
1

Introduction to language

modeling

Dr. Mohamed Waleed Fakhr

AAST

Language Engineering Conference

22 December 2009

2

Topics

• Why a language model?

• Probability in brief

• Word prediction task

• Language modeling (N-grams)

– N-gram intro.

– Model evaluation

– Smoothing

• Other modeling approaches

3

Why a language model?

• Suppose a machine is required to translate:

“The human Race”.

• The word “Race” has at least 2 meanings, which

one to choose?

• Obviously, the choice depends on the “history”

or the “context” preceding the word “Race”. E.g.,

“the human race” versus “the dogs race”.

• A statistical language model can solve this

ambiguity by giving higher probability to the

correct meaning.

4

Probability in brief

• Joint probability: P(A,B) is the probability

that events A and B are simultaneously

true (observed together).

• Conditional probability: P(A|B): is the

probability that A is true given that B is

true (observed).

5

Relation between joint and conditional probabilities

• BAYES RULE:

P(A|B) = P(A,B)/P(B)

P(B|A) = P(A,B)/P(A)

Or;

P(A,B)= P(A).P(B|A) = P(B).P(A|B)

6

Chain Rule

• The joint probability:
P(A,B,C,D)=P(A).P(B|A).P(C|A,B).P(D|A,B,C)

• This will lend itself to the language modeling paradigm
as we will be concerned by the joint probability of the
occurrence of a word-sequence (W1,W2,W3,….Wn):

 P(W1,W2,W3,….Wn)

 which will be put in terms of conditional
probability terms:

• P(W1).P(W2|W1).P(W3|W1,W2)………

 (More of this later)

7

Language Modeling?

In the narrow sense, statistical language modeling
is concerned by estimating the joint probability of
a word sequence . P(W1,W2,W3,….Wn)

 This is always converted into conditional probs:
P(Next Word | History)

 e.g., P(W3|W1,W2)

i.e., can we predict the next word given the
previous words that have been observed?

In other words, if we have a History, find the Next-
Word that gives the highest prob.

8

Word Prediction

• Guess the next word...

 ... It is too late I want to go ???

... I notice three guys standing on the ???

• There are many sources of knowledge that can

be used to inform this task, including arbitrary

world knowledge and deeper history (It is too

late)

• But it turns out that we can do pretty well by

simply looking at the preceding words and

keeping track of some fairly simple counts.

9

Word Prediction
• We can formalize this task using what are

called N-gram models.

• N-grams are token sequences of length N.

• Our 2nd example contains the following 2-

grams (Bigrams)

– (I notice), (notice three), (three guys), (guys

standing), (standing on), (on the)

• Given knowledge of counts of N-grams

such as these, we can guess likely next

words in a sequence.

10

N-Gram Models

• More formally, we can use knowledge of

the counts of N-grams to assess the

conditional probability of candidate words

as the next word in a sequence.

• In doing so, we actually use them to

assess the joint probability of an entire

sequence of words. (chain rule).

11

Applications

• It turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

• As we’ll see, it lies at the core of the following
applications
– Automatic speech recognition

– Handwriting and character recognition

– Spelling correction

– Machine translation

– Information retrieval

– And many more.

124/29/2024

ASR

134/29/2024

Source Channel Model for
Machine Translation

SMT Architecture
Based on Bayes´ Decision

Rule:

ê = argmax{ p(e | f) }
= argmax{ p(e) p(f | e) }

15

Counting

• Simple counting lies at the core of any

probabilistic approach. So let’s first take a

look at what we’re counting.

– He stepped out into the hall, was delighted to

encounter a water brother.

• 13 tokens, 15 if we include “,” and “.” as separate

tokens.

• Assuming we include the comma and period, how

many bigrams are there?

16

Counting
• Not always that simple

– I do uh main- mainly business data processing

• Spoken language poses various challenges.

– Should we count “uh” and other fillers as tokens?

