For instance, the Russian center proposed to resolve the ambiguity
of Universal Words by adding an extra piece of information to the constraint list. For example, it suggested defining the
adjective poor as “poor(aoj>thing, ant>rich)” to stand for the antonym of rich or the first sense in table 1. On the other hand,
following the same strategy, the second sense in table 1 would be defined as “poor(aoj>thing, syn>miserable)” which is the
synonym of “miserable”. The proposition of the Russian center was declined, however, it warned against the looming
emergence of UNL dialects. Therefore, it was crucial that UNL*® formulate an approach for defining UWs that is both efficient
to suppress any redundancies, and consistent to guarantee that it be easily followed by the participant individuals and
institutions; hence was the adoption of WordNet-based Universal Words.

More information about the older representation of Universal Words is found in [2] and at
(http://www.undl.org/publications/UW%20and%20UNLKB.htm). However, [4], [6], [10] and [15] discuss using the WordNet
in developing UNL lexicons. Further explanation of the new UW format adopted in UNL* can be reached at
(http://www.unlweb.net/wiki/index.php/Universal_Words).

B. Relations

Relations are the semantic tags used to determine the kind of relationship between two-and only two- UWs in the UNL graph.
They may represent semantic cases or thematic roles such as agent, object, instrument, etc. Although UNL Relations might
occasionally coincide with syntactic relations, UNL Relations -as they were first invented in 1996- are never meant to denote
syntactic or grammatical categories; they rather stand for the abstract conceptual one-way link between the words in the source
natural language sentence and, consequently, the UWSs in the UNL graph. This, of course, has made the choice of the
appropriate Relations one of the greatest challenges in constructing semantic networks in case of analysis, and generating
intelligible sentences out of a semantic network in case of generation.

The set of Relations to be used in UNL grammars is defined in the UNL specifications and is not open to frequent
additions. It did not undergo as drastic a change as the UWs; UNL*® mainly adopted the set of Relations defined in the latest
version of UNL specifications [2]. However, the UNL*? program has organized Relations into a hierarchy where lower nodes
inherit the properties of upper ones. The hierarchy includes four general categories: participant (ptp) for the necessary
arguments of verbal concepts such as subjects and complements; attribute (aoj) for the necessary arguments of nominal
predicates such as subjects and complements; specifier (mod), for general specifiers; and adjunct (adj), for general adjuncts,
including time, location and manner. Figure 5 shows the hierarchy of adjunct relations as organized in UNL*3 specifications.

http://www.undl.org/publications/UW%20and%20UNLKB.htm
http://www.unlweb.net/wiki/index.php/Universal_Words

= &5 adj (adjunct)
[and {conjunction)
[or (disjunction)
= &3 ple (location)
[elf (initial place)
[} plt (final place, direction, goal)
[wia (intermediate place, path)
[} =en (logical place)
E &5 tim (time)
[tmf (initial time)
[} tmt (final time)
[dur (duration)
[} coo (co-occurrence)
[} =eq (seguence)
= &5 man (manner)
[con (condition)
[met {(method)
[pur (purpose)
[} src (initial state)

inal state)

s for comparison)

[per (proportion, rate, distribution)
Figure 5: The hierarchy of adjunct (adj) Relations as set in the UNL*® specifications

Another change brought about by UNL™ to the set of Relations is bringing back into use some Relations that had been
suspended in older specifications. For example, the Relation “DUR” for “duration” has been re-employed as it proved essential
in sentences such as “He wanted a rope to tie the horse during the day” where the two concepts [tie] and [day] must be linked
via a Relation that denotes the period of time in which the main entry existed or persisted. On the other hand, UNL*® has
dispensed with some Relations that proved redundant such as the relation “PPL” for Physical Place which was found to be
useless in the presence of the relations “PLC” for “place” and “SCN” for “scene”, where the first is used for physical places
and the second for immaterial places. The specifications of 2005 still apply in UNL*® [2], however, more explanation of
Relations within the framework of UNL*® can be found at (http://www.unlweb.net/wiki/index.php/Relation).

C. Attributes

Attributes are additional tags that encode the contextual and/or subjective knowledge present in the original sentence into the
UNL graph. They are used to further modify the semantic network and add information that is not expressed via UWs or
Relations. The main drawback in the older set of Attributes was its insufficiency to represent all the information conveyed in the
natural language sentence. Hence, the UNL*® program has augmented the set of Attributes and classified them into three
different categories:
e Attributes conveying information on the role of the node in the UNL graph such as the Attribute “@entry” that
indicates the main node in a UNL graph;
e Attributes conveying information on the original co-text of the node it modifies such as the Attribute “@parenthesis”
that indicates that the node was originally put between parentheses; and
e Attributes conveying information on the (external) context of the utterance such as the attribute “@past” that indicates
that the node was used in a time before the time of the utterance.

The set of Attributes is defined in the UNL tagset and is not open to further additions. Similar to UWSs, Attributes have
undergone rigorous changes, both in quality and quantity. Concerning quantity, the number of Attributes has quadrupled as
UNL™* tried to remedy the deficiencies in earlier UNL specifications. UNL*® introduced some indispensible Attributes, such as
those denoting gender. Before, such a crucial piece of information was lost in the conversion of natural language into UNL. For
example, the UNL semantic network for the French phrase “Mémoires d'un médecin” “Diaries of a physician” did not indicate
whether the concept [médecin] is masculine or feminine although in the French original it is clearly masculine (preceded by the
French masculine indefinite article “un”). Thus, on trying to generate the Arabic equivalent of such a network, it was not clear
whether it should be “cah <l jS3e” or “Aanda <l SAe7,

In addition to those of Gender, many other categories of Attributes such as those denoting animacy (@person and
@thing), degree (@more, @equal, @least, etc.), figures of speech (@ellipsis, @metonymy, @euphemism, etc.) and many
others that are crucial in representing the full meaning of natural language utterances have also been introduced in the UNL*3
program. The uppermost categories (old and new) in the Attribute hierarchy are shown in figure 6.

http://www.unlweb.net/wiki/index.php/Relation

g Attributes
[C] animacy
aspect

degree

H H

figure of speech

=

gender

lexical category

B H

modality

=

person

polarity

=

quantification

register

=

social deixis

B ®H

specification

time

[+
gocoooooococopopopoo

B ®H

voice

Figure 6: The uppermost categories of Attributes as specified in the UNL* tagset

In addition to these novel categories, UNL*® has also augmented the older categories with new Attributes. For example,
the attributes “@inceptive”, “@prospective” have been added to the category of Aspect and the Attributes “@paucal” and
“@multal” have been added to the category of Number. Moreover, some of the existing categories have been divided into a
finer classification such as the category of Degree which is now divided into the subcategories: negative, positive, comparative
and superlative as shown in figure 7.

E &3 degree
Bl &3 negative
[@not: negative
[) @almost: approximative
Bl =3 positive

._'l @ agai\ iterative

Bl &3 superlative
) @most: superlative of superiority
[) @least: superlative of inferiority

Figure 7: The finer classification of the Attribute category of degree in UNL*

On the other hand, the quality of older Attributes have been enhanced by classifying the set of Attributes into the
taxonomic hierarchy shown in figures 6 and 7 so that lower values may assume upper ones.

Another reason behind this substantial increase in the set of Attributes is that many natural language words that were
previously treated as distinct concepts are now reconsidered. For instance, all closed classes of lexical items (demonstratives,
adposition, conjunctions, pronouns, etc.) are now represented as Attributes rather than concepts since, in reality, they do not
identify an abstract universal concept, they simply link between concepts or refer to ones previously identified. Demonstratives
are now represented via the Attributes “@proximal”, “@medial”, etc. while adpositions are represented by Attributes such as
“@under”, “@along”, “@after”, etc. Similarly, the Attributes “@before”, “@and”, “@since” and many others represent the set
of conjunctions. As for pronouns, they are denoted by the Attributes “@1” for first person, “@2” for second person or “@3” for
third person while their gender is denoted by the Attributes “@male” or “@female” and their number is denoted by the
Attributes “@singular”, “@dual”, “@plural”, etc. For example, the pronoun “they” is represented by the attributes “@3”,
“@male” and “@plural”.

Other words that were previously identified as concepts include the words “each other” in a sentence like “They
comforted each other” which is now denoted by the Attributes “@each” and “@other”. Another example is the interrogative
word “which” in the question “which book are you reading?”, this too is signified by the attribute “@wh”.

More examination of the set of Attributes in older UNL versions is available at the UNL Specifications 2005 [2] while
the UNL™® set of Attributes and their uses can be found at (http://www.unlweb.net/wiki/index.php/Attribute).

D. Tagset

Besides UWSs, Relations and Attributes, UNL-based dictionaries and grammars also require a metalanguage capable of
accurately describing the linguistic behavior of words and structures. This metalanguage is composed of a diverse set of
linguistic attributes and values that are either inserted in the dictionary along with the entries to indicate a word’s part of speech,
number, valency, etc.; or used in analysis and generation rules to indicate a sentence’s agreement, voice, distribution, etc.
However, the required linguistic features and their values may vary drastically from one language to another depending on the
nature and the structure of the language under consideration and, in fact, they did in earlier versions of UNL. There was no
fixed set of linguistic features, or values; each language center created its own list of features and values, and chose how to use
it in defining their UWs and building their grammars, a fact that hampered the exchange of language resources among the
participant language centers, and undermined their understadability.

Hence, in order to better standardize the language resources inside the UNL framework (dictionaries, grammars,
corpora, etc.), UNL™® laid down a sole universal tagset capable of describing the pervasive morphological, semantic, syntactic
and even pragmatic phenomena, as well as the specific ones peculiar to only a handful of languages. Each language center can,
then, choose the set of values applicable to the phenomena the language manifests. For instance, the UNL tagset covers all
possible values of countability; singular, dual, trial and quadral, paucal, multal, plural, singulare tantum, plurale tantum and
invariant although the value of “dual”, for example, would never be used in languages such as English or French; however, it
will definitely be used in the Arabic language.

The UNL™* tagset was designed in order to be as comprehensive, few, short and mnemonic as possible in order to
ensure comprehensibility and consistency. It standardizes both: the tags of the linguistic attributes, and the tags of the values
they may assume. For example, UNL*® postulates that the linguistic attribute of “number” must be signified by the tag “NUM”
and that its value may only be represented by one of the tags shown in figure 8. Figure 8 also shows that the set of linguistic
attributes and their values are arranged in a taxonomic hierarchy so that upper level values could be inferred from lower ones.

_é Number (NUM)
B £3 singular (SNG): cne of a class
[singulare tantum (SNGT): used only in singular
E &5 plural (PLR): more than one of a class
[dual (DUA): two of a class
O trial (T class
) quadrual {)i four of a class
[) paucal (PAU): few of a class
) multal (MUL): many of a class
[plurale tantum (PLRT): used only in plural
[) invariant (INV): a single form used both in singular and plural

Figure 8: The linguistic attribute of ""number" and its possible values as set by the UNL*® unified tagset

Such standardization is crucial in ensuring full translatability across the languages participant in the UNL program;
generation grammars can consult the universal tagset whenever they come across a value that does not exist in their native
language. In addition, standardizing the set of tags across the UNL community facilitates understanding and exchanging the
available language resources of different languages among the various UNL language centers. Figure 9 shows the linguistic
attributes (uppermost level) in the tagset hierarchy introduced in UNL*S. The UNL*® tagset can be reached at
(http://www.unlweb.net/wiki/index.php/Tagset).

4 UNL RESOURCES

Not only have the linguistic components employed in the UNL infrastructure been subject to change, the structure of the
language resources that organize and employ such components have also been the subject of dramatic improvements on the
hands of UNL™3. Language resources are required to perform the various UNL-based tasks such as translation, summarization,
knowledge extraction, etc. They include dictionaries, analysis and generation grammars, ontologies and corpora.

A. Dictionaries

UNL-NL and NL-UNL dictionaries are bilingual dictionaries where lexical items of a given natural language are matched with
their corresponding abstract language-independent Universal Words (UWSs). They are the cornerstone of any UNL-based
application as they contain all the information required to perform successful analysis (UNLization) and generation (NLization)
processes. Unfortunately, in the older UNL version, dictionaries suffered from numerous problems that prevented it from
playing its role in fulfilling the ultimate goals of UNL. The problems were mainly related to the structure of the dictionaries and
the way entries are stored in them. Therefore, it was only natural that UNL*® introduce some drastic changes to the structure of
dictionaries, all of which are meant to improve their efficacy and potential.

Probably the most significant change introduced by UNL*® was disuniting the generation (UNL-NL) and analysis (NL-
UNL) dictionaries. Although at first sight this modification might seem to reduce efficiency rather than boost it, in reality, it is a
major improvement. This disunion came as a result of changing the way natural language headwords are stored in the
generation dictionary, which is another modification brought about by UNL*. Following the specifications of UNL™,
generation dictionaries should (i.e. UNL-NL) only store a single base form for the lexical item. This is because UNL*
specifications now allow dictionary developers to write the linguistic rules capable of generating all the possible word forms of
the stored base form along with each entry in the generation dictionary. These rules can be affixation rules (A-rules) used for
prefixation, suffixation and infixation, or linear rules (L-rules) used for applying transformations over ordered sequences of
isolated words such as generating spelling changes (contraction, elision, assimilation, etc.), the use of capital letters and
punctuation marks.

However, this strategy is not applicable to the analysis dictionaries as it would be quite time-consuming to predict the
base form of the incoming source language word forms. Hence, analysis dictionaries must still independently store the stems
representing all the word forms of a lexical item, thus, the analysis and generation dictionaries had to be disunited. This
composite amendment has improved the dictionary efficiency by eliminating the redundancy of storing the same concept in
several forms when they are not needed; i.e. in generation, and, thus, has speeded up the processing time in both the analysis
and generation processes.

In addition to inflectional rules, UNL*® has also allowed the insertion of subcategorization rules along with the entries
in generation dictionaries. Subcategorization rules describe the syntactic behavior of the word and are responsible for
determining the number and types of the necessary syntactic arguments (specifiers, complements and adjuncts) that co-occur
with the entry in order to form a multi-word expression or a phrase; i.e., its maximal projection. The verb "give", for instance,
generally requires at least one specifier (the subject) and two objects (a direct and an indirect), even if in several contexts they
are not explicit.

Generally, both Analysis and Generation dictionaries follow the format shown in figure 9.

[NLw] {ID} “Uw"” (ATTR,...) <FLG, FRE, PRI >;

Figure 9: The general format of generation and analysis dictionary entries

Where:
NLW is the headword of the natural language lexical item.
ID is the unique identifier of the entry.
UW is the abstract concept representing the natural language word.
ATTR is the list of linguistic features of the NLW; these are set according to the UNL tagset. It also includes the
affixation, linear and subcategorization rules in the generation dictionary.
FLG is the three-character language code according to 1SO 639-3°,
FRE is the frequency of NLW in natural texts. It is used in natural language analysis (NL-UNL).
PRI is the priority of the NLW. It is used in natural language generation (UNL-NL).
COMMENT is any comment necessary to clarify the mapping between NL and UNL entries.

The format of dictionary entries is not different from the one used in earlier UNL versions, however, the structure of
the NLW, UW, ATTR components has witnessed some change. The UW change has been discussed before in section 3A, and
the change in ATTR component is the integration of affixation, linear and subcategorization rules in the generation dictionary
discussed earlier in this section. The remaining change is the one involving the NLW. The change has to do with the types of

3 http://en.wikipedia.org/wiki/List of I1SO 639-2 codes

http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

headwords (NLWSs) that can be stored in the dictionary. Before, a natural language entry could either be stored in the form of a
simple headword such as “book”, a multiword headword such “The United States of America”, a compound headword such as
“socio-economic or even a simple morpheme. Although there were several options, they all entailed serious limitations; all of
the previous forms were treated as a single unit and infixation was by all means impossible. Therefore, UNL*® introduced two
new forms of NLWSs; namely, complex structures and regular expressions.

Complex structures are introduced in order to deal with discontinuous multiword lexical items such as “take into
account”. Using a complex structure, the natural language NLW can be represented as a complex structure made of several sub-
NLWs, each sub NLW can have a different part of speech and a distinct set of linguistic attributes. Thus, in the previous
example, [[take] [into][account]] is the NLW while [take], [into] and [account] are the sub-NLWs. This new form allows for the
very crucial option of inserting a lexical element between the constituents of a discontinuous lexical item to generate, for
example, “taking the previous into account”. Previously, dictionary developers did not have that option, they could either
consider the discontinuous concept a compound, in which case it would be treated as single unit and inserting any lexical unit
between its constituents would be unfeasible, or only choose a part of the concept to be the NLW and try to attach the other part
to it by means of some features and attributes; both options were quite inefficient and impractical. The general format of
complex structures is shown in figure 10:

[[sub-NLW][sub-NLW].._[sub-NLW]] {ID} “UW" (ATTR .. #01(ATTR, ..), #02(ATTR,
). ...y <FLG . FRE , PRI > COMMENTS
Figure 10: The general format for complex structure NLWs

Where:
[sub-NLW] is a part of the NLW,;
#01(ATTR, ...) are the specific features for the first sub-NLW to appear in the NLW,;
#02(ATTR, ...) are the specific features for the second sub-NLW to appear in the NLW; and so on.
The features outside the sub-NLW feature lists are shared by all sub-NLWs.

The second type of NLW introduced by UNL™*® is that of Regular Expressions. Both the NLW and the UW fields may
be represented in the form of regular expressions. In both cases, regular expressions must be included between a pair of "/* and
should comply with the PCRE — Perl Compatible Regular Expressions®. In the field of NLW, Regular expressions are useful in
eliminating redundancy. For example, rather than including two entries in the dictionaries to represent “color” and “colour”
which are different spelling conventions for the exact same concept, the NLW can be represented as the regular expression
[/colo(u)?r/] which means that the NLW is either equal to the string "color” or "colour". Similarly, according to the UNL™*®
specifications for regular expressions, the regular expression [/(\d){4}/] means that the NLW is any sequence of four digits
(quite useful in indicating years).Figure 11 shows the genera format for a dictionary entry in which the NLW is a regular
expression.

[[<RegEx>/“<UW=" (<FEATURE LIST>) <FLG,FRE.PRI>=]

Figure 11: The general format of regular expressions in the NLW field

In the similar manner, UWs can be represented as regular expressions; for example, the regular expression
"/()+\(iof\>city\)/" means that the UW is any one ending by the string "(iof>city)". This is especially useful in the generation
process. The general forma for a dictionary entry in which the UW is a regular expression is shown in figure 12.

[ENLW>] “/<RegEx >/ (<FEATURE LIST>) <FLG,FRE,PRI>]

Figure 12: The general format of regular expressions in the UW field

Further discussion of the structure of dictionaries in older UNL versions is found in [2] while detailed examination of
the dictionary specifications according to the UNL* program is found at
(http://www.unlweb.net/wiki/index.php/Dictionary Specs).

B. Analysis and Generation Grammars

UNL grammars are the set of rules responsible for analyzing or composing natural language sentences and ensuring their well-
formedness. They govern the composition of sentences, phrases and words in any given natural language. They are generally

4 http://www.pcre.org/

http://www.unlweb.net/wiki/index.php/Dictionary_Specs

unidirectional; from natural language into UNL (UNLization or analysis grammars) and from UNL into natural language
(NLization or generation grammars).

The UNL™® program did not only change the components and structure of the UNL grammars, it drastically altered the
ideology and linguistic infrastructure on which these grammars are based. As mentioned earlier, the design of the grammars in
previous UNL versions was mainly engineering rather than linguistic and the various linguistic phenomena were forced to fit
into that engineering design. As a result, the older UNL grammars did not employ a particular linguistic theory in defining their
components and devising their processes. Thus, in order to maintain consistency and comprehensibility across the grammars of
all languages, UNL*® chose as a linguistic foundation an internationally-acknowledged linguistic theory; namely, the X-bar
theory [8] and [11].

Another drastic change is in the processes of analysis and generation themselves. In the older generation of UNL, the
original grammar design was not broken up to accommodate the different categories of linguistic phenomena; instead, only one
module was provided by the system. In this module, grammar developers (computational linguists) organized their grammars in
a way that facilitates handling the language they aim to process. This, of course, undermined the modularity of the system, and
reduced the efficiency of the rules and accuracy of the output. Therefore, UNL*® opted for a more linguistic approach by
dividing the grammar into seven types of rules, each devoted for resolving a specific type of linguistic issues. Three of these
types are common between analysis and generation, the other four are more specific; two for analysis and two for generation.
These types of rules and their functions will be discussed thoroughly in the following subsections 1 and 2 of this section.

These seven types constitute the main body of rules that are responsible for analyzing natural language into UNL
semantic networks (the UNL graph) and generating natural language out of them; i.e. transformation rules. However, another
equally important category of rules are those devoted to disambiguation. Previously, disambiguation was handled by a type of
rules called backtrack rules. Backtrack rules constituted one of the most deep-seated shortcomings in former UNL versions.
First, they were only meant to handle lexical ambiguity; they could not resolve syntactic or structural ambiguity. Second, they
were not efficient in resolving lexical ambiguity and never fully performed their task. Hence, in UNL*3, backtrack rules are
replaced by disambiguation rules. Disambiguation rules are used to restrict the applicability of transformation rules by assigning
priorities in order to prevent wrong lexical choices, to prompt best matches or to check the consistency of the graphs, trees and
lists. There are three types of disambiguation rules that can handle ambiguity on the level of semantic networks, syntactic trees
and natural language lists. These too will be discussed in more detail in the following subsections 1 and 2.

1) Analysis grammar: as mentioned earlier, in the older version of UNL, analysis rules were bundled up in a single
module. Thus, the process of analyzing natural language into semantic networks was done over a single leap. Later on, it
became clear that such a non-linguistic approach will not be sufficient in dealing with the complex phenomena manifested by
natural languages, and will not be enough to disengage the interweaving of syntax, semantics and morphology in natural
language sentences. Therefore, according to the specifications of UNL*3, analysis grammar is to be more modular. It uses five
of the seven types of transformation rules mentioned above. These five rule types represent the five stages through which input
sentences pass starting from natural language sentences passing through syntactic trees and finally forming the semantic
network. Figure 13 illustrates the older design of analysis grammar showing the one-step process. By contrast, figure 14
illustrates the more elaborate design of the analysis grammar as postulated by the UNL*® program showing the five stages of
analysis.

Natural Language sentence
¥
‘ Morphological Processing ‘
Natural Language sentence !

1 ‘ Surface structure formation ‘
Enconversion (Analysis) Rules

| Morphological rules Module ‘ Syntactic processing
¥

‘ Syntax-Semantics rules Module |

¥
Hyper semantic Network

‘ Deep structure formation ‘

Semantic processing

Semantic Network

Figure 14: The new analysis grammar design according to the specifications of UNL*?

Figure 93: The analysis grammar design in the older UNL system

The five analysis phases are:
1) LL - List Processing (List-to-List)
2) LT - Surface-Structure Formation (List-to-Tree)
3) TT - Syntactic Processing (Tree-to-Tree)
4) TN - Deep-Structure Formation (Tree-to-Network)
5) NN - Semantic Processing (Network-to-Network)

The List to List (LL) rules are responsible for preprocessing the natural language input by analyzing it morphologically
in order to match the input words with the dictionary entries and assign each stem to the concept it conveys. For example, in this
stage, the word “boys” is analyzed into “boy” + “s”. Consequently, “boy” is matched with the concept “110285313” while the
suffix “s” is deleted and replaced by the attribute “@def” which is attached to the stem of the word.

Then, List-to-Tree Rules (LT) parse the resulting list structure into a surface tree structure. This type of rules is only
employed in the analysis process. They specify the syntactic relations between the words of the input sentence to form a surface
tree structures.

Third, Tree-to-Tree Rules (TT) are used for revealing the deep structure underlying the previously formed surface
structure. In this phase, bottom-up parsing takes place to form a higher level of linguistic description. The process starts by
composing higher constituents from lower ones going from right to left. Because rules are recursive, they will pass again from
right to left to form any possible larger constituent.

Fourth, Tree- to — Network Rules (TN), these form the initial semantic representation out of the deep syntactic
structure. In this stage, each syntactic relation is replaced by an appropriate semantic relation; in other words, syntactic
arguments are mapped with their semantic counterparts [1].

Fifth, and finally, Network-to-Network Rules (NN) are used for post-editing the semantic network structure derived
from the syntactic module in order to generate the final UNL graph.

Parallel to the work of the previous transformation rules is the application of analysis disambiguation rules. When
analyzing a natural language sentence, disambiguation is needed to determine which universal concept (UW) is intended by the
natural language word. Naturally, many UWSs are possible candidates for the same input word. The older system was
deterministic, thus, backtrack rules could only choose a single UW at a time and try to constitute the semantic network using it.
Backtrack rules used to match the longest string possible of the input word with dictionary entries and choose the first one it
meets. The chosen candidate is then tested and, if it failed to fit into its linguistic context, backtrack rules would then go back
and choose the next possible candidate in the dictionary, and so on and so forth. At many times backtrack rules would go
through hundreds of candidates before reaching the suitable one, if it did. This, of course, constituted a massive processing load
and, hence, had to be changed.

This issue of lexical ambiguity is, fortunately, resolved by the new disambiguation rules introduced in the UNL™
program. Three types of disambiguation rules are used in analysis; network disambiguation rules, tree disambiguation rules and
list disambiguation rules. List Disambiguation Rules is the type devoted to resolving lexical ambiguity; it applies over natural
language list structures to constrain the application of Tree-to-List (TL) rules and select the most appropriate UW as shown in

table 2.
TABLE 2

THE APPLICATION OF LIST DISAMBIGUATION RULES IN RESOLVING LEXICAL AMBIGUITY

INPUT DICTIONARY DISAMBIGUATION RULES OUTPUT

[book] "22222" (POS=VER); (higher priority)

the book | 11)0k] "11111" (POS=NOU): (lower priority)

(ART)(BLK)(VER)=0; [book] "1111" (POS=NOU);

Aside from lexical ambiguity, the other two types of disambiguation rules can also handle structural ambiguity. Tree
Disambiguation Rules apply over the intermediate syntactic trees to restrict the application of List-to-Tree (LT) rules in the
analysis process. For Example, the rule (VS(VER;ADJ)=0;) postulates that An adjective (ADJ) may not be an specifier (VS) of
a verb (VER).

Finally, Network Disambiguation Rules apply over the UNL semantic networks to constrain the application of Tree-to-
Network (TN) Transformation Rules in the process of analysis (UNLization). For example, the rule (agt(VER;ADJ)=0;) states
that an adjective (ADJ) may not be an agent (agt) of a verb (VER).

By applying the previous five transformation phases as well as disambiguation rules, the final UNL graph that
represents the abstract meaning of the natural language input is formed. Subsequently, this UNL graph can be translated into the
natural language of choice, with the help of the target language generation dictionary and generation grammar.

For further information about the older format of rules see (http://www.undl.org/unlsys/ds.html). The new rule
specifications introduced by UNL™® can be reached at (http://www.unlweb.net/wiki/index.php/Grammar_Specs).

2) Generation Grammar: Similar to analysis, the previous UNL specifications did not categorize or classify grammar
rules and the process of generating natural language sentences out of UNL semantic networks was performed in a single step.
Figure 15 shows the older grammar design, and figure 16 shows the more linguistic design of the grammar according to the
UNL* specifications

Semantic Netwark
v
Semantic processing

Hyper semantic Network 7
v Deep structure formation
Deconversion (Generation) Rules 7
| Semantics- Syntax rules Module | Syntactic process'\ng
¥
| Morphological rules Module | ¥ -
Surface structure formation

: 7

Natural Language sentence))
Morphological Processing

Figure 10: The generation grammar design employed in the 1

older UNL system Natural Language sentence

Figure 116: The new generation grammar design according to the specifications of UNL*3

Thus, generation grammars are also divided into five stages that utilize five of the seven rule types employed in the system.
These stages are:

1) NN - Semantic Processing (network-to-network)

2) NT - Deep-Structure Formation (network-to-tree)

3) TT - Syntactic Processing (tree-to-tree)

4) TL - Surface-Structure Formation (tree-to-list)

5) LL - List Processing (list-to-list)

First, Network-to-Network Rules (NN) are used for pre-editing the incoming UNL graph, transforming it into a
semantic network that is more easily generated into the target language. For example, the English language distinguishes
between attributive adjectives (nice boy) and predicative adjectives (the boy is nice); attributive adjectives precede their nouns
unlike predicative ones. UNL is a universal formalism and, hence, acknowledges this distinction. It uses the "mod" semantic
relation to express attributive adjectives and the “aoj" semantic relation to express predictive adjectives. On the other hand, the
Arabic language does not make that distinction; adjectives always follow the modified nouns. Thus, the Arabic Network-to-
Network rules transform any "mod" between a noun and an adjective into "aoj".

Second, Network-to-Tree Rules (NT) are the rules responsible for reorganizing the semantic network structure into a
deep tree syntactic structure by mapping the semantic relations with their corresponding syntactic roles.

Third, Tree-to-Tree Rules are used for processing the resulting trees, transforming the deep syntactic structure from the
previous stage into a surface syntactic structure. These rules gather individual syntactic relations to form higher constituents in
the syntactic tree structure.

http://www.undl.org/unlsys/ds.html
http://www.unlweb.net/wiki/index.php/Grammar_Specs

Fourth, Tree-to-List Rules are used to linearize the surface tree structure into a list structure and inserting the necessary
blank spaces.