– What about the repetition of “mainly”? Should such do-

overs count twice or just once?

– The answers depend on the application.

• If we’re focusing on something like ASR to support indexing

for search, then “uh” isn’t helpful (it’s not likely to occur as a

query).

• But filled pauses are very useful in dialog management, so

we might want them there.

17

Counting: Types and Tokens

• How about

– They picnicked by the pool, then lay back on

the grass and looked at the stars.

• 18 tokens (again counting punctuation)

• But we might also note that “the” is used 3

times, so there are only 16 unique types

(as opposed to tokens).

• In going forward, we’ll have occasion to

focus on counting both types and tokens

of both words and N-grams.

18

Counting: Wordforms

• Should “cats” and “cat” count as the same

when we’re counting?

• How about “geese” and “goose”?

• Some terminology:

– Lemma: a set of lexical forms having the

same stem, major part of speech, and rough

word sense: (car, cars, automobile)

– Wordform: fully inflected surface form

• Again, we’ll have occasion to count both

lemmas, morphemes, and wordforms

19

Counting: Corpora
• So what happens when we look at large

bodies of text instead of single utterances?

• Brown et al (1992) large corpus of English
text
– 583 million wordform tokens

– 293,181 wordform types

• Google
– Crawl of 1,024,908,267,229 English tokens

– 13,588,391 wordform types

• That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?•Numbers

•Misspellings
•Names
•Acronyms
•etc

20

Language Modeling

• Back to word prediction

• We can model the word prediction task as
the ability to assess the conditional
probability of a word given the previous
words in the sequence

– P(wn|w1,w2…wn-1)

• We’ll call a statistical model that can
assess this a Language Model

21

Language Modeling

• How might we go about calculating such a

conditional probability?

– One way is to use the definition of conditional

probabilities and look for counts. So to get

– P(the | its water is so transparent that)

• By definition that’s

Count(its water is so transparent that the)

 Count(its water is so transparent that)

We can get each of those counts in a large

corpus.

22

Very Easy Estimate

• According to Google those counts are 5/9.

– Unfortunately... 2 of those were to these

slides... So maybe it’s really 3/7

– In any case, that’s not terribly convincing due

to the small numbers involved.

23

Language Modeling

• Unfortunately, for most sequences and for

most text collections we won’t get good

estimates from this method.

– What we’re likely to get is 0. Or worse 0/0.

• Clearly, we’ll have to be a little more

clever.

– Let’s use the chain rule of probability

– And a particularly useful independence

assumption.

24

The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• For sequences...
– P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• In general
– P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

),(
)|(

BP

BAP
BAP =

)|().(),(BAPBPBAP =

25

The Chain Rule

P(its water was so transparent)=
P(its)*

 P(water|its)*

 P(was|its water)*

 P(so|its water was)*

 P(transparent|its water was so)

26

Unfortunately

• There are still a lot of possible sentences

• In general, we’ll never be able to get

enough data to compute the statistics for

those longer prefixes

– Same problem we had for the strings

themselves

27

Independence Assumption

• Make the simplifying assumption

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|a)

• Or maybe

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• That is, the probability in question is
independent of its earlier history.

28

Independence Assumption

• This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.

29

So for each component in the product replace with the

approximation (assuming a prefix of N)

 Bigram version

P(wn |w1
n−1) P(wn |wn−N +1

n−1)

Markov Assumption

P(wn |w1
n−1) P(wn |wn−1)

30

Estimating Bigram Probabilities

• The Maximum Likelihood

Estimate (MLE):

P(wi |wi−1) =
count(wi−1,wi)

count(wi−1)

31

Normalization

• For N-gram models to be probabilistically correct
they have to obey prob. Normalization
constraints:

• The sum over all words for the same context
(history) must be 1.

• The context may be one word (bigram) or two
words (trigram) or more.

−−

=
jallover

ij ContextWP 1)|(

32

An Example: bigrams

• <s> I am Sam </s>

• <s> Sam I am </s>

• <s> I do not like green eggs and ham </s>

33

estimates depend on the corpus

• The maximum likelihood estimate of some parameter of
a model M from a training set T

– Is the estimate that maximizes the likelihood of the training
set T given the model M

• Suppose the word Chinese occurs 400 times in a corpus
of a million words (Brown corpus)

• What is the probability that a random word from some
other text from the same distribution will be “Chinese”

• MLE estimate is 400/1000000 = .004

– This may be a bad estimate for some other corpus

34

Berkeley Restaurant Project

Sentences examples

• can you tell me about any good cantonese restaurants

close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are

available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

35

Bigram Counts

• Out of 9222 sentences

– e.g. “I want” occurred 827 times

36

Bigram Probabilities
• Divide bigram counts by prefix unigram

counts to get probabilities.

37

examples

• P(Want | I) = C(I Want) / C(I)

 = 827/2533 = 0.33

P(Food | Chinese) = C(Chinese Food) /

C(Chinese)

= 82/158 = 0.52

38

Bigram Estimates of Sentence

Probabilities

• P(<s> I want english food </s>) =

 P(i|<s>)*

 P(want|I)*

 P(english|want)*

 P(food|english)*

 P(</s>|food)*

 =.000031

39

Evaluation

• How do we know if our models are any
good?

– And in particular, how do we know if one
model is better than another?

40

Evaluation

• Standard method

– Train parameters of our model on a training set.

– Look at the models performance on some new data

• This is exactly what happens in the real world; we

want to know how our model performs on data we

haven’t seen

– So use a test set. A dataset which is different than

our training set, but is drawn from the same source

– Then we need an evaluation metric to tell us how

well our model is doing on the test set.

• One such metric is perplexity

41

Unknown Words

• But once we start looking at test data, we’ll
run into words that we haven’t seen before
(pretty much regardless of how much
training data you have) (zero unigrams)

• With an Open Vocabulary task

– Create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L, of size V

– From a dictionary or

– A subset of terms from the training set

• At text normalization phase, any training word not in L changed to
<UNK>

• Now we count that like a normal word

– At test time
• Use <UNK> counts for any word not in training

42

Perplexity

• Perplexity is the probability

of the test set (assigned by

the language model),

normalized by the number

of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing
probability
– The best language model is one that best predicts

an unseen test set

43

Lower perplexity means a better

model

• Training 38 million words, test 1.5 million

words, WSJ (Wall-Street Journal)

44

Evaluating N-Gram Models

• Best evaluation for a language model

– Put model A into an application

• For example, a speech recognizer

– Evaluate the performance of the
application with model A

– Put model B into the application and
evaluate

– Compare performance of the application
with the two models

– Extrinsic evaluation

45

Difficulty of extrinsic (in-vivo)

evaluation of N-gram models
• Extrinsic evaluation

– This is really time-consuming

– Can take days to run an experiment

• So
– To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity

– But perplexity is a poor approximation unless the test
data looks similar to the training data

– So is generally only useful in pilot experiments

– But still, there is nothing like the real experiment!

46

N-gram Zero Counts

• For the English language,

– V2= 844 million possible bigrams...

– So, for a medium size training data, e.g.,

Shakespeare novels, 300,000 bigrams were found

Thus, 99.96% of the possible bigrams were never

seen (have zero entries in the table)

– Does that mean that any test sentence that contains

one of those bigrams should have a probability of 0?

47

N-gram Zero Counts

• Some of those zeros are really zeros...
– Things that really can’t or shouldn’t happen.

• On the other hand, some of them are just rare events.
– If the training corpus had been a little bigger they would have had a

count (probably a count of 1).

• Zipf’s Law (long tail phenomenon):
– A small number of events occur with high frequency

– A large number of events occur with low frequency

– You can quickly collect statistics on the high frequency events

– You might have to wait an arbitrarily long time to get valid statistics on
low frequency events

• Result:
– Our estimates are sparse ! We have no counts at all for the vast bulk

of things we want to estimate!