Fifth, and finally, List-to-List Rules are used for post-editing the output of the syntactic module and achieving the
morphological adjustments needed to generate the final natural language sentence. This phase comprises the morphological
rules that are responsible for two tasks; first, generating the final form of the target language words according to the linguistic
attributes and the rules attached to each word in the UNL-NL dictionary; for example, generating the plural form of nouns and
the past tense of verbs, etc. Second, these rules are responsible for achieving agreement between the nodes in the target
language list structure, such as verb-subject agreement, noun-adjective agreement, etc.

Again, apart from transformation rules, disambiguation rules are used to replace backtrack rules. In the older UNL
version, the generation dictionary stored all the stems of the possible word forms of the lexical item; thus, each concept had
multiple natural language candidates. Backtrack rules chose the first possible candidate natural language word. Upon failure,
backtrack rules would go back and choose the next possible candidate and so on. Similar to its counterpart in the analysis
process, backtrack rules proved to be inadequate and inefficient.

Surprisingly, this problem of disambiguating Universal Words was resolved, not by grammar rules, but by the new
specifications of the UNL-NL dictionary. Following the new specifications, the generation dictionary stores only the base form
of natural language words, thus, each concept will have only one equivalent entry in the dictionary. Aside from that form of
ambiguity, other forms are handled by the newly introduced disambiguation rules. Disambiguation rules provide a non-
deterministic approach to resolving ambiguities. Tree disambiguation rules are used to constrain the application of Network-to-
Tree (NT) rules in the NLization (generation) process, and List disambiguation rules are used to constrain the application of
Tree-to-List (TL) rules. Both apply in the same manner they do in the analysis process.

After the five phases of generation and disambiguation, an output that is characterized by both accuracy and well-
formedness is finally generated. The exceedingly correct syntactic composition of the output sentence can be ascribed to the fact
that the system sets out from a semantic interpretation of the source language text, in the form of a semantic network, and then
passes through a stage of syntactic tree formation in which the syntactic constituents of the sentence is meticulously ordered and
adjusted before finally being transformed into the target language.

C. Ontologies

When world knowledge is needed to disambiguate or decipher a certain input, the UNL system refers to one of the system’s
Ontologies. Ontologies serve as the semantic component of the system and guarantee a more natural and accurate interpretation,
and hence representation, of the original meaning, in UNL format. Three ontologies are employed in the UNL system, the UNL
Ontology, the UNL Knowledge Base and the Concept Network. They are all tackled in the following two sub-sections.

1) UNL Ontology: The UNL Ontology is tree-like structures where UWSs are interconnected through ontological relations
such as icl (is-a-kind-of), and pof (is-a-part-of). The UNL ontology is not a new component in the UNL system; it has been used
in earlier versions. However, in the UNL*® program, a new ontology has been introduced in addition to the earlier one. The
earlier one is the UW system which is a hierarchy of the UWs provided by the UNDL Foundation. The new ontology, on the
other hand, is the UNL WordNet 2.1 which is a list of UWSs extracted from the English WordNet 2.1.

UNL Ontologies can improve the results of the analysis (UNLization) process by helping in word sense
disambiguation. As for the generation (NLization) process, the UNL Ontologies can make up for any deficiency in the UNL-
target language dictionary. Figures 17a and 17b show some nominal and verbal concepts extracted from the UW system,
respectively.

ch>at > o G kG

Figure 12: some nominal and verbal concepts extracted from the UW system

The UW system can be reached at (http://www.undl.org/unlsys/uw/UNLKB.htm).

2) UNL Knowledge Base: The UNL Knowledge Base, or simply the UNL KB, is a newly integrated component in the UNL
system. It is similar to the UNL ontology; a network structure where UWs are interlinked via any of the UNL’s semantic
Relations. However, the difference is that these Relations can be either ontological, or thematic such as agt (is the agent of), plc
(is the place where), etc. That is to say, the UNL KB encompasses and extends the UNL ontology. Moreover, the UNL KB also
attaches a degree of necessity. These and other extralinguistic information provided by the UNL KB would prove very helpful
for both natural language analysis and generation processes in issues such as deciphering ambiguities, resolving anaphora and
co-reference and others and, thus, enhance the capability of information retrieval and extraction through UNL.

The UNL KB is expected to be dictionary-based; representing, in UNL, the definitions of each UW extracted from
several different ordinary dictionaries and from as many languages as possible, in order to best reveal the diversity and
complexity of each UW. The UNL KB should be provided as XML table, as shown in figure 18.

<kb>

<relation name="mod" frequency="2"y i
¢spurce id="410" attribute="entry" lang="UNL" frequency="20" class="nou">book (iclrdocument)</source>
<target id="2243" lang="UNL" frequency="2" class="nou"rrepublic(icl>form of government)</target>
</relation>

Figure 13: Example from the UNL KB

3) Concept Network: The Concept Network is a visual ontology of concepts. It shows the semantic hierarchical relations
between concepts and furnishes each with an illustrative figure, a description and other details. It is designed for creating,
browsing and editing concepts and their relations. In addition, by providing a user-friendly and visually interesting overview of
semantically related words, it facilitates the task of dictionary and grammar developers by putting the required concept into
perspective. Figure 16a shows the list of concepts containing the word “horse” in the synset. Figure 16b is the visual network
showing concepts that are semantically related to one chosen from the list.

eacn 16b
1334508 (L) .
02374451 horse, Cquus cabalus tah srvolunry
e ' p treplechaser s foet
horse, Eque
GI6ST common sante, §ood sante, gumptcn, hory
B4 cavalry, herse cavalcy, horse > e, toay

WO Prertrvo o
WAFUPEd BOMEticannd snoe
33 whorse, dambuet, Soht, get off, get down . % al! .
g AT prepatine Dires
perche oy

L7593 horseman, sguestnan, horseback ndes
velrran, old-imer, oditmer, old hard «-JJ
saddla horse, rdag horse, mount

0 horsepuaer, P, WP

079 #able, stofs, horse barn

Figure 16: The concept network for the synset **horse, Equus caballus'

http://www.undl.org/unlsys/uw/UNLKB.htm

D. UNL Corpora

Aside from the lexica, grammars and ontologies, a large corpus of the previously UNLized texts have been compiled. Corpora
is not a novel component in the system, they have always been part of the UNL infrastructure even in earlier versions. They are
a collection of documents written in UNL according to the UNL document structure. Corpora are mainly used for extracting
entries for the UNL Example Base (discussed in the subsection 2 of this section) and the UNL Memory Base (discussed later in
subsection 5 A). They are also used to set the standards of UNL and test the engines and tools as well as the applications to be
based on UNL technology. Figures 17a and 17b show two excerpts from Le Petit Prince corpus (discussed later in 8 D) and the
UNL-Encyclopedia of Life Support Systems corpora, respectively.

{S:0021) 17a [S:01.035] 17b
{org.fr) {org:en)

Ensuite s ne peuvent plus bouger et s donment Effect onphvsiological function of aquaticare
pendant les six mgis de Jeur digestion {‘org}

{‘org} {unl}

{unl} obj(effect(icl>change). 02 @entry,
0bj(200014742 @Benuy, 101726692 @ generic) functionicpurpose).0Q)
pos(113465809.@def, 101726692 @ genenic) a0j(aquatic(icI>connected with

agt(201835496 Zability Znot, water(ao)>thing)): 12, Bfe(ic>penod): 1A)
101726692 @gc;mc,\- = a0j(aquaticicl>connected with

(200014742 @entry, 115206296 @def @pl) water(aoj>thing)): 12, hfe(iclperiod):1A)
mod(115206296.@def @pl, 113465809 @ def) 30j(physiological(acj>thing).0C,

and(200014742 @entry, 201835496) function(iclpurpese).0Q)

qua(115206296 @def Zpl, 6) mod(function(cl>purpose).0Q, hfe(ickpenod): 1A)
{ unl) (wnl}

('S) ['s]

Figure 14: Excerpts from Le Petit Prince corpus and the UNL-EOLSS corpora, respectively

The corpora of the ongoing projects can be reached via the development environment; the UNL¥'™ at
(http://www.unlweb.net/unlarium/index.php?corpus=new) for logged in users. Older corpora, however, are available at
(http://www.unlweb.net/wiki/index.php/Corpora).

4) UNL Example Base: The UNL Example Base (UNL*®), also known as the UNL Encyclopedia contains semantic
relations between UWSs along with a degree of probability. It is built automatically by analyzing large corpora, thus, it
comprises information that is related to the probability of occurrence rather than the possibility of occurrence. It is the only
component in the UNL®“™ framework created by statistical approaches. The UNL Example Base is planned to serve for
disambiguation purposes, once large analyzed corpora are available.

E. The UNL?m

The UNL¥U" js the integrated development environment used for producing all of the previous language resources (dictionaries,
grammars, ontologies and corpora). It is a web-based collaborative database management system that allows registered users to
create, edit and export language resources that have been created according to the UNL standards for language engineering. The
UNL®UM also allows users to search, browse, and download dictionaries, grammars and corpora that have been provided by
other users and in other languages.

Furthermore, the UNL?®\™ is considered a research workplace for exchanging information and testing the linguistic
constants that have been proposed for describing and predicting natural language phenomena. Its main goal is helping the UNL
system in devising a language-independent interlingua that would be as comprehensive and harmonized as required for NLP
tasks. The UNL¥™ comprises three main sections:

e Dictionary: for creating and editing dictionary entries;
e Grammar: for creating and editing inflectional paradigms, subcategorization frames, and other analysis and
generation grammar rules; and
e Corpus: for adding, editing and exploring UNL documents.
Figure 18 shows the home page of the UNL"“™ environment.

http://www.unlweb.net/unlarium/index.php?corpus=new
http://www.unlweb.net/wiki/index.php/Corpora

UNI&”

6D

O Assignment AD Trainee

A Dictionary
‘@ Grammar
® Corpus
& Profile

O About i !
Arsh =ate [NL Dictionary [m N [122 [09-12-2010 [24.59%
& Help 1577 | Arabic |Creat: ictionary | mir | 5 0

Open a

You may have o

ignment
on= single open assignmant at 2 time

* Go to the assignment
« Close the assignment

"] L
- UNDL Past assignments
e

¥au may reopen only the 10 most recent past assignmeants,

1576 | Arab
1575 | Arab
1574
1560 | Arabic
1562 | Arab

1561
1545 | Arabic
1543 | Ara

1535

1523 | Arsbic |Creats| NL Dictionary lpp | N || 40 |p&a-11-z010 q L

Figure 15: The home page of the UNL®"“™ showing its different components (left)

The UNL*™ js free and open to any individual or institution wishing to participate in the furtherance of the UNL
program. It intends to be as linguist-friendly as possible, and targets language specialists rather than computer experts. The
UNL*™ does not require any thorough knowledge in UNL, NLP or Computational linguistics. It, however, requires that
participants be of some acquaintance with descriptive Linguistics and have very good knowledge of the working language as
well as English which is (for the time being) the language of the interface and of all the documentation. They also have to be
certified in VALERIE, the Virtual Learning Environment of UNL (mentioned earlier in section 2). Non-certified users will,
nevertheless, still have access to several facilities of the UNL®\™, but will not be allowed to add or edit entries or rules.
Participants can work in providing the required language resources for the projects and the languages hosted by the UNDLF
either as volunteers, or freelancers to be remunerated for their work, depending on the projects and on the languages. Being
such a collaborative project, the data stored in the UNL?\™ is available under an Attribution Share Alike (CC-BY-SA) Creative
Commons license®. The UNL?\™ can be accessed at (http://www.unlweb.net/unlarium/).

5 UNL ENGINES AND TOOLS

UNL engines and tools include all the non-linguistic components used in developing, editing and using the language resources
that are part of the UNL system. They include the main analysis tools and generation tools, as well as other supporting tools.

A. Analysis Tools

Of course, older UNL systems used analysis tools (Information about the older engines can be found at
(http://www.undl.org/unlsys/ds.htm); however, these tools suffered from many shortcomings and were, therefore, replaced
in the UNL™® plan by more efficient ones. The tools used in analysis are the UNL editor, IAN, SEAN and the UNL memory
base.

1) The UNL Editor: One of the main motives behind implementing the UNL*® program is that the older analysis system was
too inept to achieve the ambitious goals of UNL. The older system aimed for all analysis processes to take place in a semi-
automatic manner, this proved to be too ambitious especially that the UNL system was still in its infancy. Thus, in the UNL*3
system, a more realistic manual analysis engine is introduced; namely, the UNL editor. The UNL editor is supposed to take over
the analysis process until the disambiguation devices employed by the system mature enough for the semi-automatic engine
(IAN) to operate. Currently, decision-making in the analysis process is mostly human and is performed using the UNL editor.

The UNL editor is a graph-based UNL authoring tool that facilitates the work of developers by providing them with a
functionality to load/create UNL documents and manage their contents. The language specialist would upload the text to be

5 http://creativecommons.org/licenses/by-sa/2.5/ch/

http://www.unlweb.net/unlarium/
http://www.undl.org/unlsys/ds.htm);

analyzed, select the appropriate UWs (i.e., the nodes in the semantic network) from the UNL dictionary, choose the semantic
Relations that best represent the link between these nodes, and, finally, assign the nodes the required Attributes. The UNL editor
is especially crucial for tasks demanding meticulous interpretation in order to yield accurate translations. The system has been
recently improved with a base of successful past UNLizations to act as a translation memory (the UNL memory base to be
discussed in subsection 4 of this section). Figure 19 shows the UNL editor in action.

LA Mot vened @ Cotirg Rrtod | Labesk Moadices
(5] Patioem < U Edior B & G s UM W

NL Editar Help

epple vos agt wb)

- apple oyt ZOLIERAEN AT
i) TeRICNEN e

Seanch by &9

Filler by part ol spaech

< »

q & X Carcn

Figure 16: Creating a UNL graph (semantic network) using the UNL editor, with suggestions from the translation memory

1) 1AN: IAN is the semi-automatic analysis engine that replaced the older one (the Enconverter). The main shortcoming of
the Enconverter was that it was designed with no respect to linguistic considerations. It did not employ any particular linguistic
theory, and, as mentioned before, had no room for the different categories of linguistic issues; analysis was performed in a
mostly automatic single leap. Inevitably, many problems arose; thus, the new engine, IAN, operated according to a more
linguistic and realistic design. It employs five different modules (the five stages stated in the section 4 B 1 above) that process
the input sentence step by step finally reaching the UNL semantic network.

IAN, the Interactive ANalyzer, is the natural language text analysis engine. It is the same for all languages, it simply
employs the analysis grammar rules and the NL-UNL dictionary of the source language to analyze input and finally generate its
corresponding UNL expressions. It operates semi-automatically; word sense disambiguation is still carried out by a language
specialist, nevertheless, the system can filter the candidates using an optional set of disambiguation rules. Syntactic processing,
on the other hand, is carried out automatically using the natural language analysis grammar, but syntactic ambiguities are
referred back to the user, who may choose to backtrack to a different syntactic path. Nevertheless, human interaction is always
optional, and is only used to improve the results. If no human intervention took place, the system would output the most likely
alternative, which is the one with the highest priority in the lexicon and in the grammar. At any rate, IAN would be fully
automatic as soon as the disambiguation devices it employs are perfected. Figure 20 shows a snapshot of the IAN engine in
action.

E LS | A L G valaTE | Conteat

.
| Y
.L.)N(JL(":“E
AN VA Generaton

R Ceninacy Je Aoes P N iy Word Mo

Figure 17: The 1AN engine using a set of UNlization rules.

3) SEAN: SEAN is the acronym for Shallow Enhanced ANalyser. It is a fully automatic analysis engine introduced in
UNL*3, In SEAN, the analysis targets the surface structure of natural language sentences; hence, SEAN is not appropriate for
translation, but for information retrieval and extraction only since it only provides a rough and partial analysis of the natural
language input. Unlike IAN, SEAN does not allow for any human intervention. Another difference is that SEAN does not allow
a single document as an input (as in UNL editor and 1AN), only a whole collection of documents. SEAN is also a word-driven
analyser; the unit of analysis is the word, unlike IAN and EUGENE where the unit of analysis is the sentence.

4) UNL Memory Base: The UNL Memory Base (UNL™) is a sort of a translation memory used to facilitate the analysis
process by providing a repository of mappings between natural language structures and UNL graphs along with their frequency
of occurrence. Mappings can be of continuous structures (such as n-grams) or discontinuous ones and can be extracted out of
the UNL corpus or created by users. The UNL™ can also be serve in disambiguating input texts. The UNL™ will be populated
by the results of the first project to be accomplished according to the specifications of UNL*3; the iGLU project (to be discussed
in section 8 B)

B. Generation Tools

Generation tools are those ones responsible for generating well-formed natural language sentences out of UNL semantic
networks. Only one engine is used in the generation process; EUGENE.

1) EUGENE: The old generation engine, the DeConverter, has suffered from the same problem as the Encoverter, it did not
take linguistic issues into account and assumed that generation should take place over a single step. Thus, similarly, it is
replaced in the UNL*® program by EUGENE (the dEep-to-sUrface natural language GENErator) that rather utilizes a five step
generation process (the five stages mentioned earlier in section 4 B 2).

EUGENE, like the older engine, is a fully automatic engine; it does not involve any human intervention. Similar to
IAN, EUGENE is language-independent, it simply uses the target language grammar rules and UNL-NL dictionary in order to
decode the incoming UNL document and generate it in natural language format. Figure 21 shows a snapshot of EUGENE in
action.

@ Dictiona Rules| @ DRuies | tnput Process
Output

i 012345678910 1112 13 14 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[# word lookup

S #48 NT - #8#

L]

L] 0: applying:

£l To: STO

- Result: NA(hiatc

-

3 -~~~ Resgult Details ---

’ __
#

" 1: applying:

L To: = t

Result:

L]

: --~- Result Details ---

’
-

é 2: applying:

£l To: & BT

- Rcs‘.ll-’.: erman¢{zCclording scolon B {1C RN caenor
-

Figure 18: The Eugene engine applying generation rules

C. Other Supporting Tools

Apart from the main analysis and generation engines, several other tools are introduced by the UNL™*® plan to facilitate the
handling of language resources and make better use of them.

1) Norma: a newly introduced tool is NORMA. Norma is a normalization tool developed to organize and consolidate raw
knowledge bases. Normalization involves suppressing redundancies (relations with the same source and target nodes),
suppressing tautologies (relations where the source node is the same as the target node), suppressing contradictions (opposite
relations between the same nodes, or the same relations between opposite nodes), generalization (replacing a node by a hyper-
node, or a relation by a hyper-relation), specification (replacing a hyper-node by a node or a set of nodes, or a hyper-relation by
a relation), merging (replacing two nodes by a single node), and division (replacing one node by two or more nodes).

2) EDGES: EDGES is the Entity Discovery and Graph Exploration System, a user-friendly visualization tool used for
exploring semantic networks by enabling node expansion, collapsing and navigation. It is expected to be embedded in several
UNL-based applications discussed in section 6 of the paper.

D. The UNL%"

In addition to enhancing the tools and engines, the UNL*® program has also made the source codes for all tools open and their
use free. The tools and engines are all available in the UNL Integrated Development Environment; the UNL®", The UNL®" is a
collective application containing the various UNL tools as well as the numerous applications to based on UNL infrastructure
(some application will be discussed in section 8 of the paper). The UNLY can be reached at
(http://dev.undlfoundation.org/index.jsp).

6 APPLICATIONS

This section examines some of the UNL-based front-end applications proposed in the UNL*3 plan. Applications are the main
goal of developing the complex and intricate infrastructure discussed in all of the above. They should allow end users to perform
several natural language processing tasks without any linguistic background or previous knowledge on UNL.

http://dev.undlfoundation.org/index.jsp

A LILY

LILY is the acronym for Language-to-Interlanguage-to-Language sYstem, a UNL-based machine translation web service
between the languages participant in UNL. LILY uses UNL as a pivot language; nonetheless, it has to be parameterized for each
source and target language. Human intervention during the analysis process is allowed, however, it is optional. If no human
intervention took place, the system chooses the results of the highest priorities in the dictionary and in the grammar. LILY can be
assisted by the use of some of the UNL system’s data banks such as the UNL®, UNL KB and UNL™. Thus, it may work either

as a knowledge-based MT system or as an example-based MT system; however, it is always rule-based.
B. TUT

TUT (Text-to-Text through UNL) is a digital library of texts represented in UNL. It provides links to the original version of
more than 30,000 titles and, the UNL version of the text (if available) along with three possible realizations (summarized,
simplified and rephrased), in any of the languages available in the UNL System.

The main goal of TUT is to UNL-plicate texts. UNLplication involves generating several different versions of the same
input, using UNL. These versions can be transformations of language (a version different in language), of length (text
summarization, text extension), of structure (text, matrix, tree, graph) and of social adequacy (text simplification,
colloqualization, sociolectalisation). UNLplication can extend the semantic formation of source documents to serve a wide range

of uses that do not demand strict fidelity to the original. TUT is available at (http://www.unlweb.net/tut/).

C. KEYS

KEYS or the Knowledge Extraction sYStem is an information retrieval and extraction application that can search for information
inside UNL documents. Thus, the search and extraction are language-independent and semantically-oriented yielding results that
are more accurate than the results of the conventional string-matching systems. KEYS also includes the tools SEAN, NORMA
and EDGES and is expected to synthesize and normalize the information available on the Web, and to provide summaries
extracted out of several different input documents.

7 UNL WORLD

UNL World is the overall strategy followed by the UNDL foundation to propagate the UNL project, encourage the participation
of institutions and individuals and disseminate knowledge about its scope, goals and applications. Projects involved in the
category of UNL World include the UNL School which aims to train people who are interested in participating in the
development of UNL-related modules, tools and applications. In accordance with the UNL School, the UNDL foundation has
already organized several courses in Armenia, Switzerland, Egypt and India. Another component that can be considered part of
the UNL World strategy is the UNL"*® which comprises the UNL> U™ the UNL" and the UNL forum.

8 CURRENT PROJECTS FOR B UILDING THE BASIC LINGUISTIC RESOURCES

After examining the five areas of interest composing the UNL™*® plan, this section will discuss some of the project that are
underway according to the specifications of UNL™.

A MIR

The UNL MIR is a collaborative project aiming at creating a general-purpose multilingual lexicon to be used in Natural
Language Processing (NLP) tasks. The UNL MIR contains 27,255 entries representing different sets of synonyms (or synsets) of
the English language automatically extracted out of an abridged version of the English WordNet 3.0. Each synset is also
accompanied by a gloss and, occasionally, some examples to pinpoint its intended sense. The project, then, involves the different
language centers associating each synset with the most appropriate lexical item in their respective languages and, hence, building
their basic NL-UNL and UNL-NL dictionaries.

The UNL MIR provides a concept-to-word database (i.e., a semasiological, decoding or writer's dictionary) instead of a
word-to-concept lexicon (onomosialogical, encoding, reader's dictionary); hence, entries in the UNL MIR should not be thought
of as words, but as definitions to concepts along with their most likely lexical realizations in the language of the dictionary
(synsets extracted from the WordNet represent the most likely lexical realizations of the concept in English).

http://www.unlweb.net/tut/

The UNL MIR is open to the participation of individuals and institutions. The results of the project will be available
under the Attribution Share Alike (CC-BY-SA) Creative Commons license mentioned earlier. More information about the UNL
MIR project is available at (http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-
mir&catid=1:latest-news&Itemid=60).

B. IGLU

The project i(GL>U) - from glosses into UNL - aims at UNLizing the glosses of 27,255 entries extracted from an abridged
version of the WordNet 3.0. The results of the project will be used in populating the UNL KB; thus, improving the quality of
word sense disambiguation and enhancing the capability of information retrieval and extraction through UNL. The results will
also constitute the UNL memory base, to be used in future mappings between English and UNL.

The project is divided into two main phases. The first phase; (IGLU#1), addresses a subset of 27,255 synsets and will be
carried out in a predominantly human basis. The second, on the other hand, will be devoted to the remaining 90,404 synsets and
is expected to be mainly automatic. In the first phase, the working linguists would analyze (UNLize) WordNet glosses using the
UNL Editor. Their decisions would then be stored in a UNL memory base, which would store the mappings between lexical
items of English and Universal Words as well as the chosen attributes and relations. The data stored in the memory base will,
then, be employed by IAN to automatically analyze the glosses of the second phase; a first step towards a fully-automatic natural
language analysis system.

Similar to the UNL MIR, The iGL>U project is also open for the participation of individuals and institutions and the
results of the project will also be accessible for all. More information about IGLU is available at
(http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=60:iglu&catid=1:latest-news&Itemid=60).

C. LACE

Up till now, UNL-based systems have been built upon lexical resources provided in a rather manual basis, mainly because the
word sense disambiguation techniques has not yet reached the stage of making up for human intervention. Hence, the project
LACE (Language Acquisition from Comparable tExts) aims at compiling, replicating and extending techniques that have been
widely used in statistical natural language processing by making use of comparable corpora and building language modules out
of data automatically extracted from comparable corpora; thus, extending the coverage of the current resources and providing a
less expensive alternative for populating lexical databases in the UNL framework.

The results of the project would be used in natural language disambiguation, thus, improving the performance of the
various UNL-based applications such as machine translation, summarization, information retrieval and semantic reasoning.
More information about the project LACE is available at
(http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=66:lace&catid=1:latest-news<emid=60).

D. Le Petit Prince

In earlier phases, UNL technology had been used in UNLizing the text of Le Petit Prince, a French novel authored by Antoine
de Saint-Exupéry in 1943. Le Petit Prince had been chosen as it is one of the best-selling books ever and has been translated to
more than 180 languages and, thus, would serve as a good basis for contrasting and evaluating a wide range of UNL-based
translations. Moreover, it provides new genres to experiment with; namely, narrative and literature.

The Project Le Petit Prince (LPP), hence, involves providing the UNL-NL dictionary entries and UNL-NL grammar
rules required for automatically generating into natural language (NLizing) the already UNLized version of Le Petit Prince. The
main goal is also to “UNL-plicate” the text in at least three different directions: replication, summarization and simplification, in
as many languages as possible.

9 CONCLUSION

In less than three years, the UNL*® program has succeeded in going a longer way than the previous 13 years of development
have ever gone, thus, bringing the UNL system closer to its goals. However, this is understandable as such a massive project
must require an extended period of trial and experimentation in order to detect and troubleshoot all the potential limitations and
problems. UNL™® specifications represent the compendium of these years, putting into effect the solutions to the detected

http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-mir&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=57:unl-mir&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=60:iglu&catid=1:latest-news&Itemid=60
http://www.unlweb.net/unlweb/index.php?option=com_content&view=article&id=66:lace&catid=1:latest-news&Itemid=60

problems and, by that, creating a UNL system that is more efficient, more easily managed and maintained and can output better
results. Enhancements include visual and user-friendly environments, statistical tools in addition to the classic components of the
UNL system, thus, bringing together a system that is almost ideal. By the end of 2011, UNL*? should put an end to the period of
UNL research and finally bring to light operational UNL-based applications that can serve the general public in performing fast
and accurate natural language processing tasks. A compete presentation of how UNL*® applies to the Arabic language will be
presented in [13] in this volume.

REFERENCES

[1] CharlesJ. Fillmore, “The Case for Case”, In Universals in Linguistic Theory, Holt, Rinehart, and Winston. 1968.

[2] H. Uchida, 2006. Universal Networking Language (UNL): Specifications version 2005. Edition 2006. Available from: www.undl.org/unlsys/unl/unl2005-
€2006/ (accessed 15th november 2010).

[3] H. Uchida, M. Zhu and T. Della Senta, “UNL: A gift for A millennium”. Institute of Advanced Studies, United Nations University, Tokyo.1999.

[4] I Boguslavsky, J. Cardefiosa and C. Gallardo. “A Novel Approach to Creating Disambiguated Multilingual Dictionaries”, Applied Linguistics, vol. 30, 70—
92, Oxford University Press, 2008.

[5] I Boguslavsky, J. Cardefiosa, C. Gallardo and L. Iraola. “The UNL Initiative: An Overview ”, Lecture Notes in Computer Science, VVolume 3406, 377— 87,
Computational Linguistics and Intelligent Text Processing (CICLing), 2005, ISBN 978-3-540-24523-0.

[6] J. Bekios, I. Boguslavsky, J. Cardefiosa and C. Gallardo. “Using Wordnet for building an Interlingua Dictionary” in proceedings of 5" International
Conference on Information Reseasrch and Applications, (1. TECH). vol.1, pp. 39-46, June, 2007.

[7] J. Cardefiosa, Alexander Gelbukh and Edmundo Tovar (eds.), Universal Networking Language: advances in theory and applications, Mexico City, National
Polytechnic Institute. 2005.

[8] N.Chomsky. “Remarks on Nominalization” In: Readings in English Transformational Grammar. R. Jacobs and P. Rosenbaum (eds.), pp. 184-221. 1970.

[9]1 Noha Adly, Sameh Alansary, “Evaluation of Arabic Machine Translation System based on the Universal Networking Language”, in proceedings of 14"
International Conference on Applications of Natural Language to Information Systems, (NLDB 2009), Saarland University, Saarbriicken-Germany,
June 24 - 26 2009.

[10] R. Martins, and V. Avetisyan, “Generative and Enumerative Lexicons in the UNL Framework™, in proceedings of 7" International Conference on
Computer Science and Information Technologies, (CSIT 2009), 28 September - 2 October, 2009, Yerevan, Armenia. 2009.

[11] Ray S. Jackendoff, X syntax: A study of phrase structure, Cambridge, Massachusetts, MIT Press, 1977.

[12] Sameh Alansary, Magdy Nagi and Noha Adly,”Machine Translation Using the Universal Networking Language (UNL)”, in prooceedings of 8"
International Conference on Language Engineering, Ain Shams University, Egypt, December 18 — 19, 2008.