• Answer:
– Estimate the likelihood of unseen (zero count) N-grams!

– N-gram Smoothing techniques

48

Laplace Smoothing

• Also called add-one smoothing

• Just add one to all the counts!

• This adds extra V observations

(V is vocab. Size)

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

(making the volume N again)

)(

).1(1

VN

Nci

N +

+
=LaplaceP

49

Laplace-Smoothed Bigram Counts

50

Laplace-Smoothed Bigram

Probabilities

51

Reconstructed Counts

])2([

]1)12().[2(

)2(

1

)2(

1)12(

)2(

)2(

)2(

1)12(
)2|1(

VwC

wwCwC

wCVwC

wwC

wC

wC

VwC

wwC
wwP

+

+
=

+

+
=

+

+
=

52

Big Change to the Counts!

• C(want to) went from 608 to 238!

• P(to|want) from .66 to .26!

• Discount d= c*/c

– d for “Chinese food” = 0.1 !!! A 10x reduction

– So in general, Laplace is a blunt instrument

– Could use more fine-grained method (add-k)

• But Laplace smoothing not used for N-grams, as we

have much better methods

• Despite its flaws, Laplace (add-k) is however still used to

smooth other probabilistic models in NLP, especially

– For pilot studies

– in domains where the number of zeros isn’t so huge.

53

Better Smoothing

• Intuition used by many smoothing

algorithms, for example;

– Good-Turing

– Kneyser-Ney

– Witten-Bell

• Is to use the count of things we’ve seen

once to help estimate the count of things

we’ve never seen

54

Good-Turing
Josh Goodman Intuition

• Imagine you are fishing
– There are 8 species in this waters: carp, perch,

whitefish, trout, salmon, eel, catfish, bass

• You have caught
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel

= 18 fish

• How likely is it that the next fish caught is from a new
species (one not seen in our previous catch)?

– 3/18 (3 is number of events that seen once)

• Assuming so, how likely is it that next species is trout?

– Must be less than 1/18 because we just stole 3/18 of
our probability mass to use on unseen events

55

Good-Turing
Notation: Nx is the frequency-of-frequency-x

So N10=1

Number of fish species seen 10 times is 1 (carp)

N1=3

Number of fish species seen 1 time is 3 (trout, salmon,

eel)

To estimate total number of unseen species (seen 0

times)

Use number of species (bigrams) we’ve seen once (i.e. 3)

So, the estimated count c* for <unseen> is 3.

All other estimates are adjusted (down) to account for the

stolen mass given for the unseen events, using the formula:

56

GT Fish Example

57

Bigram Frequencies of

Frequencies and

GT Re-estimates

AP Newswire: 22million words, Berkeley: 9332 sentences

58

Backoff and Interpolation

• Another really useful source of knowledge

• If we are estimating:

– trigram p(z|x,y)

– but count(xyz) is zero

• Use info from:

– Bigram p(z|y)

• Or even:

– Unigram p(z)

• How to combine this trigram, bigram,
unigram info in a valid fashion?

59

Backoff Vs. Interpolation

1. Backoff: use trigram if you have it,

otherwise bigram, otherwise unigram

2. Interpolation: mix all three by weights

60

Interpolation

• Simple interpolation

• Lambdas conditional on context:

61

How to Set the Lambdas?
• Use a held-out, or development corpus

• Choose lambdas which maximize the

probability of some held-out data

– I.e. fix the N-gram probabilities

– Then search for lambda values that when

plugged into previous equation give largest

probability for held-out set

– Can use EM to do this search

– Can use direct search methods (Genetic,

Swarm, etc…)

62

Katz Backoff (very popular)

63

Why discounts P* and alpha?