[13] Sameh Alansary, Magdy Nagi andNoha Adly, “A Practical Application of the UNL+3 Program on the Arabic Language”, in proceedings of 10™
International Conference on Language Engineering, Ain Shams University, Egypt, December 15 — 16, 2010.

[14] Sameh Alansary, Magdy Nagi, and Noha Adly, “A Semantic-Based Approach for Multilingual Translation of Massive Documents”, in proceedings of 71
Symposium of Natural Language Processing, Thailand, December 13 - 15 2007.

[15] Sangharsh Boudhh, and Pushpak Bhattacharyya, “Unification of Universal Words Dictionaries using WordNet Ontology and Similarity Measures”, in
proceedings of 7™ International Conference on Computer Science and Information Technologies, (CSIT 2009), Yerevan, Armenia, 28 September - 2
October, 2009.

[16] WordNet: An electronic lexical database. Christiane Fellbaum (Ed.), Cambridge, MA, MIT Press, pp. 423, 1998.

BIBLIOGRAPHY

Hiroshi Uchida. UNL: Universal Networking Language — An Electronic Language for Communication, Understanding, and Collaboration, United
Nations University, Institute of Advanced Studies, UNL Center, Tokyo, Japan, 1996.

Hiroshi Uchidaand Meiying Zhu, The Universal Networking Language beyond Machine Translation, The UNDL Foundation, 2001.

Sameh Alansary, “Issues on Interlingua Machine Translation Systems”, in proceedings of 9" Conference on Language Engineering, Cairo, December 23-
24, 2009.

Sameh Alansary, Magdy Nagi and Noha Adly, “Generating Arabic Text: the Decoding Component in an Interlingual System for Man-Machine
Communication in Natural Language”, in proceedings of 6" International Conference on Language Engineering, Cairo, Egypt, December 6 - 7 2006

Sameh Alansary, Magdy Nagi, and Noha Adly, “Communicating in Arabic in Cyberspace”, in proceedings of Information and Communication
Technology International Symposium, (ICTIS07), Arabic Natural Language Processing Workshop, Fez, Morocco, April 3 - 5 2007.

Sameh Alansary, Magdy Nagi, and Noha Adly, “The Universal Networking Language in Action in English-Arabic Machine Translation”, in procedings of
9™ Conference on Language Engineering, Cairo, December 23-24, 2009.

Sameh Alansary, Magdy Nagi, and Noha Adly,“Processing Arabic Text Content: The Encoding Component in an Interlingual System for Man-Machine
Communication in Natural Language”, in proceedings of 6" International Conference on Language Engineering, Cairo, Egypt, December 6 - 8 2006.

http://www.undl.org/unlsys/unl/

Ontology-based Architecture for an Arabic Semantic Search
Engine
Ibrahim Fathy Moawad'', Mohammad Abdeen", Mostafa Mahmoud Aref ™

" Information System Department, Faculty of Computer Science and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt

’ibrahim moawad@hotmail .com
"Computer Science Department, Faculty of Computer Science and Information Sciences, Ain Shams University
Abbassia, Cairo, Egypt
°m_abdeen2@yahoo. ca
Jaref 99@yahoo.com

Abstract Most of the current Arabic search engines are classified as syntactic search engines, since the search is based on keyword(s).
These search engines present several problems related to the meaning of the search query. For example, the low query precision and the
shortness in understanding user's query intention represent some of these problems. In this paper, an Arabic semantic search engine
based on an Arabic ontology. The proposed architecture is layered, and is loosely coupled with an existing Arabic syntactic search
engine. The proposed Arabic semantic search engine is semantically reason using an Arabic ontology that represents a very rich
vocabulary (Arabic concepts' attributes, inheritance relations, and association relations). It helps the search engine to understand the

user's query intention, and hence enhances the search results. Finally, the paper illustrates semantic search through simple search
examples in computer domain.

1. INTRODUCTION

The internet has become the world’s biggest information superstore. From simple bloggers to space agencies, all use the
internet fabric for information sharing. The size of Internet is doubling every 5 years. Figure 1 shows the number of Internet
sites from 1995 to 2008. Users locate their needed information through search engines [1].

Total Sites Across All Domains August 1995 - January 2008

LTG0
1000
124800000
= Hostnares
L0SZO0000 Active
SIFE00O00
FEOO000
B2 0000
ESO00
1200000
jRalStelnlelnle]
0l.nuzhu:hhhmmmmoo‘—i‘—ummmmd—d—mmmmhm
[T L L o e o o e = s e
o T T T T O O O Th S S T G i Ak G A i A G A i e G el
R B B B B B B B B B L I s I o B e B e R I = I s I]
B R T T i T R T T T T T T
L L o e e L o e I T [M B M L
L s e e = = e = e e e = = =i = o= = =l == s miy == s e s ==

Figure 1: The number of Internet sites from 1995 to 2008.

Existing search engine technology works well in a narrow set of situations. Such as when the user is able to provide search
terms that precisely match the resources they are attempting to locate. As the number of resources that can be accessed and
searched by computer users increases, search engines are no longer just convenient information tools. In fact, they are powerful
agents of a transformation that is making the business environment more transparent, and thus, potentially more competitive.
While the development of search engines has significantly increased the ability of computer users to discover or locate
information, existing search engine technology still has various significant limitations, and it is frequently insufficient to help
people locate the information they need.

The alternative of keyword-based search engines is having semantic search engines that generate information more relevant to
the user need [2]. The semantic search engines use ontology rather than lexicon that is used in the traditional search engines.

An Arabic ontology is needed to achieve the Arabic semantic search engine. In this paper, the Arabic ontology is going to be
used to enhance an existing Arabic search engine by developing a semantic Arabic search engine.

Section 2 presents the background and the related work about semantic search engines and Arabic Ontology. Section 3
discusses the architecture of the proposed Arabic semantic search engine. Arabic semantic search examples in computer
domain are illustrated in section 4. Conclusion and future works are given in section 5.

2. BACKGROUND

Semantic search is a process used to improve online searching by using data from semantic networks to disambiguate queries
and web text in order to generate results that are more relevant. A Semantic network (also called "concept network" or
ontology) is a graph, where vertices represent concepts and edges represent relations between concepts. At the level of
ontology, a semantic network expresses vocabulary that is helpful especially for human, and can be used for machine
processing.

A Semantic Search Engine attempts to make sense of search results based on context. It automatically identifies the concepts
structuring the texts [3]. For instance, if you search for “election”, a semantic search engine might retrieve documents
containing the words “vote”, “campaigning” and “ballot”, even if the word “election” is not found in the source documents. An
important part of this process is disambiguation of both the user queries and the web content. This means that the search
engine, through natural language processing, will know whether you are looking for a car or a big cat when you search for

“jaguar” [4].
A. The Semantic Search Engines

In recent years, considerable research efforts have been devoted to apply semantic web technologies into information search
and retrieval process. There are a number of pilot non-Arabic semantic search projects and frameworks have been
implemented and evaluated in various application domains. Some of these semantic search engines can be summarized as
follow: -

Hakia [5] is a general purpose semantic search engine, as opposed. It searches structured corpora (text) like Wikipedia.
Often, Hakia will propose related queries, which is also great for research. For instance, if we search for Barack Obama,
Hakia suggest that we might be interested in information about Michelle Obama, Hillary Clinton, Democrats, Sarah Palin,
John McCain, John Sununu and Joseph R. Biden Jr. as well.

SenseBot [6] is a web search engine that summarizes search results into one concise digest on the topic of your query. The
search engine attempts to understand what the result pages are about. For this purpose, it uses text mining to analyze Web
pages and identify their key semantic concepts.

Cognition [7] has a search business based on a semantic map, built over the past 24 years, which the company claims is
the most comprehensive and complete map of the English language available today. It is used in support of business
analytics, machine translation, document search, context search, and much more. You can use Cognition’s technology to
search one of four bodies of information: public (Resource.org is currently contains 1,858 volumes consisting of 675,704
files of federal case law in XHTML format), MEDLINE (Medical Literature Analysis and Retrieval System Online)
abstracts, the English version of Wikipedia, and the complete New English Translation including text and translator notes
of the Gospels of Matthew, Luke, John and Mark.

B. Arabic Ontology

Ontology is defined as an explicit specification of conceptualization. Ontology will thus analyze the most general and abstract
concepts or distinctions that underlay every more specific description of any phenomenon in the world, e.g. time, space,
matter, process, cause and effect, system [8]. There are several works done in English ontology. The most common used ones
are Upper Model [9], Wordnet [10], Sumo [11] and OpenCyc [12]. For the Arabic language, little work has been done on the
subject of Arabic ontology. The most common work is Arabic Wordnet [13, 14].

In general, there are two main kinds of Ontology [15]:

1. A domain ontology (or domain-specific ontology) that models a specific domain, or part of the world. It represents the
particular meanings of terms as they apply to that domain. For example the word "card" has many different meanings. An
ontology about the domain of poker would model the "playing card" meaning of the word, while an ontology about the
domain of computer hardware would model the "punched card" and "video card" meanings.

2. An upper ontology (or foundation ontology) is a model of the common objects that are generally applicable across a
wide range of domain ontologies. It contains a core glossary in whose terms objects in a set of domains can be described.
There are several standardized upper ontologies available for use, including Dublin Core, GFO, OpenCyc/ResearchCyc,
SUMO, and DOLCE. OntoSelect [16] is a library that monitors the webs that provide an access point for ontologies on
any possible topic or domain that is automatically updated, organized in a meaningful way and with support for ontology
search and selection. Based on OntoSelect, figure 2 shows the distribution of languages used in creating Ontologies on the

Semantic Web. We can detect from the graph that the Arabic Language isn't considered, due to the lack of a real
considerable and reliable Arabic Ontology.

OntoSelect Ontologies Language

2720, Distribution

5.40%
4.05%

Oen

4.05% m de

6.76% ofr

7.43% O en-US
W es
@ en-uk,pt,hu,it
m pl,nl,ru,ja

Figure 2: OntoSelect: Distribution of languages used in creating ontologies

3. THE ARCHITECTURE OF ARABIC SEMANTIC SEARCH ENGINE

The current Arabic keyword-based search engines present several problems related to the meaning of the keyword used in the
search query [17]. In order to solve the problems of the low query precision and the shortness in understanding user's query
intention that occur in these traditional search engines, this paper aims to propose an Arabic search engine architecture based
on Arabic ontology. By using semantic reasoning, which based on ontology, it helps the search engine to understand the user's
query intention, and hence enhances the search results.

The proposed Arabic search engine architecture will be developed as a loosely coupled semantic layer over an Arabic syntactic
search engine. Building an Arabic semantic search engine will consider related semantic Arabic words when searching for an
Arabic one (Arabic Ontology). The Arabic semantic search engine (shown in Figure 3) will utilize the existence of Syntactical
Search Engine. Two modules are going to be added to a Syntactic Search Engine: Semantic Query Analyzer and Semantic

Ranker.
Input Query

/' Semantic Search Engine \

Semantic Query Analyzer '

Arabic
Ontology

Syntactical
earch Engine

’ 172
(<]
E §
1=
=
=3
(]
e
1=
j
(]
=
\N___———

Search Results
Figure 3: The Ontology-based Arabic Search Engine Architecture

As shown in Figure 3, the ontology-based Arabic search engine consists of an Arabic Ontology module, a semantic query
analyzer module, a semantic ranker and a syntactic search engine. To develop the architecture shown in figure 3, there are
four main objectives should be achieved: Building an Arabic Ontology using limited vocabulary; Developing a Semantic
Query Analyzer module, Developing a Semantic Ranker, and Interfacing with the existed Syntactical Search Engine. A brief
description of these objectives is given as follows:
1. Building an Arabic Ontology

There are two approaches to build ontology: top-down and bottom-up [18]. In the top-down approach, the top of the

hierarchy will be considered first (e.g. entity). The second level will be considered next (abstract entity or concrete

entity), and so on. On the other hand, in the bottom-up approach, concepts are grouped and analyzed. The attributes

4.

(properties) of these concepts are specified. The common attributes of group of concepts are assigned to a higher level
concept. The group concepts will be considered as children for this higher concept. Constructing ontology for the
whole Arabic Language is a very difficult task. In this paper, we consider a subset of the Arabic language. This subset
might be domain specific or limited vocabulary. The limited vocabulary is considered in this work. The limited
vocabulary is then used to build an Arabic semantic search engine.

Developing the Semantic Query Analyzer

Given the user query, a semantic query analyzer accesses the Arabic ontology to find the related concepts
(semantically related words). These concepts are sent to the syntactic search engine to find the related documents in
its indexed database.

Developing the Semantic Ranker

In syntactic search engines, search results areranked before delivered to the query generator (the user). Usually the
“relevant” documents generated by the search query are numerous (could be in hundreds of thousands or even more).
Displaying these documents to the user at one time and with no intervention or prioritization could yield the search
useless. Users are usually interested in the first 10 documents or so and will not bother looking at the remaining ones.
It is therefore of importance to present the search result to the user in the most effective way by showing the most
relevant documents first. This is known as “page ranking”.

While in syntactic search engines the page rank is calculated using the “term frequency”, this same technique is not
appropriate for semantic search engines since the produced documents could have many incidences of the concept
without having the same term as in the search query. For semantic search engines, possible words of the same concept
will have to be generated with the help of the Ontology. The result will be used by the semantic ranking module to
perform the ranking.

Interfacing with Syntactical Search Engine

To utilize the existing syntactical search engine, a set of application interfaces should be defined and developed.
These interfaces are used to loosely couple the semantic ranker module and the semantic query analyzer module with
the syntactical Search Engine.

ARABIC SEMANTIC SEARCH EXAMPLES IN COMPUTER DOMAIN

To validate the proposed Arabic semantic search engine architecture, set of simple examples in computer domain have been
experimented. The developed prototype helps the end user to compose the search query semantically, where it includes a
module called "Interactive Semantic Query Analyzer". This module interacts with the end user by recommending him with
extra semantic search criteria by accessing specific-domain ontology (a very simple ontology in the Computer domain). Also,
the developed prototype exploits the Google search engine by accessing it using the Google APIs. Figure 4 shows the
prototype architecture that includes three components: Interactive Semantic Query Analyzer, Computer Specific Ontology, and
the Google search engine. Interactive Semantic Query Analyzer has two main roles: interacting with the end user to build
search query based on the ontology semantics, and interfacing with the Google by sending the composed search query. After
that, the search results are retrieved and appeared to the user by Google. Three test cases have been experimented.

- -

~
S~

Computer Interactive Semantic Query
Specific Analyzer
Ontology
Search
Query
L 4

Syntactical Search Engine
(Google)

Figure 4: Experimental Prototype Architecture

A. ONTOLOGY OVERVIEW
Figure 5 shows the computer specific domain ontology used in the developed prototype. This ontology contains set of concepts
like "dadl™ "0 Cete. Also it contains three types of relations: -
1. Inheritance relations: Both the "dkites yal 8" concept and the "&xiga ual A" concept inherit the "3l concept.
Also, the "Gl sL&)" concept, the "4ed N Jilwall Ja" concept, and the "<laglrall gla fiudg ¢u3A3" concept inherit the
"da" concept.
2. Association relations: The "# (" relation relates both the "<lall" concept and the "J<" concept. Also, The "&&"
relation relates both the "wsladl" concept and both the "zl 2" concept and the "3\ concept.
3. Synonym relations: Both "wlall" concept and " gzl concept are synonyms. Also, Both "gl»" concept and
"elili" concept are synonyms.

Jims i PN | R P |
e :
akeall sk [ety
e o 3 e e

Figure 5: Computer domain specific ontology

B. Test Cases

The following are two examples that have been experminted using the system prototype shown in figure 4, and the computer
domain ontology shown in figure 5. The following two cases are illustrated in terms of a brief description of each case
including its interactive search scenario, both syntactic search (using Google only) and the semantic search results, and finally
a brief comparison between both results.

1) Case 1: Inheritance relation search

Let’s assume that the user would like to perform a query such as "V culs 4 (ol & ", the Interactive Semantic Query

Analyzer module suggests that it is better to search also with " &kisas sl 3 ", where both "Il cads & sa (al A " and " =l A
dlaizad" concepts are sub-types of another concept called "ie ", Figure 6 shows the semantic search results of case 1 (560

pages), where figure 7 shows the syntactic search results (12900 pages). As noted, the number of semanitc search results is
very small if it is compared with the number of syntactic search results (it is 4.3% of the traditional search results).

- e

£ AR) i
[T ST LS = R QPR 1 e fee e
- e = B+ Seelr s ok - @@=
¥ours Ol df Skl Sef S e v

cay| T i et ::{lg"

Ry T PR

- e W= [Fow -

e (3 1 £ [o] Cva e of e v | Bt | (i o] e |l | myrmee [s R B 10

Figure 6: The semantic search results of case 1

Ty

e Pt

adit] =i
Eces) (o Pl &
ik
R e nibvie el =] B B | A brmarba [e i | T Ok gy ke v D e 8 g B [el L b (B e [S
e Pt | v Bt o ek Bl p e ———
] e it e G [| R R i o o i
E A ey T ol GOBL e ca foes ke e
= T =7 Google
. e Pt i it g
[ey R T B e —

e U o B P 040 e,

5 e oot M

k=

W
L R

e (S e)
il (9651 " faenan | ynn o] e v b vercen | 3 S5t | e e o] S uenn . o8| Mreves. [@S S
Figure 7: The syntactic search results of case 1

2) Case 2: Association relation search

In this case, let’s assume that the user would like to perform a query such as "—sall cliuki " the Interactive Semantic Query
Analyzer module suggests that you can also search with associated concepts with "csulall clinki " which are Jibwall Ja"

"geally G LA "laglaall gl Sl 5 cp A" "4l Figure 8 shows the semanitc search results of case 1 (64200 pages),
where figure 9 shows the syntactic search results (62900 pages). As noted, both number of semanitc search results and
syntactic search results are approximatly similar, but the semantic search results include more specfic and user-accepted query
keywords.

L o R 3 = -
S i k™8 T ot 8 i | i L =
Y Py

¥ sl Gl

e Sahe s Toges e T

ol e Eend LR e

el L =

VD Gt | gt A OO gt e e O . i O e A o A 00 i W2 T

e

el g e gt b 't g i Bl
Pt kg g o Sy T A T gt R i o)

e e g Sy ik

2 A ant
[P LT R SR PN
AR A D) i s
=

Avsvers| (G BTG o | inves o] S e e et § s | s of Bons. | g :| s

T e

g ._
M s | WSS BENSH
Figure 8: The semantic search results of case 2

T

mifin]
YR e =i
ol
- (o Epe——————, el R = | o Bt (i e | ik = sk - - Lo Gt [T el | —
L Farames L B et W TGS . B SR R e ®
1 trs e e L . S

* ol GOl el el load il s i

s []

[Gouglt

b 100 el oot e ol g R o o T A e Bt] T BT s

Figure 9: The syntactic search results of case 2

5. CONCLUSION

The majority of the currently available search engines are keyword-based. While these engines are relatively easy to use, their
search results in some cases could be inaccurate and sometimes misleading. Semantic search engines present a more viable and
less ambiguous alternative to the keyword-based search engines. Several works are found in the literature that proposes
semantic search engines based on ontology. In those works the supported ontologies and therefore search engines are for the
English language. In this paper we have proposed a semantic search engine for the Arabic language. This engine is based on an
Arabic ontology. We have adopted the limited vocabulary Arabic ontology approach. We have shown an overall architecture
for the proposed Arabic semantic search engine. This architecture consists of three main modules: the semantic query analyzer
and the semantic page ranker modules. The third module is the regular keyword-based search engine.We have demonstrated
the effectiveness of this architecture with two examples. Both examples are based on the computer domain. We have also
compared the results from our semantic search engine with that of a syntactic search engine (Google). Our results showed that
the number of pages using semantic query are far less than that of a syntactic search. This helps a great deal with more accurate
search results and to reduce any search ambiguity.

References

[1] http://news.netcraft.com/archives/2009/01/16/january 2009 web_server_survey.html

[2] R. Guha, R. McCool, and E. Miller, “Semantic search,” in Proc. of the 12th international conference on World Wide
Web, New Orleans, 2003, pp. 700-709.

[3] WWei, P M Barnaghi and A Bargiela, “The Anatomy and Design of A Semantic Search Engine”, Tech. rep., School
of Computer Science, University of Nottingham Malaysia Campus, 2007.

[4] http://www.pandia.com/sew/1262-top-5-semantic-search-engines.html

[5] http://www.hakia.com/

[6] http://www.sensebot.net/

[7] http://www.cognition.com/

[8] Marek Obitko (advisor Vladimir Marik): Translations between Ontologies in Multi-Agent Systems, Ph.D.
dissertation, Faculty of Electrical Engineering, Czech Technical University in Prague, 2007.

[9] John Bateman & Till Mossakowski, “Ontologies for spatial reasoning, action and interaction”, University of Bremen,
NIST Discussion. March 2006.

[10]Amaro, R., R. P. Chaves, P. Marrafa, and S. Mendes ""Enriching Wordnets with new Relations and with Event and
Argument Structures" In: Seventh International Conference on Intelligent Text Processing and Computational
Linguistics , pp. 28 - 40, Mexico City, Lecture Notes in Computer Science, Springer-Verlag. 2006.

[11]Chow, I.C and Webster, J.J. Integration of Linguistic Resources for Verb Classification: FrameNet Frame, WordNet
Verb and SUMO. Alexander Gelbukh (Ed.) LNCS 4394/2007 pp.1-11. Computational Linguistics and Intelligent Text
(CICLing'07), Mexico City, Mexico. 2007.

[12]Stephen L. Reed and Douglas B. Lenat, “Mapping Ontologies into Cyc”, American Association for Artificial
Intelligence, 2002.

[13]Black, W., Elkateb, S., Rodriguez, H, Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C., “Introducing the Arabic
WordNet Project”, in Proceedings of the Third International WordNet Conference, Sojka, Choi, Fellbaum and Vossen
eds. 2006.

[14]Black, W., Elkateb, S., Rodriguez, H., Alkhalifa, M., Vossen, P., Pease, A. and Fellbaum, C., Introducing the Arabic
WordNet project, Proceedings of the 3rd Global Wordnet Conference, Jeju Island, Korea,South Jeju, January 22-26,
2006.

[15]K. S. Esmaili, H. Abolhassani, “A Categorization Scheme for Semantic Web Search Engines” Proceeding AICCSA
'06 Proceedings of the IEEE International Conference on Computer Systems and Applications, 2006

[16]OntoSelect Library http://olp.dfki.de/ontoselect.

[17]1Al-Khalifa, H., Al-Wabil, A. (2007). The Arabic Language and the Semantic Web: Challenges and Opportunities.
International Symposium on Computers and the Arabic Language. November 2007, Riyadh, Saudi Arabia.

[18]Gruber, T. R., "Toward Principles for the Design of Ontologies Used for Knowledge Sharing". In: International
Journal Human-Computer Studies, 43(5-6):907-928, 1995.

Automatic Speech Segmentation Using Genetic Algorithm

Based on Best Tree Encoding
Amr M. Gody”

*Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum EGYPT

amg00@fayoum.edu.eg

Abstract Best Tree Encoding BTE features vector which was derived in a previous paper [1] is used to find phoneme boundaries along
speech utterance. No training process is needed. Disturbance function is calculated for the given speech signal. Genetic algorithm is
utilized to optimize the disturbance function for highlighting the phoneme boundaries. The given procedure indicates very promising
results for speech recognition. It can trace the very hard transitions in phoneme stream along speech utterance. We can define the wrong
markers as those exist in the result without a reference or those exist in the reference and do not exist in the result. Excluding the wrong
markers, this procedure gives less than 10% drift in markers off the reference markers.

1. INTRODUCTION

Speech signal is a stream of information. The basic information unit is called phoneme. It is believed that human speech is
decomposed of small time durable unites called phonemes. Each phoneme contributes in specific piece of information. We can
make analogy between spoken and written langue in such that phoneme is the basic unit in the spoken langue as the character is
the basic unit in written langue. Information in each phoneme is encoded into the frequency domain. Simply the information is a
pattern of frequency components [1]. Features are extracted from the speech signal to best represent such information. The
good feature is ranked as of how far is it discriminating such information stream in speech signal.

Presently, manual annotation by expert phoneticians is the most precise way for time-aligning a speech waveform against the
corresponding phonetic sequence. This is a tedious and time consuming task, which makes it a prohibitive choice for large
speech corpora. Several approaches have been proposed for the task of speech segmentation [3-7]. The most frequently used
approach is based on HMM phone models. In this method each speech waveform is initially decomposed into a sequence of
feature vectors, using a speech parameterization technique. Afterwards, a set of HMM phone models (phone recognizer) is
utilized to extract the corresponding phonetic sequence as well as the positions of the phonetic boundaries. Other speech
segmentation methods have also been proposed in the literature. Some of them include detection of variations/similarities in
spectral or prosodic parameters of speech, template matching using dynamic programming and/or synthetic speech and
discriminative learning segmentation. Phone transitions (boundaries) may be classified into many types. It may be called phone
transition type to refer to the transition between the left context phonetic class of a boundary to the right context class. The class
may be classified as vowels, affricates, fricatives, nasals, glides, stops and silence.

Various speech parameterizations have been utilized in the phonetic segmentation task, with the Mel Frequency Cepstral
Coefficients (MFCC) among the most widely used, especially in the HMM-based approach. Other speech features such as
Perceptual Linear Prediction (PLP), Line Spectral Frequencies (LSF), Linear Predictive Coding (LPC), short-time energy,
formants and wavelet-based have also been used.

In this research a new proposed speech parameter called Best Tree Encoding (BTE) is utilized for this task. BTE is first
introduced in [1] and [2] as a new speech parameters. An approach that is much close to dynamic programming is utilized to
solve this problem. The genetic algorithm is used to minimize the disturbance measure function for finding phone transitions.
Considering that speech signal is stationary along the duration of phoneme utterance is the key point to find the boundaries. As
it is supposed that speech is stationary along the phoneme duration, this is implies that minimum disturbance occurs in the
extracted features along the phoneme utterance duration. Suitable function is designed to model the disturbance. Genetic
algorithm is used to optimize the function parameters on a given signal under test. Speech database is prepared to measure the

quality of this experiment. Speech database is labeled and transcribed then verified to evaluate the results of automatic
segmentation. The following sections will navigate through the details of this research. Section 2 illustrates the problem
definition. BTE speech feature is described in section 3. The disturbance measure function will be discussed in section 4. The
derivation of the function will be clarified. In section 5, the Genetic algorithm will be illustrated to show how it is used to get
phone transitions locations by minimizing the disturbance function. The results will be presented in section 6. Some examples
that give the obtained phone locations and baseline speech signal marker locations will be introduced in this section. The
conclusion will be given in section 7.

2. PROBLEM DEFINITION

Accuracy in automatic Speech Segmentation is targeted in this research. Phoneme is the basic speech unit; it is supposed that
there is some sort of homogeneity in a single phoneme. Figure 1 focuses on a segment of Arabic utterance that contains a
transition between two phones. As shown in figure the properties in the frequency domain, the lower part of the figure, are
almost homogeneous along each phone’s duration. There is a transition region in which the properties are changing in time.

©.q io.
il

Tie (2] |0-0
Teem (2l Py

-Z24086

Ha

Figure 1 Speech signal at the top and the assocrated Spectrogram at the bottom. Thrs isa speech srgnal of an Arabrc utterance transcrrbed in Arabic letters as
“g‘“‘ A dgalafi uw‘l\ &”. Spectrogram illustrates how phone transitions appear in frequency domain (the Y axes in the bottom figure)

It is required to find a model for describing phoneme homogeneity property in speech signal as illustrated in figure 1. It is also
needed to find a disturbance measure of the model parameters. It is supposed that the disturbance will be a maximum at the
phone boundaries.

The model should reflect the frequency domain homogeneity that is shown in the lower part of figure 1. Best Tree Encoding
(BTE) [1] is chosen as a map for speech signal in the frequency domain. Section 3 will give a summary of BTE model and its
suitability for this point of research. Disturbance measure model will be designed in the BTE domain. Suitable Genetic based
model will be configured to catch the poles of the disturbance function. Poles of the model are points in time at which the model
indicates peaks in disturbance. It is supposed that the poles happened at the time boundaries of phonemes.

3. BEST TREE ENCODING

BTE is a simple on/off entropy mapping of the signal into the bands in which the signal is decomposed using wavelet packets.
The key property in BTE is the alignment of the neighboring frequency domain bands in wavelet packets decomposition of the
signal. Adjacent bands are much closer in distance than the non adjacent bands.

L3 L2 L1 LO
12.5 Q0
]
- 25 ; 6
E'}_ 375 ! 5
E: 50
= Jb 3 14
x. Bl
= 75 8 2
= 87.5 10 B
) 12
' 100 11
Part a: Before BTE
L3 L2 L1 LO
125 i) 3
m
u 25 8 3
o 9
z 37.5 2
o 50 10
o 11 G
= 62.5 5
s 75 12 5
87.5 13 6
100 14

Part b: After BTE
Figure 2: BTE bands are aligned such as to make adjacent wavelet bands are closer in distance than non adjacent bands.

Figure 2-a illustrates how bands are sorted according to Matlab wavelet packets function. Figure2-b indicates how bands are

encoded in BTE. Bands are rearranged for calculating the BTE of the frame. The tree is Encoded into a single number that held
information of tree structure {leaves} and weight according to figure 2-b.

V1= 0001100

1 [3./]4

i IR
Vi V2 V3 V4

Figure 3: BTE for certain wavelet packets Best tree structure

The indicated tree structure in figure 3 will be encoded into features vector of 3 elements as shown in table 1.

TABLE 1

BEST TREE 4 POINT ENCODING EVALUATION.

Element Binary Value | Decimal value | Frequency Band

V1 0001100 12 0-25%
V2 1000000 64 25% - 50%
V3 0000000 0 50%-75%
V4 0000100 4 75%- 100%
12
64

Features BTE vector ¢ for this example of speech frame will be ¢ =

4, DISTURBANCE MEASURE

BTE is implemented to map phoneme properties in the frequency domain. As discussed earlier, the properties should be
homogeneous during the phoneme duration. This is the criterion that is intended to be measured in BTE domain. Figure 4-c
illustrates the continuous changing in Best tree structure along speech utterance. BTE is an encoding for Best Tree structure.
The variation in the Best Tree Structure is measurable through BTE variations along speech utterance. In this section, a suitable
measure will be designed to model BTE variations.
e [k Sl DD P o BBl it B i Pl oA R Bt Bt Bl

20478 [A]

—-23L0%

1=

14k

- i
g\ <4 P

] __%__ i, . ..

Dmmame

“"ﬁuﬂ.uu' mﬁ,n it

Figure 4: A) Time waveform of speech signal, b) Spectrogram of speech signal, c) Sketch of BTE encoding and associated disturbance.

Equation 1 is the template of the proposed disturbance measure function. It is required to find the suitable weights to get the
optimal phoneme boundaries.

4 . .
F) =Y w (- x, ®
i=1

f(n) : Disturbance at frame number n.
W : Band weight of band number i .

: BTE vector’s component number | at frame number N .

Xi 4 : Depth of wavelet packets decomposition analysis.

As being illustrated earlier through the derivation of BTE vector, each vector’s component in BTE is reflecting part of the
Bandwidth of the signal. Speech signal is a stream of information encoded into signal frequency; this makes it logical that BTE
vector’s components should be weighted, as information is not equally distributed along the bandwidth.

Genetic algorithm is utilized to solve this optimization problem. The cost function is given by egn.1. Given suitable number of
labeled speech streams, it is possible to obtain the best set of weights for this optimization problem.

Below is the Matlab function " dist" of calculating the disturbance function for a given weight vector. This function is intended
to be optimized using genetic process to find the minimum disturbance on a given training data. The output of the genetic
process is the weight vector that gives the minimum disturbance.

$%[y] = dist(a,W)

%% A : Columns based BTE vectors. It is 4 x L. 4 is the order of BTE vector. L is the %% length
in frames of the given Data.

%% W : Weights array. It is 1 X 4 vector.

%% Y : This is the output disturbance function. It is 1 X L vector. The first element %% is

calculated as the average value of the first 10% elements in the Y vector. This is to
%% avoid the discontinuities at the beginning of the array.
%% Amr M. Gody

function [y] = dist (A,W)

nbIn = nargin;
if nbIn < 1 , error ('Not enough input arguments.');
elseif nbIn == 1, W = ones (size(A,1),1);
end;
W = Tocolumn (W) ;
L = size(A,2);
y = zeros (1,L);
for k=2:L
try
v2 = single(A(:,k));
vl = single(A(:,k-1));
y (k) = sgrt(sum(W .* (v2 - vl)."2));
catch
m = int32(0.1 * L);
y(k) = mean(y(2:m+l));
end
end
m = int32(0.1 * L);
y(1l) = mean(y(2:m+1));
end

5. PHONE LOCATIONS USING GENETIC ALGORITHM

In this section the genetic algorithm model for solving phone locations will be illustrated. Genetic algorithm is used to
maximize of minimize certain cost function. The cost function should be parameterized in some parameters that are required to
be minimizing or maximizing the cost function. Those parameters should be related to the intended target.

Recalling EQU. 1, disturbance is a function of the parameters array w. Recalling the following points

1- Phone segment is a homogenous part of speech utterance.

2- Phoneme ldentification Information is not normally distributed over the bandwidth. Each phone has a different pattern
of identification information that best identifying the phone.

3- BTE is a 4 elements vector. Each element reflects a 25% of the bandwidth of the signal.

Considering the above three points we can conclude the following
1- Itis expected that disturbance is a minimum or ideally zero during the single segment.
2- Transition from phoneme to another phoneme may not necessary require equally changing value in all BTE vector’s
elements.
According to our intended target which is finding the locations of phoneme transitions, this may be obtained if we got the
optimal w vector that minimizes the disturbance function. It is assumed that if the signal is a single phone, this should be zero
disturbances. The following assumptions are considered

Sw =1 @
i=1

w, >0.01 Vil<i<4 (3)

Eqgn. 2 and 3 are needed to exclude the forbidden solution of w = [0 0 0 0] from the set of possible solutions that may be
obtained by genetic Algorithm. Eqgn. 2 hold a meaning that the weight of BTE vectors are sum to one which means that it is
considered that the information is 100% unit distributed over 4 parts.

Now it is needed to design a fitness function to evaluate the fitness of each solution during the optimization process of genetic
algorithm. Each solution is a chromosome. In our case it is the w vector. The following function is supposed to be the fitness of

the chromosome.
> f(n)
— n

N

b4 (4)

f (n) is the disturbance function which is given in eqn.1. ¥ will give the mean of the disturbance. The best chromosome is
that one gives the best mean of the disturbance function for a given BTE vectors.

One can ask , what is the benefit of establishing the w vector and why we do not make the disturbance without applying the
weight vector w. The answer is to exclude the non informative parts of BTE vector from the calculations of the transitions. The
non informative parts will impose a noise that is not needed for the process. The information is not normally distributed as
indicated before. Also one cannot assume certain parts to contain the information. It is complex to be determined. So be using
such heuristic technique like genetic, the problem may partially solved. The transitions between phones are estimated.

Here is below, the Matlab function "fitv" for calculating the fitness of the Genetic population.

function [val] = fitv(x)
global buff; %$This is a global buffer to store the array of bte vectors

val = mean (dist (buff,x));

end

Below is the script of command line to call the genetic algorithm for optimizing the disturbance function.
% Evaluating the best weights for moving distance

Ae = [111 1];
Be = [1];
w = ga(@fitv,4,RAe,Be, [1,11,00.01;0.01;0.01;0.017,11);

Array Ae and Be are the constraint arrays. This will make "ga" to find solutions that satisfy the given constraints

A xw=B, 5)

Egn. 5 is used to pass the constraint given by eqn.2 to the built in Matlab function GA, which is used to run the genetic
algorithm on the fitness function. The other constraint given by eqn.3 is directly passed to GA using the array [0.01; 0.01; 0.01;
0.01]. The empty square brackets are to pass default values arrays for the GA function. They are not used here in this research.

6. RESULTS

The results of this research will be illustrated through examples. The following Matlab script is used to apply the procedure.
Figure 5 gives a snapshot of the process. Y axis is used as a reference for defining the graph in the composite drawing. The
legend is given by:

Draw with y axis value less than 0.5 - Speech waveform signal.

Draw with y axis value around 0.5 - Disturbance function.

Draw with y axis value = 1.0 - Obtained phoneme markers.

Draw with y axis value = 2.0 = Reference phoneme markers and annotations.

s a b |~@ a |h sl

} ! | | ! |
i 3 2 3 N 5 §

Time (Samples) a

Figure 5 Composite draw of speech signal, disturbance function, Obtained phoneme boundaries, Reference phoneme boundaries and phoneme annotations
respectively according to the y axis reference value.

As shown in figure; the obtained markers are very close to the reference markers. Local peaks are detected. Peaks detection
process is applied on the disturbance curve to put phone markers. This task is very open to find the best peaks that best match
with the reference markers. It is chosen here in this research that peaks should satisfy the local maximum condition of 20(ms)
clearance area around the local peak. Clearance area is defined as area with no peaks. This can be modeled mathematically as
the following equation

L= Local — Maxindex{f (n)}Grouped_in_40(ns) (6)

N
f(n) is the disturbance function. If it is grouped in 40(ms) subgroups, it will make ? sub groups (N is the number of

frames). In our case, frame length is 20(ms), this leads to groups of 2 elements will be considered to calculate the local peaks.
This will discard the situation of two successive peaks are encountered. This is in other word indicates that the case of two
major changes happened within 40(ms) will be discarded.

The error is calculated by applying the cross correlation process on the obtained markers (signal X) and the reference markers
(signal Y). In case of full coincidence of the locations of the two signals, this will make a maximum correlation at 7 =0 in
eqn.7. This makes 7 gives an indication of how much is the mismatching maximum locations of the two signals.

R(z)= 3 (@) y(t-7) ™

Below is the Matlab function to calculate the error figure.

function err = GetErr (refv,v)
x = xcorr (refv,v);

u = find(x == max(x));

refx = max(size(refv));

err = abs(refx-u)/refx;
end

Applying the error figure estimation function on the available training data gives an average of £8% drift off the reference
locations. This error estimation does not include the effect of wrong markers. Wrong markers are defined as those markers
exist in the result but don’t exist in the reference or vice verses.

More examples are illustrated in Figure 6 to give more clarification of the peak peaking process and the locations of the
obtained markers and the reference markers.

Below is the script of the Matlab function that implements the overall process of finding phoneme locations based on BTE. The
function takes one parameter which is the file name of the speech signal. It expects to find HTK? format file of the annotations
for the given file in the same folder. Below is a part of an HTK formatted file for labeling certain utterance.

308400 1550000 Sa
1550000 2693900 i
2693900 4298200 £
4298200 5909500 r

The first column indicates the beginning of the segment and the second column indicates the end of the segment. Numbers are
in term of 100(ns). For example 308400 means segment (Sa) will start at 308400 x100x10~° = 0.0308(sec) .

The Matlab function "findphonelocations" reads the given speech signal in WAV? format. As mentioned earlier that the
function expects to find an associated annotation file in the same folder with exact name as the given file but with file extension
is ".LAB". The function uses a global buffer to pass the BTE vectors of the given file to the genetic algorithm fitness function.
The global buffer is named "buff"

function [x] = findphonelocations (file)
global buff;

try

[data fs] = wavread(file);
% Encoding frames into BTE3
y = framing(data,20e-3*fs,0,0);
a = bte3(y):
buff = single (a);

% Read the associated Label file in HTK format

labfile = strrep(file, 'wav', 'lab');
[A 1] = importhtkfile (labfile);

reft = [A(:,1);A(size(A,1),2)] .* fs;
refM = ones(size(A,1)+1,1) .* 2;

% Estmating the best weights for moving distance using genetic algorithm
Ae = [1111];

1 HTK : Hidden Markov Model Toolkit http://htk.eng.cam.ac.uk/.
2 WAV: Standard format for storing Audio signal. It is simple Pulse Coded Modulation samples. In this research speech signals
are sampled at 32(KHz). Samples size = 16 (bits).

Be = [1];
w = ga(Q@fitv,4,Ae,Be, [],[],[0.01;0.01;0.01;0.011,([1)~

% Evaluating the disturbance function for a given signal using the estimated weights.
df = dist (buff,w);

%Find peaks in moving local durations of 20 (ms)

[x p] = findpeaks (df, 'minpeakdistance',2);%, 'minpeakdistance',?2);
xpr = x ./ size(df,2);
X = xpr .* size(y,1l);

% Get Error Estimate
scale = max(size (data))/max(size(reft));
RefV = resize (reft, scale);
scale = max(size(data)) /max(size(x));
TestV = resize(x,scale);
err = GetErr (RefV,TestV);

%$Draw the results

vl =p > 1;

hold on;

y = normalize (data);

plot (y);

xlabel ('Time (Samples)');

stem(x,yl);
stem (reft, refM) ;
dx = 0.01 * max(x);
dy = 0.01 * max(refM);
for k =1: max(size(l))
text (reft (k)+ dx,refM(k)-5 * dy,1(k),'FontSize',14);
end
y2 = normalize (resample (df,max(size(data)),max(size(df))));
t = l:max(size(y2));
plot(t,y2./max(y2),'r");
hold off;
catch exception
display (exception.identifier);
end
end

Here is below the Matlab function "resize", which is used to resize the vectors without changing the relative indices of the data.
This function is very important to unify the size of the data vectors before applying the error function.

oo

%y = resize(x,scale)
Resize array x using the given scale. All eleménts are mapped as of the
percentage distance of thier index in the given array.

o°

o°

% X : The array to be processed.

% scale : Index scale. If scale > 1, then the output array will be sized as
% (the original array size - 1) * scale

Sy : The output array.

% Amr M. Gody

function y = resize(x,scale)

oldsize = max(size(x));

newsize = (max(size(x))-1) * scale;

z = zeros (newsize,1l);

for u = l:oldsize
d = int32(1 + (u-1) * scale);
z(d) = x(u);

end

y = z;

end

Here is below the Matlab function for framing the speech signal

% data : Samples of Speech signal stored into a column array
% n 3 Required Frame size in samples
%P 3 Required Frames overlap in samples
% £ 3 This is the output Frames array. The frames are stored into the columns.
% window : Default =0
% 0 : none
% 1 3 Hamming
function [f] = framing(data,n,p,window)
nbIn = nargin;
if nbIn < 3 , error ('Not enough input arguments.');
elseif nbIn==3 , window = 0;
end

data = ToColumn (data);
i =size(data);

maxindex = 1(1);
s=1;
e=n;
if window == 0 f=data(s:e);
elseif window ==1 , f=data(s:e).*hamming(n);
end
while i(1)>0;
s=s+n-p;
e=s+n-1;
1(1)=i(1)-n+p;
if (e<maxindex)

if window == 0 f = [f data(s:e)];
elseif window ==1 , £ = [f data(s:e).*hamming(n)];
end

end

end
end

1
g 53
\
05 \‘\
N/
0 ba bl bhnl
Ty
05 1 1 1 L)
) 05 1 15 2 15
Tima |Sarples) w10t
Sample a
2r¢ &

s \jﬂ i

05 | I I | I |

1 2 3 3 3]
Time (Samgles) %1
Sample b
z T T T T
s a b |~@ a |h sl
15 —
1 -
{
85l ['l J \ | Jﬂﬁ o
| |
| { AR
1l |
|
24y 41 Iz l3 : ; 3
Time [Samgas) w10
Sample ¢

Figure 6 BTE phoneme boundaries for two speech signals. Y axe is used to reference the signals in the composite graph. The signal at level 2 is the baseline
markers signal obtained manually for phoneme boundaries. Annotation is available at the same level y=2. The obtained results are at Y = 1. It is highlighted by
the small circles on the top of the marker lines. The disturbance measure function is fluctuating about Y = 0.5. Speech signal is fluctuating about Y = 0.0.

7. CONCLUSIONS

BTE is very promising in tracing non stationary property variations along speech duration. It is utilized here to find phoneme
boundaries. It indicates promising results. Tracing a very hard to detect phoneme is obtained in reasonable accuracy. To avoid
wrong markers, peak detection algorithm of disturbance function may be modified to catch the proper peaks. But for the
detected peaks there are less than 10% drift of the manually estimated phone boundaries.

8. REFERENCES
[1] Amr M. Gody,"Wavelet Packets Best Tree 4-Points Encoded (BTE) Features", the 8th Conference on Language
Engineering, PP. 189-198, 2008, Cairo, Egypt.
[2] Amr M. Gody," Voiced/Unvoiced and Silent Classification Using HMM Classifier based on Wavelet Packets BTE features
", the 8th Conference on Language Engineering, PP. 199-213, 2008, Cairo, Egypt.
[3] losif Mporas, Todor Ganchev, Nikos Fakotakis, ""Phonetic segmentation using multiple speech features", International
Journal of Speech Technology, Springer Netherlands, VVolume 11, Number 2 / June 2008, PP. 73-85

[4] Kris Demuynck, Tom Laureys, "A Comparison of Different Approaches to Automatic Speech Segmentation", Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, Volume 2448/2006, ISBN 978-3-540-44129-8, PP. 385-406

[5] Z. M. gari¢, S. R. Turajli¢, "A new approach to speech segmentation based on the maximum likelihood", Journal of Circuits,
Systems, and Signal Processing, Birkh&user Boston, VVolume 14, Number 5 / September 1995, PP. 615-632

[6] Chin-Teng, Der-Jenq, Rui-Cheng, Gin-Der, "Noisy Speech Segmentation/Enhancement with Multiband Analysis and
Neural Fuzzy Networks", Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume 2275/2002, ISBN 978-3-
540-43150-3, PP. 81-94.

[7] Yanxiang Chen, Qiong Wang, "A Speaker Based Unsupervised Speech Segmentation Algorithm Used in Conversational

Speech", Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Volume 4798/2007, ISBN 978-3-540-76718-3, PP.
396-402.

Printed-Arabic Large TExt Corpus for OCR
Research (P-ALTEC)

Waleed Fakhr™, Mohsen Moftah™, Mohsen Rashwan™3, Mohamed ElMahallawy
* College of Computing, Arab Academy for Science and Technology
Ahmed Ismail street, Heliopolis, Cairo, Egypt

lwaleedf@aast.edu

‘mohsen.moftah@barmagyat.com

‘mahallawy@aast.edu
* Communications Department, College of Engineering, Cairo University
Giza, Cairo, Egypt
‘mohsen rashwan@rdi-eg.com

Abstract—A Printed-Arabic Large Text Corpus (P-ALTEC) is proposed and developed by the Arabic
Language Technology Center (ALTEC) [1]. The corpus is a large database that is intended for advanced
research and prototype product development of optical character recognition (OCR) Arabic printed text.
The database is designed to cover all important fonts used in Arabic printed documents (Windows and
MAC), with plain and bold modes for each font, as well as a coverage of 7 sizes from 10 to 22. The database
also has each document in clean, copied, mobile camera and digital camera-captured and typewriter forms
to cover different practical qualities and acquisition states. The Arabic words come from a corpus that is a
cleaned part of the Arabic Gigaword, with a lexicon of more than 500,000 unique words. An algorithm was
developed to produce unique lists of words such that they cover all possible character and ligature shapes
for all used fonts, at least 10 times in the clean data for each unique list. With 85 unique lists used, the
database contains approximately 100,000 unique words, 11,000 pages, and 300 different character and
ligature shapes. Character level segmentation is available for about 10% of the documents, with full word-
based annotation and segmentation for the whole data. (P-ALTEC) should be available to the research
community by March 2011.

Index Terms— Arabic OCR, Arabic printed text, ALTEC, P-ALTEC

I. INTRODUCTION

Arabic characters are used in writing by nearly a billion people worldwide. Hence, huge amount of printed Arabic
documents are available without digital source. These documents may be governmental, historical, educational, and
artistic such as books and magazines. Optical Character Recognition (OCR) is a technology that allows transforming
such documents into digital forms for archiving, retrieval, and editing. OCR has matured quite well in European
languages such as English and French [2-4], where the performance of available products is highly accurate and robust.

Arabic OCR products, on the other hand, still suffer from an obvious gap in performance with their Latin counterparts.
In particular, in cases where the documents that are being processed are of low quality due to the aging of the source
(books, magazines, historical documents), or the acquisition method (copier, mobile camera, Fax, etc.). Furthermore,

Arabic characters have many different shapes that are font dependent both in single characters and in ligatures. Added

mailto:2waleedf@aast.edu

2

with the large number of fonts that are used in the documents (current and historical), this gives the Arabic OCR its
special challenges and difficulties.
Since all OCR products depend on machine learning concepts, and since all machine learning algorithms require
training data, then, a training database is always a very important component in producing any OCR product or research
prototype. Designing a training database is always a difficult task, in particular, when the aim is to make products. In
that sense, the OCR research team in ALTEC [1] spent a large amount of time and efforts trying to come up with an
Arabic printed text database that is diverse enough to cover almost all different alternations of the Arabic characters and
ligatures, over most frequent qualities encountered in practice. The database aimed covers approximately 300 different
character and ligature shapes over 15 different Arabic fonts for Windows and MAC systems. The documents are
available in clean form (print and scan), as well as copied form (copy from clean then scan), and digital and mobile
camera forms. Also, a large number of books and theses covering a large time span are included in scanned forms using
book digitizer technology. All the documents are transcribed down to the word level. As well, 10% of the documents
(distributed over the whole document population) have character-ligature level segmentation and annotation. The
database will be available to the research and industry by the end of March 2011, and will include approximately 11,000
pages, with more than 100,000 unique words and 15 different fonts, with 7 sizes between 10 and 22.

1. ArRABIC OCR TECHNOLOGY
Since the mid-1940s researchers have carried out extensive work and published many papers on character recognition.

Most of the published work on OCR has been on Latin characters, with work on Japanese and Chinese characters
emerging in the mid-1960s. Although almost a billion of people worldwide, in several different languages, use Arabic
characters for writing (alongside Arabic, Persian and Urdu are the most noted examples), Arabic character recognition
has not been researched as thoroughly as Latin, Japanese, or Chinese and it has almost only started in the 1970’s. This
may be attributed to the following:

(i) The lack of adequate support in terms of journals, books, conferences, and funding, and the lack of
interaction between researchers in this field.

(if) The lack of general supporting utilities like Arabic text databases, dictionaries, programming tools, and
supporting staff.

(iii) The late start of Arabic text recognition.

(iv) The special challenges in the characteristics of the Arabic script as stated in the following section. These
characteristics results in the fact that the techniques developed for other writings cannot be successfully
applied to the Arabic writing: Different fonts, etc;

In order to be competent with the human capability at the digitization of printed text, font-written OCR’s should achieve

an omni-font performance at an average WER<3% and an average speed > 60 words/min. per processing thread. While

3
font-written OCR systems working on Latin script can claim approaching such measures under favorable conditions, the
best systems working on other scripts, especially cursive scripts like Arabic, are still well behind due to a multitude of
complexities [windows magazine 2007]. For example, the best reported ones among the few Arabic omni font-written
OCR systems can claim assimilation WER’s 3%and 10% generalization WER's under favorable conditions (good laser
printed windows and Mac fonts) [5-7].

Arabic OCR challenges

The written form of Arabic language while written from right to left presents many challenges to the OCR developer.

The most challenging features of the Arabic orthography are [5-8]:

i) The connectivity challenge

Whether handwritten or font written, Arabic text can only be scripted cursively; i.e. graphemes are connected to one
another within the same word with this connection interrupted at few certain characters or at the end of the word. This
necessitates any Arabic OCR system to not only do the traditional grapheme recognition task but do another tougher
grapheme segmentation one (see Figure 1) To make things even harder, both of these tasks are mutually dependent and
must hence be done simultaneously.

yyanl o e Crmadl o ol ol Sold detul A y a2

Figure (1): Grapheme segmentation process illustrated by manually inserting vertical lines at the appropriate grapheme
connection points.

ii) The dotting challenge

Dotting is extensively used to differentiate characters sharing similar graphemes. According to Figure (2), where some
example sets of dotting differentiated graphemes are shown, it is apparent that the differences between the members of
the same set are small. Whether the dots are eliminated before the recognition process, or recognition features are
extracted from the dotted script, dotting is a significant source of confusion — hence recognition errors — in Arabic font-

written OCR systems especially when run on noisy documents; e.g. those produced by photocopiers.

| -+
-

-
Y © y

BE RN PR IR T E T KSR '

Figure (2): Example sets of dotting-differentiated graphemes

iii) The multiple grapheme cases challenge
Due to the mandatory connectivity in Arabic orthography; the same grapheme representing the same character can have
multiple variants according to its relative position within the Arabic word segment {Starting, Middle, Ending, Separate}

as exemplified by the 4 variants of the Arabic character “ ¢” shown in bold in Figure (3).

& & L3 T

Figure (3): Grapheme “ ¢” in its 4 positions; Starting, Middle, Ending & Separate

iv) The ligatures challenge

To make things even more complex, certain compounds of characters at certain positions of the Arabic word
segments are represented by single atomic graphemes called ligatures. Ligatures are found in almost all the Arabic fonts,
but their number depends on the involvement of the specific font in use. Traditional Arabic font for example contains
around 220 graphemes, and another common less involved font (with fewer ligatures) like Simplified Arabic contains
around 151 graphemes. Compare this to English where 40 or 50 graphemes are enough. A broader grapheme set means
higher ambiguity for the same recognition methodology, and hence more confusion. Figure (4) illustrates some ligatures

in the famous font “Traditional Arabic”.

Figure (4): Some ligatures in the Traditional Arabic font.
iv) The overlapping challenge

Characters in a word may overlap vertically even without touching as shown in Figure (5).

overlaps Ei k l

Figure (5): Some overlapped Characters in Demashq Arabic font.

v) Size variation challenge

Different Arabic graphemes do not have a fixed height or a fixed width. Moreover, neither the different nominal
sizes of the same font scale linearly with their actual line heights, nor the different fonts with the same nominal size
have a fixed line height.
vi) The diacritics challenge
Arabic diacritics are used in practice only when they help in resolving linguistic ambiguity of the text. The
problem of diacritics with font written Arabic OCR is that their direction of flow is vertical while the main

writing direction of the body Arabic text is horizontal from right to left (See Figure (6)). Like dots;

5
diacritics —when existent— are a source of confusion of font-written OCR systems especially when run on

noisy documents, but due to their relatively larger size they are usually preprocessed.

L]

di' N - p’.z/n o -ﬂﬁ zf-ﬂ; - /;0’;
o gmidl Tor el Lasdl J3UE 2l Al 53

Figure (6): Arabic text with diacritics.

I111. ARABIC OCR STATE OF THE ART

OCR is a highly mature technology for Latin script with excellent performance. The main challenges are in the pre-
processing, page segmentation, speed of batch processing and post-processing. OmniPage-17 by Nuance is an example
of such a product with less than 1% CER [9].
Regarding Arabic OCR products, there are mainly three mature engines from SAKHR, VERUS from NovoDynamics
and ReadIRIS. Sakhr has around 1% CER for good quality documents but may drop significantly with poor quality
documents. It offers high speed, and best output layout [10]. VERUS on the other hand is a little lower than Sakhr for
good quality but significantly better for poor quality documents. It is to be noted that Bibliotheca Alexandrina uses both
engines for its digitization project. Finally, ReadIRIS has the lowest performance of the three [10], however, no
elaborate comparison between the three has been published yet.
Regarding the current research efforts, the focus mainly is on producing true Omni OCR for different font families, font
sizes (specially the large), document pre-processing and framing, noise robustness, and batch-mode speed. Most recent
research to improve the performance employ hidden Markov models (HMMs), and fusion between multiple OCR
systems targeting Omni font performance. Recent competitions focus on document analysis and page segmentation
(ICDAR 2009) [2].
From the above, for the Arabic OCR to narrow the gap in performance with the Latin counterparts, the following is
required:

1- Creation of a standard thorough database that would be available to research and development groups who are

doing serious Arabic OCR systems development.
2- Creation of a standard benchmark database that would be available to the research and development groups with
regular evaluation workshops that include competitions on the benchmark data.

The aim of ALTEC is exactly the above. In that sense, the P-ALTEC database has been developed, where a portion will

be dedicated to benchmarking and a near future competition.

1V. DATABASE DESIGN
1. Introduction

The project aims to generate a corpus or a database of wordlists and images to be used in OCR related development and
research. The produced wordlists should cover every possible occurrence of Arabic letters and ligatures in different
positions within the word. We used a cleaned portion of Arabic Gigaword corpus which contains 500K unique words as
the source from which the required wordlists will be produced. The plan was to produce wordlists for 13 Arabic fonts
namely Simplified Arabic, Arabic Transparent, and Traditional Arabic for Windows and Dahab, Riadh, and Naskh for
MAC, each with Bold and normal, and also the normal Typewriter font. Each unique list is designed to cover every
possible Arabic shape at least 10 times. Finally, we have extended the lists to 85 lists by having a unique list for each of
the 7 font sizes used covering approximately 100,000 unique words.