• MLE probabilities sum to 1

• So if we used MLE probabilities but backed off to

lower order model when MLE prob is zero we

would be adding extra probability mass (it is like

in smoothing), and total probability would be

greater than 1. So, we have to do discounting.

64

OOV words: <UNK> word

• Out Of Vocabulary = OOV words

• create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L
changed to <UNK>

• Now we train its probabilities like a normal word

– At decoding time
• If text input: Use UNK probabilities for any word not in

training

65

Other Approaches

Class-based LMs

Morpheme-based LMs

Skip LMs

66

Class-based Language Models

• Standard word-based language models

• How to get robust n-gram estimates ()?

– Smoothing

• E.g. Kneyser-Ney, Good-Turing

– Class-based language models

p(w1,w2 ,...,wT) = p(wt |w1,...,wt−1)
t=1

T

 p(wt |wt−1,wt−2)
t=1

T

p(wt |wt−1) p(wt |C(wt))p(C(wt) |C(wt−1))

p(wt |wt−1,wt−2)

67

Limitation of Word-based

Language Models
• Words are inseparable whole units.

– E.g. “book” and “books” are distinct vocabulary

units

• Especially problematic in morphologically-

rich languages:

– E.g. Arabic, Finnish, Russian, Turkish

– Many unseen word contexts

– High out-of-vocabulary rate

– High perplexity

Arabic k-t-b

Kitaab A book

Kitaab-iy My book

Kitaabu-hum Their book

Kutub Books

68

Solution: Word as Factors

• Decompose words into “factors” (e.g. stems)

• Build language model over factors: P(w|factors)

• Two approaches for decomposition

– Linear

• [e.g. Geutner, 1995]

– Parallel

[Kirchhoff et. al., JHU Workshop 2002]

[Bilmes & Kirchhoff, NAACL/HLT 2003]

WtWt-2 Wt-1

StSt-2 St-1

MtMt-2 Mt-1

stem suffixprefixsuffixstem

Different Kinds of Language

Models
•cache language models (constantly adapting to a floating text)

•trigger language models (can handle long distance effects)

•POS-based language models, LM over POS tags

•class-based language models based on semantic classes

•multilevel n-gram language models (mix many LM together)

•interleaved language models (different LM for different parts

of text)

•morpheme-based language models (separate words into core

and modifyers)

•context free grammar language models (use simple and

efficient LM-definition)

•decision tree language models (handle long distance effects,

use rules)

•HMM language models (stochastic decision for combination of

independent LMs)

../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cache/cache.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/multilevel/multilevel.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/interleave/interleave.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/morpheme/morpheme.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cfg/cfg.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/tree/tree.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/hmm/hmm.html

HTK Tool Kit

What is HTK tool kit

HTK Tool Kit

The HTK language modeling tools are a
group of programs designed for
constructing and testing statistical n-gram
language models

What to prepare

HTK Tool Kit

Training & Test Text

Dictionary

Training & Test Text

Plain text sentences

One sentence per line

Sentence starts with <s>

Sentence ends with </s>

HTK Tool Kit

Training Text Sample

<s> IT WAS ON A BITTERLY COLD NIGHT AND FROSTY

MORNING TOWARDS THE END OF THE WINTER OF

NINETY SEVEN THAT I WAS AWAKENED BY A TUGGING

AT MY SHOULDER </s>

<s> IT WAS HOLMES </s>

HTK Tool Kit

Dictionary

Plain text wordlist

One word per line

Alphabetically ordered

HTK Tool Kit

Dictionary Sample

</s>

<s>

A

A.

ABANDON

ABANDONED

ABBEY

ABDULLAH

ABE

HTK Tool Kit

N-gram LM

Vocabulary and class mapping + gram files sequencing

Gram Files

Training Text

Test Text

Perplexity

Building a LM

HTK Tool Kit

Building a LM

HTK Tool Kit

T
e
x
t

L
G

P
re

p

G
ra

m
 file

s

L
G

C
o
p
y

w
o
rd

M
a
p

L
N

e
w

M
a
p

LBuild

N-gram LM

LNewMap

HTK Tool Kit

LNewMap [options] name mapfn

-e esc Change the contents of the EscMode header to esc.
Default is RAW.