2. Research Phase

During this phase many approaches were examined to tackle the problem. The first approach was to look at different
letters’ shapes within different context. Since we are looking at letter shapes, it is impossible to use the normal ASCII
Code based character set, because this coding scheme keeps only one code for every letter called the code page, and the
shape shown at display/print time is selected from the font page through a Contextual Analysis process, which
determine which letter shape to display/print according to its position in the word. To handle letter shapes shape by
shape, we had to use UNICODE Coding scheme that gives a unique code for every shape either a single letter or
ligature as shown in Tablel. Therefore, the first conclusion was that we have to convert the source wordlist from ASCI|I
coding to UNICODE coding system. To guarantee that the wordlist covers all letters in all contexts, we decided to work
on tri-graphemes where a tri-grapheme is a group of three letters. A prototype application was development that creates
all possible tri-graphemes, then the program scans the wordlist and counts all occurrences of every tri-graphemes
(determine tri-graphemes coverage); Tri-graphemes with counts greater than zero are considered legal. Running the
prototype on a subset of the source wordlist, we found that working on Tri-graphemes will require a huge wordlist to
select from to satisfy an acceptable coverage. In addition to that, the produced wordlist will be impractically large, so it
was decided to work on bi-graphemes which will cover all possible latter context and produce a wordlist of practical
size. The prototype was run on the source wordlist based on bi-graphemes to produce 3225 legal bi-graphemes out of
15625 possible bi-graphemes. Another program was developed to create output wordlist for the extracted legal bi-
graphemes, the produced wordlist was 25K words for 20 words coverage which is still considered a large number.
Table 1: UNICODE Coding scheme

Hex Code | Shape | Hex Code | Shape ‘ Hex Code ‘ Shape ’ Hex Code ’ Shape | Hex Code | Shape
fe80 ¢ | fe99 & | feb2 v | fecb s | feed -

fe81 J fe9a & | feb3 = | fecc ~ | feeb J

fe82 U | fe9b 5 | feb4 ~ | fecd ¢ | feeb O
fe83 i | fe9c 3 | febs | fece & | fee7 3
fe84 L | feod z | feb6 | fecf ¢ | fee8 3
fe85 5 | fe9e z | feb7 < | fedO x| fee9 >
fe86 5 | feof > | feb8 < | fedl < | Feea 4
fe87 ! | feal > | feb9 o= | fed2 < | Feeb £
fes88 L | feal c | feba o= | fed3 i | Feec "
fe89 & | fea2 = | febb | fedd 3 Feed)
fe8a & | fea3 ~ | febc = | fed5 3 | Feee E)
fe8b 3 fead ~ | febd u= | fed6 3 | Feef S
fe8c 3 | fea5 z | febe o= | fed7 i | fefo 2
fe8d I | feab & | febf = | fed8 5 | fef1 T
fe8e L | fea? A | fecO = | fed9 d | fef2 -
fesf < | fea8 A | fecl L | feda d | fef3 X
fe90 < | fea9 > | fec2 L | fedb S | fefd X
fe91 s | feaa > | fec3 L | fedc < | fefs Y
fe92 2 | feab 3 | fecd L | fedd J | fef6 A
fe93 3 | feac 3 | fecs L | fede J | fef7 b
fe94 4 | fead s | feck L | fedf 1| fef8 bl
fe95 < | feae o | fec7 L | fee0 1 | fef9 Y
fe96 < | feaf 5 | fec8 L | feel » | Fefa A
feg7 3 | febo o | fec9 ¢ | fee2 e | Fefb Y
fe98 i | febl o | feca & | fee3 « | Fefc bt

After discussion with font and OCR experts, we confirm that letters shapes do not change with context so we decided to
work on uni-graphemes, and that it is enough to have 10 instances of each uni-grapheme i.e. coverage will be 10 words.
Accordingly, the same prototype was run for uni-grapheme producing a significantly small wordlist of about 600 words.
Since wordlists will be produced for different fonts, it was time to introduce ligatures for different fonts. Another
program was developed to count the coverage of some commonly used ligatures, it was found that the coverage is
dramatically bad; therefore, we had to consider the ligatures as part of the Arabic letter list and re-create the wordlist
that satisfies the coverage required. The produced wordlist was about 1200 words.

The last part of the research phase was to examine producing different wordlists for different fonts. After carrying out
statistics on the source wordlist and uni-grapheme and ligatures coverage, it was found that uni-graphemes and ligatures
are not equally covered in the source word list so words for uni-graphemes/ligatures with lower coverage should be

repeated among different lists to guarantee that all uni-graphemes and ligatures are represented in every list.

Accordingly, the following algorithm, illustrated in Figure 7, was used to produce wordlists.

1. In the source wordlist, every word was assigned a rank initially zero.

2. Uni-graphemes/ligature are processed individually. And for every uni-grapheme/ligature based on the coverage
required, words from the source wordlist are selected and sorted by rank on ascending order. The selected
words are then copied to the output list and their ranks in the source wordlist is incremented by one.

3. Step 2 is repeated until all uni-graphemes/ligatures are processed.

Since at every iteration the selected words are sorted by rank in ascending order, it is guaranteed that always less used
words and/or not used words come at the top of the list Figure 7 explains this algorithm.

In this way if the uni-grapheme/ligature has high coverage it will be represented by different words in different lists.
Repetition of words in different lists (overlap) will increase with uni-graphemes/ligatures with lower coverage.

The previous steps were repeated as many times as the required number of lists.

Specify List No

v

Specify required
Coverage

A

Take top
| uniigrapheme/ligature

A

Get No words<=Coverage
containing the
unigrapheme/ligature from
WordList sorted on word
rank in ascending order

v

Copy the selected
words to the output
list

!

Increment the rank of
the selected words in
source wordlist

Figure (7): Word Selection Algorithm

9
Finally, the implementation of the above research resulted in developing a number of programs to carry out the required
tasks to achieve the following:

1. Use three Arabic fonts simplified Arabic, Arabic transparent, and Traditional Arabic. In two modes Normal,
and Bold.

2. A different list will be used for different fonts and different mode.
3. Two sets of lists will be produced one for Windows and another for MAC.
4. Another list will be for typewriter font.

3. Development and Implementation Phase

The following are the steps followed to create the Arabic Wordlist needed. For every step there is corresponding
program developed to carry out the specific stem

(i) Specify Arabic Letters Specifications
In this program all Unicode Arabic letters shapes are displayed and letter specification is set. The specification

include the position of each letter and whether it is connected or not, Figure 8.

ALTEC Language Resources

Lexicon Create Graphemes Create Word List Exit h
- Form7 u = |[=
Save Close
Unicode Character Start Middle End Isolated ASCII Disconnected -
v T & & & @ | m |3
fes1 i Eil O ™ i ™
| fed2 i [£l & i 53]
fe83 i 7 # i £l
fe84 i E El 0 i]
feds [} 5 |
fe86 i]]]| Eil
fes7 | 7 v ! ¥
fess L . B | B | ®m | @B ._ @ -

Figure 8: Unicode Arabic Letters Specifications

(ii) Create Unicode Lexicon
This program reads the words from the pre-prepared Arabic wordlist and each word undergoes a contextual

analysis process to convert the word from normal ASCII code to Unicode shapes. The program analyses the
word letter by letter to determine the specification of each one based on its position in the word and whether it is

connected or not.

10

% ALTEC Language Resources

Lexicon Create Graphemes Create Word List Exit

3 Form6 [F=3f=E £

Number Of Words

Word Count

Create Unicode I l

Lexicon Close

Figure 9: Create UNICODE Lexicon

The result is table containing the words with its Unicode representation. Table 2 shows a sample of the
UNICODE lexicon produced. As shown, using UNICODE scheme enables us to deal with letters shapes

separately.

Table 1: Unicode and ASCII Wordlist
Unicode | ASCII
iely)l iel) sel,0d del)
Ledslpyd | el lecpl)y d | el
Liage)l bec N | 1pasgsd Liaxe)

(iii) Create Multiple Wordlist

This program produces as many wordlists as required based on the input criteria as shown in Figure 10. The
produced wordlist order could be based on Tri-graphemes, bi-graphemes, or uni-graphemes, below is the

explanation of the input criteria.

11
ALTEC Language Resources

Lexicon Create Graphemes Create Word List Legatures Ceate Files Exit

a=' Forml0 [E=B(ECE(Ex>)
Create Multiple Word Lists
List # 1 Graphemes Order @ UniGrapheme BiGrapheme TriGrapheme
Coverage lb Threshold 0
MNumber Of Graphemes 1 Grapheme Count
Start Time
Start Close

Figure 10: Create Multiple Word List

Grapheme Order: Uni-grapheme, Bi-graphemes, or Tri-graphemes

Coverage: minimum number of instances of required grapheme.

Threshold: the grapheme frequency after which grapheme will be processed.

Number of Graphemes: the number of graphemes to be processed in the current run.

The selected words that satisfy the input criteria are written to a new list according to the algorithm in Figure
7.

The selected criteria in our run was:

Grapheme Order: Uni-grapheme

Coverage: 10

Threshold: 0

This program was run 13 times to produce 13 output wordlists (then was extended to produce 85 lists, but
throughout this section we will mention the basic 13 lists). Every wordlist contains a number of unique words
not included in any other wordlist, some words common with another wordlist, some words common with
three wordlists and so forth. Table 3 and Figure 11 show a statistics of the word distribution among the 13

wordlists.

Table 2: Produced Lists and Repetition Distribution

12

Lists
List01 List02 List03 List04 List05 List06 List07
Count % Count % Count % Count % Count % Count % Count %
1 897 74.6 871 72.3 865 71.7 868 72.5 855 71.3 848 70.7 850 70.5
2 49 4.1 66 55 90 75 105 8.8 118 9.8 115 9.6 124 10.3
3 92 7.7 98 8.1 82 6.8 50 4.2 47 3.9 64 5.3 76 6.3
4 44 3.7 45 3.7 52 4.3 55 4.6 59 4.9 51 4.3 36 3.0
- 5 21 1.7 28 2.3 18 15 20 1.7 26 2.2 22 1.8 22 1.8
.g 6 10 0.8 13 1.1 16 1.3 10 0.8 10 0.8 12 1.0 10 0.8
‘é 7 20 17 14 12 15 1.2 21 1.8 16 1.3 18 15 19 16
2 8 5 04 5 04 10 0.8 10 0.8 7 0.6 3 03 5 04
9 15 1.2 15 1.2 10 0.8 10 0.8 13 1.1 17 14 15 1.2
10 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8
11 1 01 1 01 2 0.2 2 02 2 0.2 2 0.2 2 0.2
12 9 0.7 9 0.7 8 0.7 8 0.7 8 0.7 8 0.7 8 0.7
13 29 24 29 24 29 24 29 24 29 24 29 24 29 24
1202 1204 1207 1198 1200 1199 1206
Table 3 continued
Lists
List08 List09 List10 List11l List12 List13
Count % Count % Count % Count % Count % Count %
1 841 68.6 848 70.7 849 69.5 847 69.1 800 66.7 821 67.2
2 135 11.0 114 95 115 9.4 116 95 128 10.7 121 9.9
3 80 6.5 82 6.8 87 7.1 105 8.6 86 7.2 86 7.0
4 36 29 51 4.3 57 4.7 36 29 62 5.2 64 5.2
- 5 25 20 28 2.3 19 1.6 18 15 28 2.3 25 20
= 6 15 1.2 7 0.6 13 1.1 14 1.1 11 0.9 15 1.2
*é 7 15 1.2 18 15 18 15 21 1.7 15 1.3 21 1.7
= 8 7 0.6 8 0.7 1 01 10 0.8 9 0.8 0 00
9 13 1.1 12 1.0 19 1.6 10 0.8 11 0.9 20 16
10 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8 10 0.8
11 2 0.2 2 0.2 2 0.2 2 0.2 1 01 1 01
12 8 0.7 8 0.7 8 0.7 8 0.7 9 0.8 9 07
13 29 24 29 24 29 24 29 24 29 24 29 24
1216 1217 1227 1226 1199 1222

13

(iv) Create Output Wordlist Files
This program takes as input the list number for which it is required to create wordlist file in text format. File

name is automatically created, the rest of the input criteria specify the wordlist to be used as input (see Figure
11).

Lexicon Create Graphemes Create Word List Legatures Ceate Files Exit

-

a5 Form12 F=0|EoR|<=|

Create Wordlist Output Text File

List Number 7[

Graphemes Order @ UniGrapheme © BiGrapheme © TriGrapheme

Coverage 10

Output Flename List_7.txt

Start Close

Figure 11: Create Output Wordlist Files

This program is run 13 times to produce the required 13 wordlists.
(v) Create Text for Printing

The produced text file was opened using MS Word one at a time and the font and size were changed to produce

different file for different font and size.

4. Request for Proposal Phase

The production of the database is currently underway based on a request for proposal (RFP) that has been distributed to
all local companies working in the field. The details of the RFP are as follows.

(i) Fonts and Sizes for the word lists

The production of the required output will be carried out according to the following specifications:
1. Fonts:

a.For Windows Platform
1) Simplified Arabic

14

2) Arabic Transparent
3) Traditional Arabic

b.For MAC Platform:
1) Dahab
2) Riadh
3) Naskh

Each font is done twice for both Normal and Bold.
c. Manual Typewriter (fixed mode and font)
(This sums to 13 different streams).

2. Sizes (for Windows and MAC): Each of the above is required to be produced for those sizes (except the
typewriter): 10, 12, 14, 16, 18, 20, and 22

The bidders will be provided with the following files:
1. Arabic Word Lists: these lists are text files named ListO1.txt, List02.txt, up to List85.txt.
2. Letters and Ligature Files: these files contain the shapes of individual Arabic letters and Arabic Ligatures
for every font, the files names are:

a.For Simplified Arabic: Simplified-Arabic_Letters-and-Ligatures.txt
b.For Arabic Transparent: Arabic-Transparent_L etters-and-Ligatures.txt
c.For Traditional Arabic: Traditional-Arabic_Letters-and-Ligatures.txt
d.For Dahab: Dahab_Letters-and-Ligatures.txt
e.For Riadh: Riadh_Letters-and-Ligatures.txt
f. For Naskh: Naskh_Letters-and-Ligatures.txt

(ii) Books and Theses Documents:
1500 pages from different books will be selected (average of 10 pages from each book for copyright constraints which

gives approximately 150 books). The books will be chosen to cover uniformly the past 50 years. In addition, 1000
theses (in Arabic) will be selected as well which should also cover uniformly the past 50 years. Books should come
from at least 15 different categories based on the fonts and sizes used. The books used will be classified manually and
approved by ALTEC. Theses should come from at least 10 different categories based on the fonts and sizes used. The

theses used will be classified manually and approved by ALTEC.

15

(iii) Naming Convention
The output files names should follow the following naming convention:
The Base file names will consist of the following parts
o System Type: WIN (for windows), MAC, BK (for book), or TH (for thesis)
e Source List No: 01, 02, etc., or book No: 01, 02, etc.
o Page number in the list or in the book 01, 02, etc.
e Font Name: (SA for Simplified Arabic), (AT for Arabic Transparent), (TA for Traditional Arabic) (DH for
Dahab, RH for Riadh and NH for Naskh).
e N for Normal, B for Bold.
o TP for Typewriter
e Font Size: 10-22
Example:
For Windows system, Source List file List02.txt, 3™ page in the list, font Simplified Arabic, Size 10, Normal the file
name will be:
WIN_02_03_SA_10 N
For MAC system, Source List file List08.txt, 10" page, font Dahab, Size 10, Bold the file name will be:
MAC_08_ 10 DH_10 B
For the book number 17, 7 page, noting that the books and theses will be captured directly by a book digitizer as an
image:
BK_17 07

(iv) Document Production
The documents production stage has two steps for the windows. MAC and typewriter lists: the first is the printing step

and the second is the scanning step. As for the books and theses, we go directly to the scanning step.

Printing and Imaging

In printing step, the produced output files are printed then undergo different processes to add noise to the produced
document. At the end of this step, the following document versions should have been produced:
1. Clean Version: the clean version is the first print out from the created files. Printing should be done using a
different printer for every document set (at least 20 different printers should be used). In addition, the original
document produced by typewriter is to be considered as clean version.

2. Copy Version: the clean version should be photocopied using different photocopying machines (at least 12).

16

3. Photo the clean version using Digital Cameras and Mobile Cameras. (At least 10 digital cameras and 10 mobile
cameras). In this case, no scanning will be required since we will get the jpg images directly. All cameras
should be at least 5SMpixel of resolution, and the distance to the documents should be 50cm. 50% of the imaging
should be with separate cameras, and 50% with mobile cameras. The produced jpg images of this step will not

undergo any further processing.

Scanning and Digitizing

The documents produced by the printing step (1 and 2 above) are scanned using a different scanner for every set of
documents (at least 12 scanners are required), and saved in (jpg) format. The scanning should be done using the
following resolutions: 200, 300 and 600 dpi.
As for the books and theses, a Book Digitizer must be used to produce three resolution versions of each page: 200, 300,
and 600 dpi.
At this stage, all documents have been transformed into jpg images.
The produced (jpg) files names should have the same name as the source file from which it was printed in addition a
new suffix to show the version from which it was created. The suffixes will be as follows:

C: Clean Version

P: Copy Version

D: Digital Camera Version

M: Mobile Camera Version

B: Books Version

H: Thesis Version

Another suffix should be added which indicates the resolution used.

Accordingly, if we print a file such as (WIN_05_03_TA_16_N) and expose it to different processing mentioned before,
the scanned file names should be as follows:

Clean Version, 200 dpi: WIN_05 03 TA 16 N C 2.JPG

Clean Version, 300 dpi: WIN_05 03 TA 16 N _C 3.JPG

Clean Version, 600 dpi: WIN_05 03 TA 16 N_C 6.JPG

Copy Version, 200 dpi: WIN_05_03 TA 16 N_P_2.JPG

Copy Version, 300 dpi: WIN_05_ 03 TA 16 N_P_3.JPG

Copy Version, 600 dpi: WIN_05_ 03 TA 16 N_P_6.JPG

Digital Camera Version: WIN_05 03 TA 16 N_D.JPG

Or a Mobile Camera Version: WIN_05 03 TA 16 N _M.JPG

As for the Typewriter written documents we will have the original printed version (clean) then they will undergo the

copying step as well as the camera step. The naming will be as follows (also, for 200, 300 and 600 dpi):

Clean Version, 200dpi: TP_13 05 C 2.JPG

Copy Version, 200 dpi: TP_13 05 P_2.JPG

As for the Books and Theses names, the dpi should be added to the base name (2, 3 and 6 for 200, 300 and 600dpi):
BK_17 07_3.jpg (for book number 17, page humber 7 and 300dpi).

Same goes for these:
TH_44 01 6.jpg (for thesis number 44, page number 1 and 600dpi)

(v) Segmentation and Annotation:

The following are the required outputs associated with each image file:

1-

It is required to have a text transcription file for each image file. Text transcription files are required to be xml

17

files that include all the details of each image (file name, font, size, quality, etc.) plus the full text transcription

of the corresponding image for each line.

It is required to have full line segmentation for each line in the image with full information about the

starting/end and height of each line in the image so that the user can extract the line directly from the image

(using the upper right and lower left <x , y> coordinates).

It is required to have word boundary segmentation for all the lines, which gives the starting /end of each word,

its height (using the upper right and lower left <x , y> coordinates).

This information should be included in the transcription files and it should allow the user to extract any word

directly from the image.

It is required to have character boundary segmentation for a portion of the produced data. These boundary

segmentations should also give the <x , y> coordinates of the box containing the character.

The particular portion to be character-segmented documents should be 10% of the whole data, such that

approximately 10% of the images are taken for each category as follows:

a.

o o T

10% for each font (12 fonts), each size (7 sizes) and each resolution (3 resolutions) plus 10% of the
typewriter images.

10% of all the copied documents images

10% of all the digital camera and 10% of all the mobile camera images.

The pages taken should be taken at random to cover all shapes and characters.

10% of all the books images such that 10% is taken from each book category, and for each resolution.

10% of all the theses images such that 10% is taken from each category and for each resolution.

18

Transcription files naming should have the same naming convention as the corresponding image files, except for the
xml extension for example:
WIN_05 03 TA 16 N_C_2.xml
1- The convention to be used in all segmentations is the box convention, where each line, word, character
(ligature) would be enclosed by a box. The segmentation gives the (x1,y1) and (x2,y2) coordinates of that box,
which are the upper right and lower left coordinates respectively.

2- Each line in the transcription files should correspond exactly to the same line in the corresponding image.

V. CONCLUSION
A Printed Arabic Text Large Database (P-ALTEC) is proposed and developed by the Arabic Language

Technology Center (ALTEC). The database is intended for advanced research and prototype product development
of optical character recognition (OCR) Arabic printed text. The database is designed to cover all important fonts
used in Arabic printed documents (Windows and MAC), with plain and bold data for each font, as well as a
coverage of sizes from 10 to 22. The database also has each document in clean, copied, camera-captured and
typewriter forms to cover different practical qualities and acquisition states. The database contains approximately
100,000 unique words, 11,000 pages, and 300 different character and ligature shapes. Character level
segmentation is available for about 10% of the documents, with full word-based annotation and segmentation for
the whole data. (P-ALTEC) should be available to the research community by March 2011.

REFERENCES

[1]. ALTEC website: http://www.altec-center.org/index.php

[2]. ICDAR 2009 technical program: http://www.cvc.uab.es/icdar2009/techprog.html

[3]. J. Makhoul et. al., "Multilingual Machine Printed OCR", IJPRAI (15.1) 2001.

[4]. Mohamed Cheriet et. al., "Character Recognition systems, A Guide for Students and Practitioners”, Wiley
Inter-science, 2007.

[5]. Rashwan, M., Fakhr, W., Attia, M., EI-Mahallawy, M., Arabic OCR System

[6]. Analogous to HMM-Based ASR Systems; Implementation and Evaluation, Journal of Engineering and Applied
Science, Cairo University, www.Journal.eng.CU.edu.eg, December 2007.

[7]. Al-Badr, B., Mahmoud, S.A., "Survey and Bibliography of Arabic Optical Text Recognition", Elsevier Science,
Signal Processing 41 (1995) pp. 49-77.1.

[8]. Govindan, VK., & Shivaprasad, A.P., “Character recognition A review”, Pattern Recognition, Vol. 23, No. 7,
1990, pp. 671-683.

[9]. Hazem Y. Abdelazim, “Recent trends in Arabic OCR,” in Proc. 5th Conference of Engineering Language, Ain
Shams University, 2005.

[10]. http://www.nuance.com/imaging/omnipage/omnipage-professional.asp

[11]. H. Osman, Orange Egypt, personal communication.

http://www.altec-center.org/index.php
http://www.journal.eng.cu.edu.eg/
http://www.nuance.com/imaging/omnipage/omnipage-professional.asp

ARABIC LINGUISTICS AND IN-DEPTH TEXT
PROCESSING

Nabil Ali

nabilalii@gmail.com

Extended abstract - Text processing is currently being developed into a level of computation much
deeper than the conventional approaches adopted so far.
Main motivations are:

e The emergence of the Semantic Web

e Growing number of text-intensive applications, cultural and business as well.

e The increasing importance of language acquisition methods using ICT.

These have led to a paradigmatic shift in text processing characterized by the following major
trends:

o from generative grammar to cognitive grammar

o from list-based lexicography to concept-based lexicology

o from taxonomical classification to computational ontology

e from parsing to understanding

o from ad-hoc textual output generation to systematic text generation and summarization

o from statistical vs-rule-based dichotomy to genuine hybridity

o from sentential processing to textual corpus computational techniques.

All these trends call for more serious Artificial intelligence techniques capable enough to deal
with linguistic complexities involved in textual computation.

The above-mentioned trends are overviewed from an Arabic language perspective.

The study attempts to map between brain cognitive functions related to indeterminacy to
language tools and mechanisms to support such functions.

The study concludes by presenting list of proposed research areas in both fields of Arabic
computational and theoretical linguistics.

The presentation will be delivered in Arabic.

Arabic Character Recognition Using statistical
Moment Invariants and ANN

**1

Ismail 1. Amr*, Mohamed Amin™, Passent El-Kafrawy™™, and Amr M. Sauber ™2

“ College of Computers and Informatics
Misr International University, Cairo, Egypt
“Mathematics and CS Department, Faculty of Science,
Menoufiya University, Egypt

lpassentmk@gmail.com, ‘amrmausad@gmail.com

Abstract - Many Arabic character recognition systems have been proposed since the last three decades. Many
systems reported high recognition rates or high speed rate, however, they overlooked one of them but not both.
Any real-time system should have both factors. In this paper, a high-performance Arabic character recognition
system is introduced. The goal of the system is to maximize accuracy and minimize speed. The goal has been
achieved through developing a high-accuracy yet simple Arabic character recognition technique; the technique
is optimized using OpenMP-like technique for utilizing multithreads or multi-processors.

1 INTRODUCTION

Since the advent of computers, search for better interaction between man and computer has been
going on. The goal has been always to provide the computer with information that can be retrieved
and utilized afterwards. The merit of such interaction is usually evaluated through answering two
questions. The first is how accurate the process of transferring the information to the computer is.
The second is will the information be processed within the time specified by the user. The answer to
the first question involves researching the area of speech and character recognition. The goal is to
find the most accurate way to feed the machine with human voices or scripts. The second question
involves finding the optimum approach to attain that goal in terms of meeting the user's time
requirement. The emergence of multi-processing machines provided additional frontiers to meet
such requirements. Hence, an integration of a speech or character recognition system into a parallel
environment should be very promising.

Throughout the years, researchers have put great effort in Latin and other character recognition as a
way of facilitating man-machine interface [1][2][3][4]. Such research has led to the availability of
many commercial optical character recognition systems for Latin scripts. Similarly, since the early
eighties, a number of Arabic character recognition systems have been proposed [5][6][7][8][9][10].
Most systems achieved high recognition rates which is the rate of the number of recognized
characters to the total number of characters. Despite these high rates, most current systems ignored
the speed factor that has the same importance as the recognition rate. Building a recognition system
with a 100% recognition rate would be useless if the recognition speed fails in matching the required
specifications of real-time applications. As a result, our focus should be on building a recognition
system that achieves both full accuracy and high speed leading to an optimal communication
interface between the system and its users.

2 FEATURES OF ARABIC CHARACTERS

Arabic characters possess some unique features that make them different from English especially for
the recognition problem. The following are the main characteristics of Arabic characters [11]:
1. The Arabic language consists of 28 main characters. Whereas English characters can appear
in two forms (upper and lower), Arabic characters can have four different shapes, depending
on the position of the character within the word (beginning, middle, end, and isolated).

mailto:2passentmk@gmail.com
mailto:amrmausad@gmail.com

2. The Arabic word is always cursive.

3. The Arabic text is written from right to left.

4. Many Arabic characters (15 out of 28) have dots which are positioned at a suitable distance
above, below, or within the letter body. Dots can be single, double, or triple. Different Arabic
letters can have the same body and differ in the number or position of dots identifying them.
Letters Baa, Taa, and Thaa are examples of such a case.

In Addition to the previous points we add:

5. Although The Arabic language consists of 28 main characters there are many more cases for
some characters like "Y' which is lam 'J' followed by Alif """ but written in a different form
("Y' instead of 'U').

6. Aswell as there are different cases of dots there are Hamza 's' Maed 'I".

7. Having 28 characters in the Arabic alphabet; each character has two to four different forms
that depend on its position in the word or sub-words and after adding other cases, as Hamza,
there are 121 classes to be recognized. The Arabic character set is shown in Fig. 1 [5].

8. An Arabic word can have one or more sub-words, e.g., there are three sub-words in the word
shown in Fig. 2.

9. We have also noticed that Arabic words may horizontally overlap and characters may stack
on others as shown in Fig. 2 for Raa '_' and Hha 'z".

No Name |separated| starting | middle ending

1 Alif | | L L
2 Baa < = — -
3 Taa [l 3 4 [N
4 Tha & A A &
5 Jeem z = o [
6 Hha z = o =
7 Kha & A A &
8 Dal K 2 Q a
9 Thal A A 2 2

10 Raa D) B > >

11 Zay J J > >

12 Seen o - e o

13 Sheen S — — U

14 Sad o= —a — o=

15 Dahd o — —— o=

16 Tta L L L L

17 Tha L L L L

18 Ain 4 - = &

19 Ghain d < - &

20 Faa < 4 4 —a

21 kaaf k) . . &

22 kaf & =< < o

23 Lam J B 1 d

24 Meen 2 — —_ ~

25 Noon O - = &
26 Haa ° 2 -+ “
27 Waw 9 B 5 ¥
28 Yaa 5 = =+ =
More Cases
29)) L L
30 j j L L
31 i i L L
32 b Y S S
33 Y Y S S
34 Y Y b S
35 5 - - =
36 . .
37 3 3 ¥ ¥
38 - -

Figure (1): Arabic alphabet in all its forms.

Figure (2): Arabic word consists of three sub-words and overlapping between the second and the third sub-
word.

3 MOMENTS

Region moment representation interprets a normalized gray level image as a probability density function of
a 2D random variable. Properties of this random variable can be described using statistical characteristics -
moments. A moment of order (p+q) is dependent on scaling, translation, rotation, and even on gray level
transformations and is given by

mpq: J‘ J‘x?’}:pg(xl}r}dxd}.‘

—oo —o3

The central moment

Hea = j j(x_xc}p(}’_}’c)qgij}f)dxd}r

Let f(x,y) = (x —x JP(y—y.)9g(x,y)

We use composite trapezoidal rule for evaluating the double integral

Iy = j j flxy) dxdy

hik
Ir= e {fou"‘ Jor + E(fm + foz + -+ fo,.w—l}}

N-1

+2) {fio+ fae+ 2(fis + fia + -+ fir-)}

i=1

+ [f.'v'u- + faor + E(ﬁ\il +fyz++ f\w—ﬂ}

. X,V) . . — k=
Where M and N image size, " ¢, Ye are the co-ordinate of the region’s centriod , h=k=1 gnqd

_ My y, = Mg
c— e —
Mg Mug
The normalized un-scaled central moments
Hpq
—_ s +
ﬁw—(ﬂ) A:ﬂﬂq+1
eel where E

A less general form of invariance is given by seven invariant moments characterizing: rotation, translation,
and scale [31].
@y = Pzp + Po2
0y = (Bap — Bpz) % + 487,
B3 = (Pag — 30;2)% + (3829 — Fg3)?
By = (830 — B;2)% + (21 — Bp3)?
Og = (P3g — 32) (Bag + B12)[(Pag — Ph2) 2 — 3(F21 — Bz)?]

+ (3821 — 3803) (P21 + Bpa) [3(F30 — F21)2 — (F21 +Bp3) %]
B = (P20 — o2) [(Fap + P12)% — (Baq + Bp3) 2]+ 4814 (B30 + P12) (P21 + Fp3)

@7 = (3021 — Bg3) (Fap + Fu2) (B30 + P12)% — 3(F2y +Fg3)?]
— (B3p — 3842)(Ba1 + Bz) [3(Fap + B2)% — (P21 + Fpa)?]

[]

4 PROPOSED TECHNIQUE

Arabic character recognition requires several steps, mainly: segmentation, feature extraction and
identification. In this paper, the first step is achieved by using a local diffusive segmentation method. There
exist a wide variety of ways to achieve segmentation; however, it is not the subject of this paper. All
contiguous pixels, which share a given point-based characteristic of the object, or are surrounded by those
that do, are considered as object pixels and those outside the included region, are considered as
background. The result is a group of contiguous pixels, which collectively represent the object. The
boundary pixels of the object are then extracted from the segmented object pixels by a simple iterative
trace, around the outside of the object that continues until the starting point is reached.

In the second stage, the input is a set of character images. First they must be transformed into a negative
state — white object on black background. Second moment's invariants are calculated for each image to be
used as key features to identify character images as shown in the appendix at the end of the paper. By
definition an image moment is a certain particular weighted average (moment) of the image pixels'
intensities, or a function of such moments, usually chosen to have some attractive property or
interpretation. We used them because they are constant to an image even if it is scaled or rotated. Moments
had been used before for image retrieval and identification [12][13] in database systems, which we will use
in this research for OCR.

In the third stage, after explaining the process of feature extraction for Arabic characters classification, we
enhance the recognition capability of the system with a neural network to classify the characters. We used a
multi-layer perceptron (MLP) neural network to equip the proposed engine with learning the features of the
different characters, so as, the system recognition capability would be enhanced in this way.

The input pattern of the network consists of the feature vector composed of the seven moments calculated
for each character. All the input pattern’s features have been passed to 121 output nodes, feeding 121
possible input cases to train the network.

5 EXPERIMENTAL RESULTS

In this section we will present and evaluate the experimental results of our technique. We used a random set
of characters — as shown in figure 3 - to evaluate our technique and run multiple tests on multiple subsets
and then calculate the Mean Absolute Error for each test. Our technique has a Mean Absolute Error =0.02.

[
[
L.
L+

bbb

R S T B o

Yy Y Eea kP

& L L [b b [+ [
e b b b oL

[PNCARVARC AN W U o N TN ol K
[PNCARVARC AN W U o I TN ol K
°Q

L

L — 6 & ©°
s [— 6 W oe
l,. l, i, b« b+ b m § [
_(B (o
[

RN G O A

.[.,

bbb b b b b I,flrlg.k LS be bbb b
bt e borar PP s rraaa -

@R G Lo GG EE e e na [

OO A b bbb b BE GO e

S N ENE
S o ENE
(O U0 IO T K K

Figure (3): An example of samples used in the experimental test.

6. CONCLUSION

This paper presents a new technique for Arabic OCR CBIR based on moment's
invariants and neural networks. The proposed method consists of two parts: feature
extraction and character identification. The experimental results show that our technique
IS quite promising. We also considered a larger set of 121 Arabic character cases instead
of the classic 100 one.

We will work in the future on the Tashkil signs of the Arabic characters. The small signs
that change the sound of the word. Moreover, we might consider other fonts and formats.
Finally, we would like to explore other types of NNs that might enhance and speed the
recognition process.

REFERENCES

[1] Mantas, J.. “An overview of character recognition methodologies”. Pattern Recognition 19 (6), pp.
425-430, 1986.

[2] 2 Mori, S., Suen, C., Yamamoto, K.,. “Historical review of OCR research and development”.
Proceedings of the IEEE vol. 80, no. 7, pp. 386-405, 1992

[3]

[4]
[5]

[6]
[7]
[8]
[9]

Nagy, G., Seth, S.. Modern optical character recognition. Froehlich, F., Kent, A., Hall, C., (Eds.),
The Froehlich/Kent Encyclopedia of Telecommunications. Vol. 11, Marcel Decker, New York,
pp. 473-531. 1996

Pal, Roy , Tripathy and Llados, Multi-oriented Bangla and Devnagari text recognition, Pattern
Recognition, vol. 43, pp. 4124-4136, 2010

Abdelazim, H., Mousa, A., Salih, Y., Hashish, M.,. Arabic text recognition using a partial
observation approach. In: Proceedings of the 12th National Computer Conference. Riyadh, Saudi
Arabia, pp. 427-437, 1990

Al-Badar, B., Mahmoud, S.. Survey and bibliography of Arabic optical text recognition. Journal
of Signal Processing, vol. 41, no 1, pp. 49-77, 1995

Alherbish, J.,. High Performance Arabic Character Recognition. Ph.D. Thesis, University of
Connecticut, CT, 1996

Khellah, F., Mahumod, A.,. “Recognition of hexagonally sampled printed Arabic characters”. The
Arabian Journal for Science and Engineering, vol. 19, no 4A, pp. 565-586, 1994

A Amin,H Al-Sadouni and S Fischer, “Hand-Printed Arabic Character Recognition System Using
An Artificial Network”, Pattern Recognition, vol. 29, no. 4, pp. 663 675, 1996

[10] Alherbish, Ammar, “High-performance Arabic character recognition”, The Journal of Systems and

Software, vol. 44, pp. 53-71, 1998

[11]Mahmoud, S., Abu Haiba, I., Green, R., 1991. “Skeletonization of Arabic characters using

clustering based skeletonization algorithm (CBSA)”. Pattern Recognition 24 (5), 453+464.

[12]Rizon and others, “Object Detection using Geometric Invariant Moment”, American Journal of

Applied Sciences vol. 2, no. 6, pp. 1876-1878, 2006

[13]Amr, Amin, El-Kafrawyy and Sauber, Using Statistical Moment Invariants and Entropy in Image

Retrieval , Proceeding of IJCSIS August 2009

Appendix: The images of all possible shapes of characters and the corresponding
moment's invariants values

No.

1

10

11

12

ID Name Phil Phi2 Phi3 Phi4 Phi5 Phié
1 0.51348593 0.24046356 0.19952337 0.19374598 0.034041221 -0.04041018
0.57243076 0.17605628 1.82876575 1.27594321 0.239500325 -0.02237976
0.48383499 0.0992986 1.4081342 0.13823916 0.047961495 -0.01405392
0.39018496 0.03360662 0.04917335 0.44484608 -0.17132452 0.000184426
0.39663514 0.05949592 0.10159821 0.14555496 -0.01826053 0.003426853
0.5320821 0.16589933 0.57756122 0.04493097 0.000736081 -0.00814528
0.47004304 0.04401122 0.36397648 0.13113947 -0.00112885 -0.00070796
10 0.49996501 0.03603016 2.43119929 1.19793445 0.653559805 -0.00728851
11 0.47286402 0.00406314 3.97124839 1.27976774 0.556503944 -0.00019471
12 0.51666705 0.1004805 1.02292102 0.29373638 -0.04422433 0.002262942

13 0.45339525 0.01851946 0.89272325 0.31749632 -0.04154231 0.00013347

o

14 0.50830257 0.04220102 2.88754321 1.07890468 0.583543175 -0.00364621

Phi7

0.002213509

-0.49475388

0.064688886

-0.02308836

-0.00401176

0.001427151

-0.00547026

0.199812673

0.058840111

0.00416058

-0.00252657

0.117642868

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

32

33

36

37

40

41

44

45

46

47

48

49

0.48274467

0.49914352

0.39243384

0.31487832

0.37507133

0.33738497

0.44713421

0.339376

0.40914962

0.3762731

0.47351682

0.35008637

0.40571817

0.38767279

0.298368

0.30781646

0.47734634

0.43642035

0.48133819

0.42814981

0.70118519

0.53659426

0.45096737

0.4977583

0.54903994

0.49811925

0.47165831

0.00106848

0.06567965

0.03418779

0.02968625

0.06760058

0.00428418

0.04830117

0.05199642

0.09933534

0.00495493

0.07617086

0.02039904

0.05282934

0.00944428

0.02307172

0.00317893

0.11832847

0.04344279

0.10655886

0.07913416

0.26523992

0.07762224

0.10817553

0.19866177

0.25260348

0.14954637

0.08629934

4.81410931

1.79333051

0.05740282

0.22544119

0.52443502

0.36012477

0.10687816

0.69560542

1.21777452

0.46773178

0.01647283

1.72519727

2.53407073

0.15425486

0.24485422

0.81127268

2.05680032

3.23003476

1.26044734

0.57383813

7.61230905

3.5515309

0.19475385

0.15679503

0.46485532

0.3425857

0.88766991

1.5048024

0.62278344

0.04769106

0.24341286

0.05478958

0.29056537

0.0802836

0.33154382

0.15872775

0.39574875

0.0354496

0.62194335

0.50559343

0.26209005

0.11112118

0.2610676

1.48761503

1.90416966

0.70784518

0.06647803

4.67795508

1.564404

0.01059584

0.48068278

0.42298094

0.0546775

0.57568256

0.71629581

-0.25261268

-0.00126703

-0.01171848

0.000941061

-0.01135912

-0.01054278

0.026413353

-0.00474901

-0.01218962

-0.01100364

0.031632725

-0.0199701

-0.03257097

0.008144392

-0.00885782

2.066684681

2.192387387

0.194330509

-0.02123773

20.01433056

1.408524589

0.001513537

-0.38145188

-0.07388397

0.003226128

-0.00016377

6.96E-05

0.003766646

0.000422797

0.00480792

-0.00141765

-8.39E-05

0.002336741

0.010152174

-0.00463757

-0.00031453

0.004934931

0.003624865

-0.00033337

-0.00012155

-0.00036986

6.98E-06

-0.11568866

-0.02162654

-0.007659

-0.00118123

-0.66531308

-0.04938937

0.000617967

0.055757195

0.070917507

-0.00110511

-0.00283923

0.098339254

0.02671461

0.005619581

0.005218898

0.004488728

-0.0048217

0.02546698

-0.00358594

0.024434066

0.01173723

0.013189353

-0.1187025

0.006078222

-0.00130883

0.002401827

-0.00140375

0.478923171

-0.26580303

0.079123251

-0.03304087

7.769188646

1.201390156

-5.67E-05

-0.03105472

0.007285662

0.000566202

-0.06329362

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

LU LL LB LB L

0.45561101

0.47146677

0.47313119

0.52584543

0.53751895

0.56511615

0.56342995

0.5052542

0.50648777

0.53190065

0.53590809

0.31723088

0.36908746

0.39243118

0.34595044

0.30708253

0.35847087

0.37688984

0.33130565

0.45685811

0.31959398

0.33216485

0.34685118

0.49850264

0.31984

0.34323666

0.37648466

0.04063789

0.04893759

0.06982351

0.1952889

0.23005276

0.25703085

0.23133659

0.16093846

0.16888047

0.19287442

0.18603294

0.00257222

0.00696639

0.0191143

0.01261367

0.00173904

0.00670283

0.01204596

0.00680178

0.09245099

0.04788684

0.05028158

0.01337728

0.12968023

0.02571269

0.01845286

0.02792528

2.48190954

3.96328692

2.34983907

0.383267

0.30881443

0.912166

1.04093806

0.71670525

0.8653345

1.77957362

1.73342261

0.93247919

2.49239371

3.43223572

1.57722631

0.68304714

2.12596731

3.21181655

1.41032828

0.05662764

0.33289061

0.90614155

0.03925785

0.3951615

0.79043559

2.02388681

0.11151113

1.35944194

1.18016784

0.56156316

0.1068067

1.76313794

1.63001507

0.07042356

0.27558363

1.76814818

1.54332944

0.2188929

0.43341874

0.70032427

0.80355251

0.72412425

0.27041266

0.61816948

0.73262588

0.52942637

0.00338339

0.14204883

0.14151876

0.0587916

0.08261349

0.29345921

0.47843874

0.06262548

0.061703296

-0.06570969

-0.03108245

0.010834776

-4.18845667

-1.48906731

-0.03052889

0.05523719

-2.22536779

-0.14589987

-0.08172129

0.071365529

0.07943616

0.010399086

-0.09036928

0.031970052

0.038821146

-0.05017632

-0.03747902

0.027475879

0.004217062

-0.01166794

-0.00391578

0.0213848

0.005760083

-0.01331572

-0.00453087

0.005712444

0.00988628

0.002910016

0.035197531

0.285195839

0.293787954

0.011933154

0.036673994

0.19646211

0.185996553

0.012110217

0.000205311

0.001162136

0.001677359

-0.00010075

1.75E-05

0.000717733

0.001197258

-1.12E-05

-0.00178365

0.003644904

-0.00150921

-0.00011965

0.008592961

0.001672272

0.000214616

0.000227474

-0.44541166

-0.16107619

-0.06416703

-0.02077468

-0.17980211

0.082297923

0.00123734

-0.10029915

-0.66414349

-0.19937968

0.014225763

0.037471609

-0.17237329

-0.04954194

-0.01300902

0.017567064

-0.18917341

-0.05447011

-0.00317531

-0.00421877

-0.00457358

0.013726506

-0.00023357

0.014761955

-0.02907277

-0.00146311

0.000530145

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

0.55929609

0.35714453

0.35863162

0.56985751

0.39917586

0.39104999

0.39943194

0.36946601

0.33923544

0.35629151

0.37425764

0.34349135

0.51337681

0.54594989

0.47975857

0.45077782

0.35243232

0.35510974

0.40354996

0.34526509

0.42798747

0.48524722

0.46110015

0.40307272

0.19994213

0.26418737

0.28585633

0.13494754

0.02988435

0.00259689

0.16241161

0.02570591

0.0454164

0.00788589

0.00857327

0.02333804

0.01408028

0.00027277

0.00732496

0.08096054

0.12449657

0.01833214

0.02548306

0.06291575

0.08702415

0.12088528

0.01685253

0.0102825

0.05615896

0.03455434

0.01082667

0.01083269

0.01792356

0.01895186

0.05752542

1.3549732

2.98127304

0.48246512

1.42277052

1.71256167

4.26460022

1.27255674

0.30236607

1.17887974

2.72885571

1.21230853

1.18824525

3.03552476

5.3198

1.99331559

0.28380145

0.12928189

0.43885191

0.21969492

0.60618606

1.341085

2.58393153

0.36302466

0.01098637

0.55851212

0.04437821

0.76270188

0.60498335

1.08437061

0.84136843

0.95286162

0.78419558

1.69460229

0.57488232

0.39889992

0.40679687

0.63961861

0.51238548

1.44102333

1.72194656

2.14456651

1.2388748

0.25965215

0.37985199

0.21375456

0.41984

0.56021329

1.14812336

0.96069033

0.1966122

0.00385729

0.27214789

0.00497271

-0.7741162

0.085625807

0.470450873

-0.56749662

0.544585089

0.243237758

1.714938137

0.250879864

0.002399449

0.015252973

-0.01323291

0.054450359

0.926792124

1.274361162

2.138104606

1.119310184

0.046745385

-0.15940024

0.007251905

-0.02922756

0.228720073

0.044927575

0.186244816

0.034902248

9.63E-06

0.007875686

-8.98E-06

-0.01068872

-0.0007495

-0.00035284

0.045175184

-0.00698384

-0.00255553

-0.00234839

-0.00145953

-0.00011294

0.000149787

-6.37E-07

-6.81E-05

-0.03753039

-0.02957832

-0.00406563

-0.00372299

-0.00783806

0.019730069

0.013338198

-5.89E-05

-0.0022588

-0.00939169

0.00262184

-0.00107058

-9.03E-06

0.001694131

2.53E-06

-0.17644214

-0.04086737

0.065483644

-0.26687203

0.324005379

0.039398567

0.375666608

0.105600887

0.026843426

-0.01004725

-4.43E-05

0.001514839

0.805073971

0.524015985

0.374599085

0.320312812

0.012915806

-0.01317406

0.010907323

0.09165811

0.197541817

0.101396996

-0.05794815

0.027821502

1.32E-06

-0.02159765

-2.53E-06

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

104

105

108

109

110

111

112

113

116

117

120

121

124

125

128

129

132

133

136

137

138

139

140

141

145

148

149

0.35555475

0.36548155

0.32023733

0.31869661

0.37065889

0.36771605

0.33554597

0.97535532

0.58539474

0.693844

0.66739015

0.66146133

0.71282959

0.4058173

0.4168099

0.41510455

0.42900771

0.43430483

0.44419649

0.35594139

0.53017833

0.49060856

0.44582019

0.20496123

0.50049732

0.42615138

0.33429005

0.04968204

0.06510147

0.0216649

0.0221274

0.01008951

0.03011438

0.03674416

0.90601136

0.13962764

0.43928626

0.26005484

0.39274044

0.31954074

0.06851054

0.02500434

0.0611749

0.04915118

0.09143368

0.04304991

0.00102107

0.05544939

0.00162721

0.0120774

0.00347482

0.13109899

0.04580369

0.02627507

0.69779023

0.24379733

0.29916941

0.05130322

0.18064172

0.07322082

0.91106326

0.51647278

1.2427269

0.08203627

3.86282133

0.09686717

3.80166795

0.71580718

1.0744891

0.76074122

0.52841671

0.65452084

1.25306357

0.25396319

3.51325218

5.36433263

0.75382227

0.02203227

0.72572679

0.90284972

0.01902429

0.13506525

0.01809119

0.07054431

0.07888822

0.3948456

0.07878852

0.11783776

0.5750439

1.29063157

0.05764718

2.2209418

0.05084986

2.52469717

0.17819819

0.46167945

0.11390652

0.39069815

0.13986546

0.6783396

0.0020656

1.76024521

1.85974736

0.61228701

0.00583988

0.44994704

0.6904555

0.19118902

0.098546585

-0.00676455

0.013216415

0.004382359

-0.09358552

-0.01206227

-0.0175256

0.328992068

0.27977799

0.001131213

2.243294287

0.001361809

3.315030946

-1.66E-05

-0.01831265

0.058997576

-0.0025307

0.013127801

-0.00832477

0.043081936

1.522847666

1.416365603

-0.0048871

-7.40E-06

-0.15284186

-0.1063073

-0.03817926

0.001202368

0.001145881

-0.00092237

-3.33E-05

-6.30E-05

0.000875763

-0.00200942

-0.57553804

-0.03312036

-0.00358039

-0.10191519

-0.00348406

-0.20171047

0.001023337

-3.09E-06

0.000297602

4.36E-05

0.002637119

-0.00020224

-0.0002108

-0.01761352

-0.00080826

-0.00507747

-1.11E-07

0.019326743

0.006382922

-0.00028624

0.044208079

-0.00681385

-0.00844875

0.002122836

-0.0123305

-0.00082109

0.046881679

0.002479303

0.160666221

0.002916343

-1.54906706

0.000776105

-1.9686574

0.001670091

-0.00263816

-0.01066326

-0.01435372

0.005410006

-0.01322404

-0.01010137

0.507587697

0.207746645

-0.69142341

-1.09E-07

0.460753464

0.469637319

-0.00812037

121 152 m 0.38308439 0.06758365 0.55861758 0.05462001 0.00310965 -0.00215921 0.015516476

AL-IMAM: A Comprehensive Database for Arabic Text
Mining
Ibrahim F. Imam & Ahmed Abd-Allah

Computer Science Department
Arab Academy for Science, Technology and Maritime Transport
Cairo, Egypt

ifi05@yahoo.com

Abstract— Arabic language is one of the most sophisticated languages in the world. There are many efforts to introduce language
resourceful systems for text mining in the Arabic language. This paper presents a novel database and a framework to support
applications in Arabic text mining. The database contains extensive information of more than ten millions diacritic Arabic words and
is linked with the English WordNet and SUMO. This database is designed to support applications such as translation, categorization,
similarity and opinion mining. The paper presents an analysis to show the speed and the kind of information that can be retrieved.

1. INTRODUCTION

The Arabic language is very rich language. It permits expandability in different ways. Due to the development slowdown in
the Arabic countries in the past centuries, new terminologies appeared in the western countries that has no substitution in Arabic.
Globalization accelerated transferring these terminologies to the Arabic world.

Research depends on rule-based approaches for extracting information from text. Rule-based approaches analyze the
grammar of each sentence and match it with predefined rule. A correct match identifies the type of each token. More rules are
needed to analyze tokens [6]. Usually, this is a very complex and time consuming process. Researchers evade the rule-based
approaches and exploit statistical approaches [4] [5]. Statistical approaches tend to estimate the correct matches based on the
probability of tokens, phrases, sentences, etc. A new approach has emerged where necessary information are stored in database
and retrieved much faster than the rule-based approaches and more accurately than the statistical approaches. The only
disadvantage of this approach is that it requires massive storage.

Natural language processing and text mining applications require rich corpus to accomplish the given task. In this paper, a

comprehensive database is created to cover all possible information about the Arabic words and their relation to English words.
There are many issues to be taken into consideration when creating such database. Among these issues, the sense of the word,
the search index, word categorizations, word ambiguity, etc. English language and implemented the Word Net system.
Unfortunately, the Arabic language is more complicated than English. Also, the Arabic version of the word Net is far from
complete. This is because the Arabic language is evolving faster than any other language and it is easy to migrate terms from
other languages to the Arabic language [9] [10]. Therefore, it was necessarily to implement a gigantic database that captures as
much information as possible about all Arabic words.
The proposed database is very helpful in Arabic information retrieval and text mining. Millions of Arabic words handled in it.
The huge amount of data help us to improve output of statistical text mining approaches [and we can save our time and effort
consumed in rule based systems. This huge database can help to improve performance of many text mining applicatiox like
information retrieval as proposed in [1] & [7], machine translation [8] & [11], text summarization and text similarity [3] and can
used to improve text categorization [2].

2. DATABASE DESIGN

Designing the proposed database was a challenge. This research investigated four different designs. The initial design started
by collecting Arabic documents using internet crawler. The text in the collected documents is tokenized and each token is
translated by a free source translator. Also, a part of speech tagging is assigned to each token. The second design started by
generating all possible n-gram combinations of the 28 Arabic alphabets. To ensure that a token is a word, we searched over the
internet for each token. In the third design, the database initiated using an Arabic-English online dictionary. All these designs
failed when attempting to assign relationships among the words. Also, searching for the diacritic corresponding was extremely
difficult process. The successful design started by collecting all possible diacritic words. Even though, this approach seemed
illogical, however, the design was much simpler and successful.

Data Collection and Maintenance: The Arabic spoken citizens originate new words in many ways. One way to originate new
word is by writing the phonetic of a foreign word in Arabic letters. For example, the English word “Internet” may be written
in Arabic “<w »i””, Such words have to be added to the database and linked with all other entities. Figure 1 shows an abstract
entity relationship diagram of the database. The main entity is a list of all diacritic words and a key for each one. Figure 2

shows an example of one word “aa3a”.

| -Ensglish Tree ID

. | “Word Net Tree
. ! ' Simularion
English Word ID - :
SstioivmID . . English Word 1
=i i Word Type 4 L i i 2
Englsh oo | —@- arabicToomslation ®- | Egnneay
glish Antony anguage oc
= E Translation Model E
M
Diacritic ID 1 . .
Arabic UnDiacritic Word T ~M \ u L -Diacritic ID
‘English Translarion “Word Type
1 WWord Roor
Qo O Js
M —] - s
Diacritic ID — GID aaa :: _‘H_\:PE-L-.?I-)
Arabic Synonyms Arabic Diacritic Word - "-“37‘-| c I ‘-ft_l-":
-Arabic Antonym VOB I

" . ' y -Glosses
: 1

—) | M . Wazen
Diacritic ID . Wazen Type
Language Model E . ’
Translation Model E I Catesorization ID

M -Category

Animacy Type (1Human & 0 Orher)
-Gender (FFemale & M Male & O Other)
Count (1/2/M)

BN, S ¥ & -Percentage

Arabic Tree ID Defined (Y \i - e

ModeParh SUMO Sub Classes Disambiguation
SUMO Instance

STIMO Sub Arrribures

Figure 1: An Entity Relationship Diagram of Al-Imam Database.

Arabic-English Dictionary Arabic Morphological Analysis English Synonyms
A ID A Word E Trans. 4 ID| Type Root |Stem| Prefix |Suffix) Weigh.| |E ID) Synonym
247 gl Planting | |247 | s A (e o [| da | |o7s Farming
248 250G Farmer Arabic Categorization (Learned) 978 Cultivating
249 Sl Success A_ID| Category % | Disamb. W Code 978 Agriculture
English-Arabic Dictionary 247 | iedy 70 3% TED 978 Tilling
EID E. Word A Trans. 247 | o 5 ? TBD Arabic Synonyms
978 Planting EH 247 iyl 25 10% TBD 4 ID) Symonym
Word Path in English Tree English-Tree Titles Arabic Tree Titles 247 N
EID Tree Key ET ID Title 4T ID Title 247 213
978 1.41133.76128.591 1 Action 1 ol Arabic Tree Links
Human Factors 4 Group Action 3 5 ima th AID Tree Key
ID | Ani ID Gen. 1 Commerce 10 e s 247 | 13103165.97.154
Trans.
274 Y 274 F 33 Industry 31 el SUMO Category
Word Information 76 Production 65 | sl Jeas. | |Codel SUMO Categ.
ID | S/D/P D Def. 128 Cultivation 97 is)) Gildkie 10837 SUbSUJI}mg
- B : e Mapping
274 S 274 Y 591 Earming 154 Ll 4773 (Putting)
WordNet Meaning 978 Planting WordNet Sense (Glosses)
| 978 |1083F4F?3| putting seeds or young plants in the ground to grow | 978 | the planting of com is hard work

Figure 2: An example of Al-Imam Database.

3. DATABASE COMPONENTS AND STATISTICS

Arabic-English Dictionary: Contains Arabic diacritic words and their equivalent English translation according to diacritic
word part of speech. It contains 3588192 Diacritic words generating about 17000000 Arabic English translation entries. This
table contains 1644508 nouns and 1938817 verbs.

Arabic Morphological Analysis: Contains morphology of diacritic Arabic words. morphology that we can get complete
analysis of each word, we can get root of the word, Stem of the word which is the smallest component of the word, all word
prefixes, antefix, suffixes and postfixes. Word (~:3<3) has (J) as its antefix, (<) as its prefix, () as its suffix,(a2)as its postfix,
(<) as its root,(<\S) as its stem and (J=\4) as its weight. This component contains 11041256 Arabic diacritic words and their
morphological analysis (word type, root, stem, prefix, suffix and weight).database it contains 6646058 nouns, 4394339 verbs
and 859 stop words.

Arabic Synonyms: Synonyms are different words with similar meanings (4=, & 43)_=) are synonyms of («=34). Synonym
words called synonymous, and the state of being a synonym is called synonymy. This component contains 197895 Arabic
diacritic words and their Arabic diacritic synonyms. It contains 55372 nouns, 64192 verbs, 38263 adjectives, 39887 masdar and
181 stop words. English Arabic Dictionary: Contains 255752 English words and their Arabic translation according to English
word part of speech. It contains 116314 nouns, 89457 verbs, 47919 adjectives, 1748 adverb and 314 stop words. English
Synonyms: Contains 199880 English words and their English synonyms. It contains 116236 nouns, 45479 verbs and 38165
adjectives. English Antonyms: words with opposite or nearly opposite meanings like(short and tall Contains 37107 English
words and their English antonyms. It contains 9049 nouns, 10881 verbs and 17177 adjectives. Word Path in English Tree:
Contains 94841 English word and their English word net trees. It contains 81856 nouns and 12985 verbs. Arabic Tree Links:
Contains 9756 Arabic word net tree paths. It contains 6404 nouns, 2500 verbs and 852 adjective.

Experiments

The goal of this experiment is view how far the proposed database is rich to help in Arabic text mining area. Using many
Arabic articles in different areas we found that proposed database cover about 90% of words morphology, 90% of words
translation, 30% of Arabic words synonyms and 20% of words Tree.

Table 1: Experimental results.

Total Words |Translation [Morphology |WordNet Tree| ARSynonyms
134 0.96 0.94 0.19 0.33
322 0.94 0.94 0.18 0.29
361 0.86 0.85 0.23 0.31
522 0.88 0.67 0.21 0.3

In the table above each record represents an Arabic article used in our experiment. First article contains 134 unique words,
proposed database covers the morphology of 94% article words, Translation of 96% of article words, synonyms of 30% of
article words.

4, CONCLUSION

This paper presents a novel database for Arabic text mining applications. The database is called Al-Imam, which means the
leader of all Arabic databases. The database contains 3588192 Diacritic words. These words generate about 17000000 Arabic
English translation entries. The database contains 1644508 nouns and 1938817 verbs. Al-Imam database is linked with the
English version of the WordNet database.

REFERENCES

[1] I. A. Al-Kharashi and M.W. Evans, "Comparing words, stems and roots as index terms in Arabic information retrieval
System," Journal of the American Society for Information Science (JASIS), vol.5, no. 8, pp. 548-560, 1994.

[2] M. El-Kourdi, A. Bensaid and R. Tajje-eddine, "Automatic Arabic document categorization based on naive Baye's
Algorithm," in Proc. of International Conference on Computational Linguistics, (COLING), vol. 1, pp.51-58, Montreal, Canada,
August, 2004.

[3] D. Evans, "Similarity based multilingual multi- document summarization," Columbia University, Technical Report CUCS--
014-05, 2005.

[4] Euro WordNet Web Site: http://www.illc.uva.nl/Euro WordNet/ , (accessed 1 August 2009)

[5] Fellbaum (2004),WordNet 2.0, Available from: http://www.wordnet.princeton.edu/oldversions, (accessed 14 August 2009).
[6] D. Jurafsky and J. H. Martin, Speech and Language Processing: an Introduction to Speech Recognition, Computational
Linguistics and Natural Language Processing, 2nd ed., Prentice Hall, 2008.

[7] Y. Kadri and J.Y. Nie," Effective Stemming for Arabic Information Retrieval " Laboratoire RALI, DIRO, Université de
Montréal,2006.

[8] Y.S. Lee, " Morphological Analysis for Statistical Machine Translation," IBM T. J. Watson Research Center,

[9] R. Al-Shalabi, "Design and implementation of an Arabic morphological system to support natural language processing,"
Doctoral dissertation, Illinois Institute of Technology, Chicago, May 1996.

[10] F.S. Douzidia and G. Lapalme, "Lakhas, an Arabic summarization system,"” RALI-DIRO Université de Montréal, 2004.
Yorktown Heights, NY 10598, 2004.

[11] F. Sadat, and N. Habash, "Arabic Preproc-essing Schemes for Statistical Machine Translation,” Proceedings of Human
Language Technology Conference of the NAACL.2006.

http://www.illc.uva.nl/Euro%20WordNet/
http://www.wordnet.princeton.edu/oldversions

Recent Advances in Arabic Handwriting Recognition

Mostafa G. Mostafa™, Mohamed F. Tolba™?
*Computer Science Department, Faculty of Computer & Information Sciences,

Ain Shams University, Abbassia 11566, Cairo, Egypt.

mgmostafal@cis.asu.edu.eg
“Scientific Computing Department, Faculty of Computer & Information Sciences,

Ain Shams University, Abbassia 11566, Cairo, Egypt.

‘mftolba@cis.asu.edu.eg

Abstract— Arabic optical character recognition has been the subject of intensive research for the last four decades. The performance
of Arabic machine-printed character recognition systems has developed considerably in the last decade. The recognition of Arabic
handwriting, however, still an open research problem due to its substantial variation in appearance. This paper presents the recent
advances in the last decade in both offline and online Arabic Handwriting recognition. Recent results for the online Arabic
handwritten recognition show excellent recognition rate; A recognition rate of 100% was reported in the Last ICDAR recognition.
However, despite there is a good recognition rate in case of constrained writing, the offline Arabic handwriting recognition still has
many open problems that need more research. The main challenges, trends and contribution in the field of are discussed.

1 INTRODUCTION

Document analysis and recognition (DAR) systems can contribute tremendously to the advancement of the automation process
of the interaction between man and machine in many applications, including office automation, check verification, automatic
mail-sorting, and a large variety of banking, business and data entry applications. Document analysis and recognition (DAR)
systems decompose document content into two categories: Text and images. The text is then recognized automatically in order
to be transformed from the pixel format into digital format for further processing. Optical character recognition is the core
process for this transformation, and has been the subject of an active research in the past four decades [17], [46].

Nowadays, there exist successful DAR systems for the Arabic machine-printed documents [43]. This is due to the (relatively)
standard features of the Arabic machine-printed text that facilitate the recognition process. To the contrary, Arabic handwritten
text is quite different. Few Arabic DAR systems, with relatively acceptable recognition rate, are found for the analysis of the
handwritten Arabic documents. This is an important research topic of today [25],[26], [27].

There are two recognition approaches that are distinguished according to the way handwriting data is collected: on-line and
offline. In the online recognition, the data are captured during the writing process by a special pen on an electronic surface. In
the latter, the data are acquired by a scanner after the writing process is over. In this case, the recognition of offline handwriting
is more complex than the online case due to the presence of noise in the image acquisition process and the loss of temporal
information such as the writing sequence and the velocity. This information is very helpful in a recognition process. Offline and
on-line recognition systems are also discriminated by the applications they are devoted to. The offline recognition is dedicated
to bank check processing, mail sorting, reading of commercial forms, etc, while the on-line recognition is mainly dedicated to
pen computing industry and security domains such as signature verification and author authentication.

In this paper, we present the recent advances in the techniques of offline and online Arabic handwriting. Our survey is limited to
the work done in the last decade, for previous works see [38], [9]. This paper is organized as follows. In Section 2, a quick
background about the field, in which Arabic writing characteristics are discussed and an overview about the available databases
are given. Section 3 presents the different methodologies introduced in the last decades to solve the online and the offline
Arabic handwriting Recognition problem. We finally conclude the paper in Section 4.

2 BACKGROUND

In this section we summarize the main characteristics of the Arabic script and the major aspects of an optical character
recognition system (OCR). An OCR system consists of four main stages: data acquisition, preprocessing, representation and
features extraction, and recognition strategies. We also briefly overview most of the new trends of the techniques used in these
stages. Public databases that are used in this field are also presented.

A. Characteristics of Arabic Script

Arabic script (machine-printed or handwritten) has special characteristics that differentiate it from many other live languages.
The following points summarize the main characteristics of Arabic script (see Fig. 1 and Table 1 for an outline of the Arabic
script and Arabic Alphabets):

e Arabic script is formed by an Alphabet that consists of 29 letters, and is written from right to left.

e Arabic text (machine printed or handwritten) is cursive and Arabic letters are normally connected on a baseline (a
medium line in the Arabic word in which all the connections between the successive characters take place.)

e An Arabic letter might have up to four different shapes, depending on its position in the word. Table 1 shows the
variation of shapes of the Arabic characters according to their positions in the word.

e Some Arabic characters may have exactly the same shape, and are distinguished from each other only by addition of
diacritics. Namely, a dot, double dots, or triple dots. These dots may appear above or below the baseline. It is worth
noting that any erosion or deletion of these dots results in a wrong classification of the character.

e Arabic words are formed by connecting some letters together. However, some Arabic characters are not connectable
with the succeeding character. Therefore, if one or more of these characters exist in a word, the word is divided into
two or more subwords. A subword can be one letter, two letters, or group of letters, as shown in Fig. 1.

e Another feature of the Arabic writing is the ligature. A ligature is the combination of two characters to form a unit
shape, see Fig. 1. Ligatures occur only in some fonts, for example the two characters Noon = and Meem — can take the
shape =i in the "Simplified Arabic™ or the shape £ in the "Traditional Arabic™ as in Fig. 1. Ligatures form a challenge to

most AOCR systems.

e Also two letters can overlap to raise a problem for the segmentation using simple horizontal projection.

e Furthermore, characters of the same font have different sizes, i.e. characters may have different widths even though the
two characters have the same font and point size.

e Fortunately, Arabic characters can be represented using only 34 unique characters after removing the diacritics, and
removing the Middle and End characters that have the same shape as the start characters, see Table 2.

[1olad o288 oad] oo OB c@&é%
7 \vv 0 \' < I

Overlap Word Baseline Sub-word Ligature

Figure 1. Some characteristics of the Arabic script.
B. Arabic Databases

Databases are cornerstone for any OCR system. They contain different samples that represents the class of objects the system
intends to recognize. They are necessary resources to the advances of the research field, where they form a common ground for
the performance evaluation of the different approaches proposed to solve the OCR problem. Four databases for the Arabic
Optical Character Recognition (AOCR) are now available to the research communities. Namely: The IFN/ENIT database [35]
The ARABASE database [8], and the ADAB database (). In the following we briefly describe such databases.

1) IFN/ENIT Database: Pechwitz et. al.) [35] introduced the IFN/ENIT database of Arabic handwritten names of
Tunisian towns/villages. It contains more than 2200 binary images of handwriting sample forms from 411 writers, about 26,000
binary word images have been isolated from the forms and saved individually for ease of access. A ground truth file for each
word in the database has been compiled. This file contains information about the word such as the position of the words base
line, and information on the individual used characters in the word. The IFN/ENIT database can be downloaded from
(http://www.ifnenit.com) .

2) ARABASE Database: Ben Amara et. al. [8] introduced the ARABASE database in 2005 for the research of Arabic
offline and online handwriting and machine-printed text recognition. The database contains digital images of documents, text
phrases, words/sub-words, isolated characters, digits, numerals, and signatures. The data corresponds to a variety of lexes (cities

http://www.ifnenit.com/

name, literal amounts, isolated characters, digits, free texts, etc.). Figure 2. lllustrate the different types of Arabic writing in the
ARABASE database.

3) ADAB databases: The database ADAB (Arabic DAtaBase) [14],[15] was developed in a cooperation between the
Institut fiir Nachrichtentechnik (IfN) and the Ecole Nationale d’Ingénicurs de Sfax (ENIS), Research Group on Intelligent
Machines (REGIM), Sfax, Tunisia. The database in version 1.0 consists of 15,158 Arabic words handwritten by more than 130
different writers. The text written is from 937 Tunisian town/village names. The ADAB database is made available to the test
the candidate systems submitted to the Arabic online handwriting recognition competition, ICDAR 2009.

TABLE 1. The different shapes of the Arabic characters TABLE 2: The 34 unique shapes of the Arabic characters.
that arise from the different position of the character within
a word (E=End, M=Middle, B=Beginning, I=Isolated). Connected | Isolated Connected | Isolated
Char. - ' L |
No
Name E M B I
. 3 - -t
1 "Alif L [|
2 Ba - | = = < = | -
3 Ta s = 5 ! - J 4
4 Tha Eu -] & - ¢ s
5 Jeem o > > z B - -
6 H'a
o = = z A | g [=D L] _—]
7 Kha >~ > > e
8 Dal -~ - 9 9 / o
9 Thal & & 5 3 v s Lol Bl Bl N -
10 Ra - - B B 4
11 Zeen 5o e 3 3
12 Seen - e - o
13 Sheen S i = o _oes T 3” _\j_:_d_;,y _,55; |
14 S'ad o= - -) _ _,;J_B—F' s :"_"_)1-__1 | 2 ’—:)_31 _iga=aigl
15 Dhad o | e -5 o2 | s 220 | A allal | ST ”5‘;
16 DTa b . 3 b a3 -;J_:, v w7 J}I)t s> i TN
- - - - Figure 2. lllustration of a few entries in the IFN/ENIT
17 DTha b — et b database: (Pechwitz, 2002).
18 Ein > - - I
T e e e et s | S i)
20 Fa - - 5 N SECYET RN TR A P e o SR e
21 Qaf & i 3 3 Caglinll el Gl Ll deployMinlo g % 5l ebd
Blyd 53 atesd Tl | yudmmwon ot plor oo
22 Kaf &L | =< = J ot el by Bl Qe p A A e LT
23 Lam + L J J (&) (b)
24 Meem - - - ? 2 (v e m_;_‘r :
25 N .) . . Ya e ".lu) Y | swegTa e iy ang
oon o = - o B i < ey e
26 Ha “ — 2 °) e
e et A AT B L
27 Waw gl ALUE
> > b d (d)
28 Ya - - - S i, Jd:...j._-,m 3 bty Sdglll s e = EE ST Hl Y
29 Hamza = s <9 n! ¢l &
Figure 3. lllustration of a few characteristics of Arabic

writing in the ARABASE database: : (a) Different sub-
word of machine-printed text, (b) writing with diacritics,
(c) free handwriting, (d) Historical handwritten documents,
(e) multi-font machine-printed text, (Ben Amara, 2005).

C. CAHRACTER RECOGNITION SYSTEMS

The general model of Arabic optical character recognition (AOCR) systems can be described, likewise most of the pattern
recognition systems, in terms of four stages: preprocessing, segmentation, feature extraction, and classification.

e In the preprocessing is a collection of operations that apply some digital filters that enhance the document image by
reducing noise and distortion, and hence improve the recognition process. It may also include a thinning step to extract
the skeleton of the word to facilitate the segmentation and the feature extraction stages.

e The segmentation stage decomposes the document into text and graphics, lines of a paragraph, and characters of a
word. This stage is a cornerstone to most of the character-based method and the recognition rate depends solely on the
results of this stage.

e The feature extraction stage analyzes a text segment and selects a set of features that can be used to uniquely identify
the text segment.

e Classification is the main stage of any OCR system. It uses the extracted features from the previous stage to recognize
the text segment according to different methods, which are discussed in the following sections.

Some systems use a further post-processing stage can be included to improves the recognition by refining words recognition by
using context or word validation by using a dictionary search.

There are two methodologies which have been applied to both printed and handwritten Arabic character recognition, holistic
and analytical methodologies. In the holistic methodology, there is no attempt to identify characters individually; the
recognition is globally performed on the whole representation of words. Methods in this category include dynamic
programming, neural networks, probabilistic framework, and expert systems. In the analytical strategies, words are considered a
sequence of connected characters or small units which may be a part of a character. The recognition is then performed at the
character or the small units level. In later segmentation step in order to segment a word into isolated characters. Having good
segmentation technique is essential for having a more reliable Arabic DIA system.

Handwriting recognition systems can be classified, according to the data acquisition stage, into two main categories, namely,
online and offline systems. Online recognition is performed as the text to be recognized is written. Therefore, the process of
handwriting has to be captured online, e.g., using some pressure sensitive devices. They provide rich sequences of sensor data
including geometrical positions of the stylus as well as temporal information about the writing process, which is the big
advantage of online approaches. In contrast, offline recognition is performed after the text has been written. For this purpose,
images of the handwriting are processed, which are captured using a scanner or a digital camera. In the following sections we
summarize the reported result of both online and offline results that were published in the last decade.

3 ONLINE HANDWRITING RECOGNITION METHODS

It is commonly agreed that online handwriting recognition corresponds to the easier problem. Consequently, at least for certain
application domains like pen-based input interfaces substantial progress has been achieved, se for example the promising results
of the last Online Arabic Handwriting Recognition Competition [14],[15]. In fact, commercially available products suggest that
the problem of online HWR can be considered as being close to solved [50]. In the three ICDAR competitions [25], [26], [27]
specially the last one, interesting results have been reported for the online Arabic handwriting recognition. It was found that the
best systems that show very high recognition rate are, on one hand, use neural networks based techniques, and on the other
hand, the system does not use any normalization or feature extraction; they are the system works on the raw data directly
[14],[15]. The proposed classification methods was mainly based on neural networks and Hidden Markov Models (HHM), the
systems that are build using Neural Networks overcome systems that use Hidden Markov Models (HMM) [13] with less
running time and more recognition accuracy. [17], [50]. In the following we summarize the results of the main contributions in
online Arabic handwriting recognition.

Mezghani et al. developed a new representation used in online Arabic handwritten character recognition with Kohonen
associative memory [28],[29],[30]. This representation based on statistics of features based on histograms of tangents and
tangent differences at regularly spaced points along the character signal. For distance functions, they used Euclidean distance
and investigated the Kullback-Leibler divergence and the Hellinger distance functions to measure the distance between the
distributions. Furthermore, they performed some pruning and filtering operations on the trained memory to improve the
classification accuracy. They used Kohonen neural network (SOM) in the recognition step that is trained using the proposed
representation and compare its performance with K-nearest neighbor as benchmark.

Zafar et al. used backpropagation neural network (BPN) as a classifier in the second algorithm. They concentrated on sub-
character primitive feature extraction technique that did not utilize resizing of characters. Direction encoding was used to
shorten the characteristics of characters and they combined them to create a global feature vector. The database had 2000

characters collected from 40 subjects using tablet Summa Sketch Ill. Their script classifier requires training on different
surfaces because the writing styles may vary considerably on these surfaces to increase the recognition rate (Zafar 2006).

In Mirvaziri et. al. [31], the authors investigated and evaluated several handwriting recognition algorithms with respect to the
size of database, language and recognition rate Two of these algorithms deal with the online handwritten recognition. The first
one uses a recurrent neural network (RNN) for its ability to process data with long time dependencies. They combined CTC
network (Connectionist Temporal Classification) and LM (Language Model). CTC is an objective function designed for
sequence labeling with RNNSs but it does not require pre-segmented training data to transform the network outputs into labeling.
They used IAM — On DB dataset that consists of pen trajectories collected from 221 different writers using a ‘smart white board'
as the training, validation and testing sets[18].

Razzak et al. [41] presents a segmentation-free approach for recognition of online Urdu handwritten script using hybrid
classifier, HMM and fuzzy logic. Their trained data set consisting of HMMs for each stroke is further classified into 62 sub-
patterns based on the primary stroke shape at the beginning and end using fuzzy rule. Fuzzy linguistic variables based on
language structure are used to model features and provide suitable result for large variation in handwritten strokes. They applied
data smoothing on chain code of the strokes to remove the zigzag path because the unsmooth data may produce problem for
some features like cusp extracted from upward or downward sharp turning point as [42][43]. Twenty-six time variant structural
and statistical features are extracted for the base strokes. Their experimental results show that the fuzzy classification into sub-
patterns increases the efficiency and decreases the computational complexity due to reduction in data set size. The hybrid
HMM—fuzzy technique is efficient for large and complex data set. It provided 87.6% and 74.1% for Nasta’liq and Nasakh,
respectively, on 1800 ligatures.

In [22], the authors proposed two methods for recognizing handwritten Arabic and Chinese words and phrases. The first
method, Symbolic Indirect Correlation (SIC), can be used in both online and offline recognition. The SIC method was
introduced by the same authors in [35], [36]. It reassembles variable length segments of an unknown query that match similar
segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and
of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter
n-grams. The second method, Style Constrained Classification (SCC), is based on the notion that the style (distortion or noise)
of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It
is adaptive in the sense that, with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the
writer of the unknown query

4 OFFLINE RECOGNITION METHODS

Offline recognition systems usually work on the scanned images of the documents. Therefore, the temporal information
associated to the pin-point sequence, which are available to the online system, is now not available. The loss of such temporal
information makes the offline OCR task harder than that of the online. Representation of the handwriting plays a crucial role in
the performance of the recognition system. Accordingly, many representation techniques were proposed to extract a
discriminative feature of the handwriting. These representations includes, structural [32], graph representation [33], etc. The
classification methodologies proposed in the recent research are mainly Neural Networks [44], [48] and Hidden Markov field,
many other methods were proposed, which we summarize the main work done in the last decade in this section.

Mahmoud and Mahmoud [24] used Hartley transform for the optical recognition of printed (not handwritten) Arabic characters.
Their approach starts by extracting the contours of the primary parts of the characters. The Fast Hartley Transform (FHT) is
then applied to the contours of each character and only 10 Hartley descriptors are extracted. The dots and holes of the character
are also used besides the 10 descriptors to enhance the recognition rate. The authors reported a recognition rate of 97.3%, a
rejection rate of 2% and an error rate of 0.7%. They also observed that their technique (based on Hartley descriptors) were
comparable to the FFT-based Fourier descriptors in terms of recognition rate. The Hartley and FFT-based descriptors were
found to give higher recognition rate than the Modified Fourier Spectrum (MFS) descriptors. In all their experiments, they used
the nearest neighbor classifier.

Ziaratban and Faez [53] presented an approach for deslanting Farsi/Arabic scripts. In the first phase, this approach estimate the
overall tilt of a handwritten word based on directional filters. After overall deslanting, they apply non-uniform slant estimation
algorithm to compute the remaining slant of each near-vertical stroke of the word separately. A non-uniform slant correction
algorithm is then used to reduce the remaining slants of each candidate stroke keeping the distortions of other strokes of the
word at a minimum level. When the authors compared this approach and other prevalent methods (based on chain codes and
vertical projection), they found that the proposed gives the least estimation error and runs the fastest.

Plotz and Fink [39] surveyed the techniques of offline handwriting recognition that are based on Markov models (MMs). They
started by describing the architecture typical to MM-based offline handwriting recognition systems. Then, they presented a
review of the solutions proposed in the literature for the open problems associated with the use of MMs for handwriting
recognition.

Benjelil et al. [11] proposed a system for page segmentation and classification of complex documents. The system is to be used
to determine the layout of the pages of the input document. This information is fed into the OCR system along with the input
document. The proposed system is based on steerable pyramid transform. The features extracted from pyramid sub-bands are
used to locate and classify regions into text (either machine-printed or handwritten) and non-text (images, graphics, drawings or
paintings) that may exist in some noise-infected, deformed, multilingual, multi-script document images. Such documents can
contain tabular structures, logos, stamps, handwritten script blocks, photographs, etc. They used a dataset of 1,000 official
complex document images to test their system against other state-of-the-art methods. The results showed that their system
achieved higher accuracy than its competitors.

Al-Shaher and Hancock [3] presented a statistical approach for recognizing 2D shapes which are represented as an arrangement
of curves or strokes. The approach is a hierarchical one which mixes geometric and symbolic information in a three-layer
architecture. Each curve primitive is represented using a point-distribution model which describes how its shape varies over a
set of training data. Shapes are decomposed into an arrangement of primitives and the global shape representation has two
components. The first of these is a second point distribution model that is used to represent the geometric arrangement of the
curve centre-points. The second component is a string of stroke labels that represents the symbolic arrangement of strokes. They
use recover the stroke parameters, shape-alignment parameters and stroke labels by applying the expectation maximization
(EM) algorithm. The authors applied the resulting shape-recognition method to handwritten Arabic character recognition and
achieved a recognition accuracy of 97%.

Lopresti et al. [22] proposed two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), for
recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown
query that match similar segments of labeled reference words. For recognition, it uses the correspondence between the order of
the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language
context in the form of letter n-grams. The other method, SCC, is based on the notion that the style (distortion or noise) of a
character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is
adaptive in the sense that, with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the
writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references.

Al-zoubaidy [5] described a methodology for feature selection in unsupervised learning for application in Arabic handwritten
character recognition. The methodology uses a multiobjective genetic algorithm that minimizes the number of features. A
validity index that measures the quality of clusters have been used to guide the search towards the more discriminate features
and the best number of clusters. Experimental analysis of the method on Arabic handwritten character recognition indicated an
improvement in the recognition speed as well as the recognition accuracy. It achieved a 30-50% reduction of features with
trivial drop in recognition accuracy. The obtained identification accuracy was 95% for the training set, 89% for the validation
set, and 85.3% for the test set.

Amrouch et al. [7] addressed the offline recognition of isolated Arabic handwritten characters. Their system relied on Hidden
Markov Models (HMMs). The Hough accumulator of the character image in this system is partitioned into equal horizontal
bands to be used to extract directional information. This information is translated into sequences of observations that are used to
train the model for each character during the learning step. The system was experimented on 42 Arabic handwritten isolated
characters extracted from the base of characters. 50% of these served for the phase of learning, and 50% for the tests. The
proposed system achieved a recognition rate of 85.71%.

Amin in [6] applied Inductive Logic Programming (ILP) to the automatic recognition of Arabic characters. His system used a
structural approach for feature extraction (based on structure primitives such as curves, straight lines and loops in similar
manner to which human begins describe characters geometrically). The proposed system was tested on a sample of handwritten
characters from several individuals whose writing ranged from acceptable to poor in quality and the average correct
recognitions rate obtained using cross-validation was 86.65% while the rejection rate was 96.95%

Alshebeili et al.[4] presented an Arabic character recognition algorithm using 1-D slices of the character Fourier spectrum. It
estimates the Fourier spectrum of the character’s projections on the X- and Y-axes, and the features are extracted from this 2-D

spectrum. The features of 10 sets of characters were used as model features. The features obtained this way are invariant to
changes in scale, orientation and shift. To classify an input character, the algorithm extracts its feature vector and measures its
distance from the model features. The algorithm outputs the model whose feature vector is closest to the feature vector of the
input character. Experimental results have shown that the presented algorithm is capable of recognizing Arabic characters with
a recognition rate of 99.06%, using 10 features of the X-projection. Taking 10 additional features from the Y-projection
improves the recogntion rate to 99.94%.

Mozaffari et al. [34] proposed a fast method for extracting dots from cursive Farsi/Arabic handwriting and suggested a
technique for utilizing such dots in lexicon reduction. The technique involves extraction and representation of number and
position of dots from offline handwritten words to eliminate unlikely candidates. The system was tested on using a set of 12,000
handwritten word images and a lexicon reduction of 93% with accuracy of 85% was obtained. The incorporation of the
proposed lexicon reduction algorithm achieved a speedup factor of 2 as well as 13% improvement in recognition rate.

Farooq et al. [16] proposed a phrase-based post-processing technique for correcting the output of an arbirary OCR. The system
treats the OCR as a black box and adapts statistical machine translation techniques to correct the output of the OCR. The system
was able to improve the recognition rate of an Arabic OCR developed by Sakhr from 71.1% to 84.8% on a dataset containing
around 400 scanned documents.

Khorsheed [21] proposed a method that does not require segmentation into characters, and is applied to cursive Arabic script.
The method trains a single hidden Markov model (HMM) with the structural features extracted from the manuscript words.
These structural features are obtained by decomposing the skeleton graph of the word into a sequence of links (in the order in
which the word is written). Then, each link is further broken into small line segments using line approximation. The line
segment sequence is transferred into a sequence of discrete symbols using vector quantization and finally presented to the
HMM to obtain an sequence of the letters associated with the input pattern. To assess the performance of the proposed method,
samples extracted from a historical handwritten manuscript were used (written by a single person). The system achieved a
recognition rate of 81%. The use of an Arabic spell-checker helped increase the recognition rate to 97%. However, these
recognition rates are expected to decrease when including more handwritten fonts.

Abdulla et al.[1] described a segmentation algorithm using Rotational Invariant Segments Features (RISF). The algorithm uses
a dynamic feature extraction technique to evaluate a large set of curved segments or strokes through the image of the input
Arabic word or subword. It then nominates a small “optimal” subset of cuts for segmentation. All the directions of stroke are
converted to two main segments: '+ and w'-' RISF. The RISF algorithm was tested on databases designed by the authors and
achieved a segmentation rates between 90.58% and 95.66%.

Xiu et al. [51] presented a probabilistic segmentation model. It starts by conducting a contour-based over-segmentation to cut
the word image into graphemes. The graphemes are sorted by the algorithm into 3 queues, which are character main parts, sub-
parts (diacritics) above and below main parts, respectively. The confidence for each character is calculated by the probabilistic
model, taking into account both of the recognizer output and the geometric confidence besides with logical constraint. Then, the
global optimization is conducted to find optimal cutting path, taking weighted average of character confidences as objective
function. The method was tested on various writing styles and an average recognition rate of 59.2% was achieved.

Kessentini et al. [20] presented a multi-stream feature approach for offline handwritten word recognition. The proposed
approach combines low-level feature streams, namely (a) density-based features extracted from 2 different sliding windows
with different widths, and (b) contour-based features extracted from upper and lower contours. The approach was tested on a
Latin script database as well as an Arabic script one. The recognition performance was 89.8% for the Latin database and 79.8%
for the Arabic one.

Al-Ohali and Brook [2] presented a holistic technique for classifying and retrieving historical Arabic handwritten (HAH)
documents. The algorithm proceeds as follows. First, the HAH manuscript’s image is segmented into words and each word is
segmented into its connected parts. To improve the segmentation, the overlap between the adjacent connected parts of a single
word is reduced by a stretching algorithm that increases the gap between the connected parts. After that, a variety of structural
and statistical features, devised specifically for Arabic text, are extracted from the connected parts and then combined into one
consolidated feature vector representing the word as a whole. A neural network is then used to learn and classify the input
vectors into word classes. These classes are then utilized to retrieve HAH manuscripts.

Benouareth et al. [12] described an offline unconstrained handwritten Arabic word recognition system based on segmentation-
free approach and semi-continuous hidden Markov models (SCHMMs) with explicit state duration. The described system
performs word recognition by using a proposed sliding window approach based on vertical projection histogram analysis of the

word and extracting a pertinent set of statistical and structural features from the word image. The authors compared three
distributions (Gamma, Gauss and Poisson) for the explicit state duration modeling where the Gamma distribution achieved the
best recognition accuracy. Several experiments have been performed in which the proposed system achieved recognition rates
ranging from 90.2 to 97.50.

5 CONCLUSION

In this paper, we presented the main advances in the online and offline Arabic handwriting recognition, and some of the
databases available to the research communities for this task. The online Arabic handwriting recognition systems have recently
achieved a very good advancement. Most of the proposed classification methods were mainly based on neural networks and
Hidden Markov Models (HHM), the systems that are build using Neural Networks overcome systems that use Hidden Markov
Models (HMM). Interestingly, some systems (Vision Objects, the winning system in the Last ICDAR 2009 competition)
reported a recognition rate of 100% with fast processing speed. It worth noting that the system that achieved such excellent
performance does not use any normalization or feature extraction; the system works on the raw data directly. These results
indicates that the online handwriting recognition is almost a solved problem.

Offline recognition systems usually solve harder problem than the online problem. This is due to the lack of the temporal
information associated to the pin-point sequence, which are available to the online system. Representation of the handwriting
plays a crucial role in the performance of the offline recognition system. Accordingly, many representation techniques were
proposed to uniquely represent the different parts of the handwriting text. These representations include structural graph
representation. The classification methodologies proposed in the recent research are mainly Neural Networks, Hidden Markov
field; many other methods were also proposed. Most of the proposed systems use segmentation-based methodologies.
Segmentation is the main source for erroneous results; this is due to the cursive nature of the Arabic script and the different
styles of the writers. For that, the best performance achieved until now for the offline systems id about 97% for constraint
writing, and fell into about 60% in case of free-writing.

REFERENCES

[1] Abdulla, A. Al-Nassiri and R. Abdul Salam, "Offline Arabic Handwritten word segmentation using rotational invariant Segments
Features”, The International Arab Journal of Information Technology, vol. 5. no. 2, pp. 200, 2008.

[2] Z. Al Aghbari, and S. Brook, "HAH manuscripts: A holistic paradigm for classifying and retrieving historical Arabic handwritten
documents”, Expert Systems with Applications, Vol. 36, No. 8, pp.10942-10951, 2009.

[3] Al-Shaher and E.R. Hancock, "Arabic Character Recognition Using Structural Shape Decomposition”, Lecture Notes in Computer
Science, Computer Analysis of Images and Patterns, Vol. 2756, pp. 478-486, 2003.

[4] S.A. Alshebeili, A.F. Nabawi and S.A. Mahmoud, "Arabic character recognition using 1-D slices of the character spectrum", Signal
Processing, vol. 56, No. 1, pp. 59-75, 1997.

[5] L.M. Al-zoubaidy, "Efficient Genetic Algorithms for Arabic Handwritten Characters Recognition”, Advances in Soft Computing,
Applications of Soft Computing, Vol. 36, pp. 3-14, 2006.

[6] Amin, "Recognition of Hand-Printed Characters Based on Structural Description and Inductive Logic Programming”, Pattern
Recognition Letters, VVol. 24, pp. 3187-3196, 2003.

[71 M. Amrouch, M. Elyassa, A. Rachidi and D. Mammass, "Off-Line Arabic Handwritten Characters Recognition Based on a Hidden
Markov Models", Lecture Notes in Computer Science, Image and Signal Processing, VVol. 5099, pp. 447-454, 2008.

[8] N.Ben Amara, O. Mazhoud, N. Bouzrara and N., Ellouze, "ARABASE: A Relational Database for Arabic OCR Systems", The
International Arab Journal of Information Technology, vol. 2, No. 4, p. 259, 2005.

[9] N. Aricaand F.T. Yarman-Vural, "An overview of character recognition focused on off-line handwriting". IEEE Trans. Syst. Man
Cybern. C Appl. Vol 31, no. 2, pp. 216-232, 2001.

[10] S. M. Awaidah, S. A. Mahmoud. A multiple feature/resolution scheme to Arabic (Indian) numerals recognition using hidden
Markov models. Signal Processing, 89, 1176-1184, (2009).

[11] M. Benjelil, S. Kanoun, R. Mullot and A.M. Alimi, "Complex documents images segmentation based on steerable pyramid
features", International Journal on Document Analysis and Recognition, Vol. 13, No. 3, pp. 209-228, 2010.

[12] Benouareth, A. Ennaji and M. Sellami, M., "Semi-continuous HMMs with explicit state duration for unconstrained Arabic word
modeling and recognition". Pattern Recognition Letters, vol. 29, No. 12, pp. 1742-1752, 2008.

[13] F. Biadsy, J. ElI-Sana and N. Habash, "Online arabic handwriting recognition using hidden markov models”, in Proc. of the 10th
International Workshop on Frontiers in Handwriting Recognition (IWFHR), pp. 85-90, 2006.

[14] H. El Abed and V. Mérgner, "ICDAR 2009-Arabic handwriting recognition competition”, International Journal on Document
Analysis and Recognition, pp. 1433-2833, 2010.

[15] H.El Abed, M. Kherallah, V. Mérgner and A.M. Alimi, "On-line Arabic handwriting recognition competition: ADAB database and
participating systems". International Journal on Document Analysis and Recognition, pp. 1388-1392, 2010.

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

F. Faroog, D. Jose and V. Govindaraju, "Phrase-based correction model for improving handwriting recognition accuracies". Pattern
Recognition, vol. 42, No. 12, pp. 3271-3277, 2009.

H. Fujisawa, "Forty years of research in character and document recognition—an industrial perspective", Pattern Recognition. Vol
41, pp. 2435-2446, 2008.

Graves, S. Fernandez and J. Schmidhuber, "Multi-dimensional recurrent neural networks", in Proc. of the International Conference
on Artificial Neural Networks, Porto, Portugal, 2007.

Graves, S. Fernandez, M. Liwicki, H. Bunke and J. Schmidhuber, "Unconstrained online handwriting recognition with recurrent
neural networks". Advances in Neural Information Processing Systems 21, NIPS21, pp 577-584, 2008.

Y. Kessentini, P. Thierry and A. Ben Hamadou, "Off-line handwritten word recognition using multi-stream hidden Markov
models”, Pattern Recognition Letters, vol. 31, No. 1, pp. 60-70, 2010.

M.S. Khorsheed, "Recognising Handwritten Arabic Manuscripts Using a Single Hidden Markov Model", Pattern Recognition
Letters, vol. 24, pp. 2235-2242, 2003

D. Lopresti, G. Nagy, S. Seth and X. Zhang, "Multi-character Field Recognition for Arabic and Chinese Handwriting", Lecture
Notes in Computer Science, Vol. 4768, Arabic and Chinese Handwriting Recognition, pp 218-230, 2008.

L.M. Lorigo, and V. Govindaraju, "Offline Arabic Handwriting Recognition: A survey", IEEE Trans. on Pat. Anal. and Mach. Int
(PAMI), Vol 28< no. 5, pp. 712-724, 2006.

S.A. Mahmoud, and A.S. Mahmoud, "The use of Hartley transform in OCR with application to printed Arabic character
recognition”. Pattern Analysis & Applications, vol. 12, No. 4, pp. 353-365, 2009.

V. Margner, M. Pechwitz, and H. El Abed, "ICDAR 2005—Arabic handwriting recognition competition”, in Proc. of 8th
International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 70-74, 2005.

V. Margner and H. El Abed, "ICDAR 2007—Arabic handwriting recognition competition”, in Proc. of the 9th International
Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 1274-1278, 2007.

V. Margner and H. El Abed, "ICDAR 2009 Arabic handwriting recognition competition”, in Proc. of the 10th International
Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 1383-1387, 2009.

N. Mezghani, A. Mitiche, and M. Cheriet, "A new representation of shape and its use for high performance in online Arabic
character recognition by an associative memory", International Journal on Document Analysis and Recognition (IJDAR), Vol 7, no
4, pp. 201-210, 2005.

N. Mezghani, A. Mitiche and M. Cheriet, "A new representation of shape and its use for high performance in online Arabic
character recognition by an associative memory", International Journal of Document Analysis, Vol. 7, no 4, pp 201-210, 2005.

N. Mezghani and A. Mitiche, "A Gibbsian Kohonen Network for Online Arabic Character Recognition”. Lecture Notes in
Computer Science, Advances in Visual Computing, VVol. 5359, pp. 493-500, 2008.

H. Mirvaziri, M.M. Javidi and N. Mansouri, "Handwriting Recognition Algorithm in Different Languages: Survey", Lecture Notes
in Computer Science, Vol. 5857, Visual Informatics: Bridging Research and Practice, pp. 487-497, 2009.

M. G. Mostafa, "An Adaptive Algorithm for the Automatic Segmentation of Arabic Characters”, in Proc. of the 17th National
Conference on Computers, Al-Madinah Al-Munawwarah, Saudi Arabia, December 15-18, 2003.

M.G. Mostafa, "Optical Character Recognition of Handwritten Arabic Numerals Using Structured Graph", in Proc. of the 3rd
International Conference on Intelligent Computing and Information Systems, Cairo, Egypt 15-18 March, pp. 275-280, 2007.

S. Mozaffari, K. Faez, V. Margner, and H. El-Abed, "Lexicon reduction using dots for off-line Farsi/Arabic handwritten word
recognition”, Pattern Recognition Letters, vol. 29, No. 6, pp. 724-734, 2008.

G. Nagy, S.C. Seth, S.K. Mehta and Y. Lin, "Indirect Symbolic Correlation Approach to Unsegmented Text Recognition", in Proc.
of Conference on Computer Vision and Pattern Recognition, Workshop on Document Image Analysis and Retrieval (DIAR 2003),
Madison, W1, pp. 22-32, 2003.

G. Nagy, D. Lopresti, M. Krishnamoorthy, Y. Lin, S. Seth and S. Mehta, "A Nonparametric classifier for unsegmented text", in
Proc. of IS&T-SPIE International Symposium on Document Recognition and Retrieval, San Jose, pp. 102-108, 2004.

M. Pechwitz, S.S. Maddouri, V. Mérgner, N. Ellouze, and H. Amiri, "IFN/ENIT-DATABASE OF HANDWRITTEN ARABIC
WORDS" , in the 7th Collogue International Francophone sur I'Ecrit et le Document , CIFED 2002, Hammamet, Tunis, Oct. 21-23,
2002.

R. Plamondon, and S.N. Srihari, "On-line and off-line handwriting recognition: a comprehensive survey", IEEE Trans. Pattern
Anal. Mach. Intell., Vol 22, no. 1, pp. 63-84, 2000.

T. Plotz and J.A. Fink. "Markov models for offline handwriting recognition: a survey”, International Journal on Document Analysis
and Recognition, Vol. 12, No. 4, pp. 269-298, 2009.

M.1. Razzak, S.A. Hussain and M. Sher, "Combining online and offline preprocessing for online Urdu character recognition”, in
Proc. of International Multiconference of Engineers and Computer Scientists 2009 (IMECS 09), Hong Kong, 2009.

M.I. Razzak, S.A. Hussain and M. Sher, "Numeral recognition for Urdu script in unconstrained environment”, in Proc. of
International Conference on Engineering and Technology, Islamabad, 2009.

M.I. Razzak, F. Anwar, S.A. Husain, A. Belaid and M. Sher, "HMM and fuzzy logic: A hybrid approach for online Urdu script-
based languages’ character recognition", Knowledge-Based Systems, Vol. 23, no. 8, pp. 914-923, 2010.

Sakhr® OCR System. Web Site: http://www.sakhr.com/OCR.aspx (Accessed November 2010).

M. F. Tolba and G. M. Abdul Moty, “A Comprehensive Survey on Arabic Optical Characters Recognition,” The 1st International
Conference of Linguistic Engineering, Cairo, Egypt, October 1998.

M. F. Tolba and S. K. Fathy. “A Structural Approach of an Arabic Character Recognition,” The 2nd International Conference of
Linguistic Engineering, Cairo, Egypt, October 1998.

http://www.sakhr.com/OCR.aspx

[46]

[47]
[48]
[49]
[50]
[51]

[52]

[53]

M. F. Tolba, G. M. Abdul Moty and A. M. Mahmoud, “Self-Organizing feature Maps For Arabic Sub-Words Recognition,” The
International Conference on Industrial Electronics, IETA2001, Electronics Research Institute (ETI), IEEE Industrial Electronics
Society & University of Bridgeport, Cairo, Egypt, December 2001.

M.F. Tolba, G.M. Abdul Moty and A.M. Mahmoud, "Segmentation Free Approach for Printed Arabic Text Recognition",
International Journal of Computers and Their Applications (ISCA), Vol 10, no. 2, pp. 94-102, 2003.

M. F. Tolba, M. S. Abdel Wahab, I. A. Taha and A. M. Al-Shishtawy, “A Secure Grid Enabled Signature Verification System,”
2nd International Conference on Intelligent Computing and Information Systems (1JICIS), Cairo, Egypt, March 2005.

M.F. Tolba, "Arabic Optical Character Recognition: State of the Art", The Nineth International Conference on Language
Engineering, Cairo, Egypt, 2009.

Vision Objects. Myscript handwriting recognition engine. Web Site: http://www.visionobjects.com/handwriting-recognition/how-
doesmyscript-work/ (Accessed November 2009).

P. Xiu, L. Peng, X. Ding and H. Wang, "Offline Handwritten Arabic Character Segmentation with Probabilistic Model", Lecture
Notes in Computer Science, vol. 3872, Document Analysis Systems VI, pp. 402-412, 2006.

M.F. Zafar, D. Mohamad and M.M. Anwar, "Recognition of online isolated handwritten characters by backpropagation neural nets
using sub-character primitive features", in Proc. of 10th IEEE International Conference on Information Technology, INMIC 2006,
Islamabad, Pakistan, pp. 157-162, 2006.

M. Ziaratban and K. Faez, "Non-uniform slant estimation and correction for Farsi/Arabic handwritten words", International Journal
on Document Analysis and Recognition (IJDAR), Vol. 12, no. 4, pp. 49-267, 20009.

10

http://www.visionobjects.com/handwriting-recognition/how-doesmyscript-work/
http://www.visionobjects.com/handwriting-recognition/how-doesmyscript-work/

An NLP-Based Fully Distributed Arabic Search Engine (1)

Taghride Anbar
Ain Shams University, Al-Alson Faculty
Taghride@coltec.net

Abstract

This prototype search engine is sponsored by ITIDA (Information Technology Industry Development Agency). It
is one of ITAC projects (Information Technology Collaboration), of the type ARP program (Advanced Research
Project). ITAC projects aim at “promoting Industry/Universities collaboration”. The partners in this project are
“Faculty of Computer & Information Sciences” at Ain-Shams University, and COLTEC (Computer & Language
Technology) Company. Coltec’s role is to build a single-CPU NLP-based Arabic search engine. The role of the
Faculty of Computer & Information Sciences is to set up the system as a web search engine; this includes
developing parallel web crawler and page ranking.

Our paper aims at representing the NLP techniques introduced to this prototype search engine; accordingly, it is
out of the scope of the paper to characterize efforts and techniques applied on the different components of the
system.

The target of our NLP techniques is to reduce as much as possible the linguistic distortion that affects both
indexing and searching documents. Before introducing our NLP work, we discussed the methodology of
automatic suffix splitting and illustrated how far it is inconvenient for processing Arabic. In the prototype search
engine, the applied NLP techniques handle two sources of linguistic distortion; namely the writing and the
affixation issues.

I. Introduction
Search engines are one of the main topics related to the domain of information retrieval, sometimes, named
text retrieval. The continuous stream of textual contents on the web creates urgent need to search engines: no
user can browse all of the web documents to get information on a certain concept. The user has to depend on a
system that is capable of performing this task automatically, quickly and accurately. The user has to represent
the required concept in a suitable word, a group of words, or a phrase. Doing that, a query has been built. A
list of search results points to the documents that include the query word(s); each item in the list points to a
document. When clicking on any item, the connected document opens. In few words, a web search engine
aims at searching in a huge pool of natural language documents to return the set of documents whose content
matches the query subject. Normally, the documents retrieved in a list are arranged in a way that the
documents evaluated by the system as most like the query come on the top of the list. The statistical method is
the most common method applied in Search engines.

. Indexing & Querying
Though the diversity of methodology, design and structure of search engines, two components are basic in any
search system: the indexing and the querying components.
The indexing component is an essential subsystem of the Web Search Engine. From documents repository, it
extracts both content and attributes information and merges them into indexes, which facilitates fast and
accurate searches. The Indexing component should be capable of reading and extracting information from
various formats of files. In few words, Indexing is the overall process of extracting information, creating index
entries, and merging them into a large index that contains the sorted terms and their locations within the pool

mailto:Taghride@coltec.net

of indexed documents. The index unit is designed to execute all its tasks automatically and continuously so
that new updates being included and replaced old documents being omitted.

Without an indexing system, the application would scan every document in the document repository, which
requires considerable time and computing power.

Among other preparatory operations that the indexing process executes, there are three operations in direct
relation to natural language;

1- Tokenization that returns texts into lists of words

2- Exclusion of stop words (relational or empty words) from being indexed: Prepositions, articles,
pronouns... are examples of empty words. Such words - contrary to the full words that carry lexical
meanings - have no lexical content. They are functional words that indicate relations among full
words. Stop words are of high frequency; they represent about one third of text content. If one third
of the words in a document are excluded from the indexing process, the indexing time and size will
surely improve, meanwhile the content will not be affected. In addition, no user builds a query about
a stop word. Based on these facts, almost all search engines do not include stop words in the index.
The exclusion process is performed by the help of a pre-defined list of stop words.

3- Returning the different forms of a word to their basic lexical item (an operation known as stemming):
words are the main way to express concepts, thus, when a user formulates a query, he means
inquiring a concept. The search, in return, uses the query word(s) as a means to search the concept.
In natural languages, full words are flexible; they may change their forms without changing their
conceptual content. In English, such changes mostly take place by adding suffixes: suffixes change
the lexical item (stem) “play” to: plays, played, playing... If the search is performed on words,
without the stemming operation, only, the form of the query word will be included in the search
results, the other forms will be dropped though they express the same concept. The word suffixes are
automatically removed according to a pre-defined list. Indexing stems guarantees -to a large extent-
that the required concept is widely covered independently from the linguistic variations. This
methodology of automatic Affix removal suits perfectly the English languages; the reason is that the
morphological system of English is relatively simple and limited. Meanwhile, This method does not
suit other European languages; the German language that widely uses compound nouns is an
example.

The querying component provides the search functions related to the index created by the Indexing
component. The output of this component represents a list of hits resulted by an inserted query with chosen
options. This list of search results are ordered by the Page Ranking module and viewed on the final interface.
To generate the text snippets of the results, the caller subsystem should retrieve the matched documents from
the document repository and extract the snippets according to the hit list.

The effectiveness of different search engines submits to continuous evaluation. The common
evaluation method is mapping precision against recall. TREC (Text Retrieval Conference) is one of
the most famous and important workshops in this domain.

I1l. NLP Track at TREC-5

The Text REtrieval Conference (TREC), is co-sponsored by the National Institute of Standards and
Technology (NIST), U.S. Department of Defense, Information Technology Laboratory's (ITL), Intelligence
Advanced Research Projects Activity (IARPA), and Retrieval Group of the Information Access Division
(1AD).

The first conference took place in November 1992. “its purpose was to support research within the

http://www.itl.nist.gov/
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.iarpa.gov/index.html
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.iarpa.gov/index.html
http://www.nist.gov/itl/iad/rg/index.cfm
http://www.nist.gov/itl/iad/index.cfm
http://www.nist.gov/itl/iad/index.cfm

information retrieval community by providing the infrastructure necessary for large-scale evaluation of text
retrieval methodologies... TREC has also sponsored the first large-scale evaluations of the retrieval of non-
English (Spanish and Chinese) documents”(TREC homepage: overview).

In 1996, one of the tracks was dedicated to examine the impact of NLP techniques on text retrieval. Tomek
Strzalkowski summarized this track from his notes and Karen Spark Jones notes; ”NLP track has been
organized for the first time at TREC-5 to provide a more focused look at how NLP techniques can help in
achieving better performance in information retrieval...Five teams participated in this NLP track”
(http://www.dtic.mil).

The conclusions are “This NLP track demonstrated that natural language processing techniques have solid
but limited impact on the quality of text retrieval, particularly precision. Techniques aimed at producing
higher quality queries, e.g., query expansion, constraints, appear to be more effective than those aimed
primarily at obtaining improved indexing of database documents. More work is needed before more
substantial gains can be seen” (http://www.dtic.mil).

We judge these conclusions as not surprising; they are predictable. The language, subject to the NLP work
was English; a language with relatively simple linguistic structure. We believe that the processing
operations (mentioned above) are suitable and sufficient for search purposes; additional interference will
not be of remarkable advantage, it might degrade the search effectiveness.

Are the conclusions of this track related specifically to English or extends to other languages even those
with complicated structures? The answer of this question was not apparent in Strzalkowski’s report. In all
cases, Since 1996, no other track was dedicated in TREC events to the NLP.

IV. Linquistic distortion in Arabic
The affixional system in Arabic is so rich that the variations of one lexical item like “Jualia “extends to about
2000 words: « ...p2 shalia - (plaliall - Jaliag - Jaliall”, Such affixes do not change the word’s lexical content;
they add to it detailed functional meanings. For human usage such richness is really fruitful; it allows the
speaker\writer to add as many details as required to the lexical content. For most of the automatic applications,
such details generate what we call “linguistic distortion”; search engines target searching concepts through
words; If the language affixation system produces loads of different words expressing one and the same
concept, the accuracy of search process will be highly affected. Linguistic distortion elimination by applying
the automatic suffix splitting methodology fails when dealing with Arabic:
1- The affixation system, in Arabic, is complicated. It is not just single suffixes:
up to three prefixes can combine together before a lexical item: “cw J) = 97,
two suffixes may follow a lexical item: “ ad 9 = da”,
lexical items accept compound prefixes and suffixes “aS = < s 1.3
2- Superficial segmentation misses the prefix\suffix validity which may lead to wrong segmentation:
Gt - A
3- Some characters look like affixes, while they are part of the lexical item: O\l S8 4o
4- Affix\ lexical items validation has to be pre-defined. It is not an automatic act:
the lexical item : (wig accepts the suffixes “3 « (g7, while " ¥ " does not accept those suffixes.

In addition to mentioned above, there are other types of linguistic noise (specific to Arabic) that affects
indexing & search processes:
a- In different languages, defining stop words is a simple task: “the, from, in, when” can easily be judged
as stop words. In Arabic, there are full words whose orthography is identical with that of stop words:
(stop word) (s <> ¢ (verh), (stop word) & <> ¢ (verb), (stop word) A= <> i (proper noun) ...
b- The Interaction between Affixes and lexical items may cause a kind of ambiguity:
) > gt & M), Jalsh D> Jial b & Jualsh wm D> L2 & g

http://www.dtic.mil/
http://www.dtic.mil/

c- The absence of diacritics “JS45 causes another type of ambiguity:
P> k) Jlha > Jiba, el <> Jiia
d- The lexical item changes orthographically in certain cases: «iilig\dddig - &) ga\ & g0
e- The Arabic orthographic system is full of writing details which result in: first; one single lexical item
may have several writing variations: sbew \ <law \ slam, second; most of non-professionals in Arabic
linguistics commit many errors when writing texts. The on the web Arabic e-contents confirm this
claim.
The issues that cause linguistic distortion in relation to Arabic search engines can be classified in four
categories: affixation, inflection, writing, and ambiguity.

V. Arabic NLP Engine
Solving these issues necessitate developing a powerful NLP engine that adequately addresses these problems.
The NLP engine implemented in the prototype search engine overcomes properly the problems related to
affixation and inflection. The writing issues are - partially but not totally- resolved. Dealing with linguistic
ambiguities is the most complicated problem that NLP engines encounter in all languages; a first step solution
has been introduced to the system.
The NLP engine introduced to this system is composed of three main units:

- The system’s lexicon whose backbone is the lexical items. Each item is supplied with the linguistic
data required for this application. Part of the data points to the affixes that the lexical item accepts.

- The Word Identifier tool whose function is to analyze each token, to extract the lexical item and the
connected affixes, and to check the correctness of the token’s components. This tool is so powerful
that it verifies a word in 1/800 millisecond. In other words, it verifies 800 000 words/second.

- Aset of simple rules that help with organizing the NLP processing and applying the required
functions.

Affixional Options

Searching Arabic queries in most of the current web search engines begins by searching the query as being

written, sometimes and not always, the word initial character(s) resembling one of the listed prefixes, is\are

removed; the remaining part is included in the search process without inclusion of other acceptable affixes:

Two options are applied in regard to the affixation:.

1- Exact Search option where the query is searched as being written. This technique does not include
affixes in the search process. It suits searching proper nouns in European languages because the
equivalents of Arabic prefixes are written in these languages as independent words: “the, and, then...’;
thus the search resulted will not be distorted by word variations. When applying the exact search, in
Arabic, on a query like “Cpa 4k”) the search results will miss structures like « Gsws dkag | (s adal
(s 4kaS . Though this search technique has its disadvantages in Arabic, we allow using it in the search;
a user might choose to apply it for a certain reason.

2- Affixional Search option By “Affix” it is meant, in this context, prefixes and\or suffixes adhered to a
lexical item. The affixional technique can be called “Intelligent wildcard Search” opposite to the “dummy
wildcard search”. The dummy search accepts any characters adhered to the right or the left of the query
word (assuming that these characters are just prefixes or suffixes, which is right in relation to the English
language). Applying such technique on Arabic documents may result in retrieving irrelevant words;
queries like: J%&, JAlw | sme | may include in the search results, words like: Jiaaicd | Alua | s
respectively.

According to the intelligent wildcard search, valid affixes for each query word are pre-defined, thus; the
query word with all its affixional variations is only included in the search. i.e. the affixional search

technique automatically includes in the search process, the query word and all its possible valid variations.
This technique covers what is missed in the Exact Search. It is suitable for searching proper nouns in
Avrabic.

Inflectional Option

In Arabic, some of the functional meanings - that are expressed through affixes added to the lexical item
in European languages- are expressed in Arabic through internal change in the body of the lexical item:
GUS D S QD s, D W, dud S dild | dale S dialge

In Arabic, the irregular plural is the most common type of inflectional issues. It is extensively used; it
applies on more than one third of common nouns, thus; it cannot be ignored as a linguistic phenomenon,
meanwhile, broken plurals cannot be registered in a list as being done in English.

The inflectional search technique is designed to overcome issues like that of irregular plural and irregular
feminine: jual > siua, saal > ¢l s, It covers the variations of a query word that are not
expressed through affixes.

This search option enhances searching on common nouns.

Writing Options

In Arabic there are two writing systems judged as correct. We call them “Strict” and “Relaxed* modes.
The strict mode applies the classical writing rules; between them is the differentiation among the four
graphemes i, 1,70« and the two graphemes “ ¢ , ¢ ““. In modern standard Arabic some modifications
are introduced to the writing system and considered as acceptable. These modifications are of
geographical character. Among these modifications is: dropping Hamza ““ s ” and using the grapheme ““
to represent < 17, <17 <) » (a8, JuB) <€) > a8 JB | <)) and dropping the final yaa: , thus,
the grapheme “ ¢ ” represents both “ ¢ & ¢ “ (=, & > & , &). Among these modifications are
the set of words like Jsima that is written as J s,

The writing system that considers these modifications is what we call “relaxed mode”. It is to note that
modifications in the relaxed mode go in one direction, i.e. the opposite replacements are not allowed:

neither) or | can replace the two other graphemes: ¢ as well cannot replace .

On the web, the writing errors dominate in most of the Arabic contents. To insist on ignoring wrong
words, and considering only the correct ones in both indexing and searching processes, is not a good idea.
Ignoring incorrect words means dropping a good quantity of data that express concepts.

the fact that search targets concepts and not words, a third writing option was added to the writing modes;
namely; “the common error mode”.

The Analysis of a big corpus full of writing errors, helped with recognizing the most common word
errors. They were classified and arranged according to certain priorities. Some error types are introduced
to the common error mode: Hamazaat (as/us , Jutin)), Yaa® ((44dwa), Taa’ and Haa’ (4 | 4adE),
This mode is the default in the search process. The user can choose one of one of the two other options
“strict” or “relaxed” if he is dealing with linguistically revised sites.

It worth mentioning, that the common error mode has its disadvantages that require more investigation.
The main issue is that a wrong word might be mixed with a similar right word: if the user means “after it”
“ajée “and writes the last character wrongly as Taa’ Marbuuta “ 48 « this wrong word mixes with a right
one whose meaning is “obstacle”.

Ambiguity Solution
A temporary solution is being applied; the affixes specific to each of the stop words is removed. What
remains from the affixes of each stop word are those valid for similar full words: « 43le «agale «lle« are

removed, but “.le ” remains because it might point to the proper noun “ (& . This way, we get rid of a
part of redundancies in search results. The opposite is done to guarantee the search comprehensiveness in
case of semantic ambiguity; we create what we call “shell affixation system”; it includes all affixes of
semantically ambiguous words in addition to their inflectional forms in the search operation. If the query
word is “dJba ”, then ... $ 8 ¥ Ua > in addition to "...o¥ 3 «J 3" will be included in the search
results.

All of the mentioned NLP facilities are exercised during the indexing phase. The linguistic information related
to each indexed item, is saved with it. Thus, no extra process has to be applied in the querying phase which
guarantees a high search speed. Meanwhile, the indexing process is not highly affected by added NLP work;
one reason is the proper structure of primary linguistic data, the other reason is that the index design is
dedicated to deal with the required NLP tasks.

Following is a screen shot assigning information on the index process as being monitored by a simple
monitoring tool built specifically for follow up purposes:

& Coltec DocIndexer
Number of indexed documents: 9989
Size of Indexed documents: 795763152
Number of indexed words: 17630618
Size of Index: I255405869
Total Time Elapsed (including SQL): 01:33 58
Time Elapsed (excluding SQL): 1 00:37 38

Start Index

The in use PC is with the following specs:

Intel Core2 Duo 1.80GHz, 2MB cache
2GB RAM

MS Windows XP Professional sp3
MS SQL Server 2008 Enterprise RTM

It is to note that
1- The index size is about one third of the size of indexed documents
2- The indexing rate is 290774 words/minute (storage time of the SQL server being included)

3- The indexing rate raises to 468484 words/ minute when the storage time of the SQL server being
excluded

VI. Conclusions
In this paper, we reviewed the specific issues of the Arabic language that cannot be ignored or handled
superficially. We showed the necessity of introducing NLP techniques in Arabic search engines to overcome
a part of the linguistic distortion that affects both indexing and searching.
Affixional and inflectional issues are almost overcome through the NLP based search options. Yet, we have
ideas to improve the applied techniques.
The writing issues are partially solved through the options of writing modes. More investigation has to be
done to control mixing up correct words with misspelled ones in the common error mode.
The linguistic ambiguity is a serious issue. It requires more time and efforts to be fundamentally solved.

VIl. References

[1] E.M. Voorhees and D. Harman:TREC; Experiment and Evaluation in Information Retrieval, MIT
Press, 2005

[2] H. Abu-Salem, M. Al-Omari, and M.Evens, Stemming methodologies over individual query words
for Arabic information retrieval. JASIS, 50 (6), pp. 524-529, 1999

[3] J.I. Tait, Charting a New Course: Natural Language Processing and Information Retrieval: Essays in
Honour of Karen Spéarck Jones, Springer, 2005.

[4] J. Xu, A.Fraser, and R.Weischedel, Empirical studies in strategies for Arabic retrieval. Sigir
Tampere, Finland: ACM, 2002.

[5] L.S. Larkey & M.E.Connell, Arabic information retrieval at UMass in TREC-10., TREC 2001,
Gaithersburg: NIST, 2001.

[6] L.S. Larkey, L. Ballesteros, and M.E. Connell, Improving stemming for Arabic information retrieval:
Light stemming and co-occurrence analysis, University of Massachusetts, Technical Report IR-249,
2002

[7] M. Piotrowski, NLP-supported full-text retrieval, CLUE technical report no. 3, Friedrich-Alexander
University Erlangen, 2001

[8] W.Kraaij, & R.Pohlmann, Viewing stemming as recall enhancement. In Proceedings of ACM
SIGIR96. pp. 40-48, 1996.

[91 TREC homepage: http://trec.nist.gov/overview.html

[10] NLP Track at TRECC-5 homepage:

http://www.dtic.mil/cgi-bin/GetRDoc?location-U2&doc= GetTRDoc.pdf&AD=ADA470634

http://trec.nist.gov/overview.html
http://www.dtic.mil/cgi-bin/GetRDoc?location-U2&doc