-f fld Add the field fld to the Fields header.

LNewMap

HTK Tool Kit

Example:

LNewMap -f WFC Holmes empty.wmap

Name = Holmes
SeqNo = 0
Entries = 0
EscMode = RAW
Fields = ID,WFC
\Words\

LGPrep

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-a n Allow upto n new words in input texts (default 100000).

-b n Set the internal gram buffer size to n (default 2000000).
LGPrep stores incoming n-grams in this buffer. When the
buffer is full, the contents are sorted and written to an output
gram file. Thus, the buffer size determines the amount of
process memory that LGPrep will use and the size of the
individual output gram files.

LGPrep cont’d

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-d Directory in which to store the output gram files (default
current directory).

-i n Set the index of the first gram file output to be n (default 0).

-n n Set the output n-gram size to n (default 3).

-r s Set the root name of the output gram files to s (default
“gram”).

LGPrep cont’d

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-s s Write the string s into the source field of the output gram
files. This string should be a comment describing the text
source.

-z Suppress gram file output. This option allows LGPrep to be
used just to compute a word frequency map. It is also
normally applied when applying edit rules to the input.

LGPrep cont’d

HTK Tool Kit

Example:

LGPrep -T 1 -a 100000 -b 2000000 -d holmes.0 –n 4
-s "Sherlock Holmes" empty.wmap
D:\train\abbey_grange.txt, D:\train\beryl_coronet.txt,...

LGPrep cont’d

HTK Tool Kit

WMAP file

Name = Holmes
SeqNo = 1
Entries = 18080
EscMode = RAW
Fields = ID,WFC
\Words\
<s> 65536 33669
IT 65537 8106
WAS 65538 7595
...

LGCopy

HTK Tool Kit

LGCopy [options] wordmap [mult] gramfiles

-b n Set the internal gram buffer size to n (default 2000000).
LGPrep stores incoming n-grams in this buffer. When the
buffer is full, the contents are sorted and written to an output
gram file. Thus, the buffer size determines the amount of
process memory that LGPrep will use and the size of the
individual output gram files.

-d Directory in which to store the output gram files (default
current directory).

LGCopy cont’d

HTK Tool Kit

LGCopy [options] wordmap [mult] gramfiles

-o n Output class mappings only. Normally all input n-grams are

copied to the output, however, if a class map is specified,

this options forces the tool to output only n-grams

containing at least one class symbol.

LGCopy cont’d

HTK Tool Kit

Example:

LGCopy -T 1 -b 2000000 -d D:\holmes.1
D:\ holmes.0\wmap D:\ holmes.0\gram.1 D:\
holmes.0\gram.2.....

LBuild

HTK Tool Kit

LBuild [options] wordmap outfile [mult] gramfile ..

-c n c Set cutoff for n-gram to c.

-n n Set final model order to n.

LBuild cont’d

HTK Tool Kit

Example:

LBuild -T 1 -c 2 1 -c 3 1 -n 3 D:\lm_5k\5k.wmap
D:\lm_5k\tg2-1_1 D:\holmes.1\data.1
D:\holmes.1\data.2... D:\lm_5k\data.1 D:\lm_5k\data.12

LPlex

HTK Tool Kit

LPlex [options] langmodel labelFiles

-n n Perform a perplexity test using the n-gram component of
the model. Multiple tests can be specified. By default the
tool will use the maximum value of n available.

-t Text stream mode. If this option is set, the specified test
files will be assumed to contain plain text.

LPlex cont’d

HTK Tool Kit

Example:

Lplex -n 3 -t D:\lm_5k\tg1_1 D:\test\red-
headed_league.txt

1

Statistical Language Modeling using

SRILM Toolkit

Presented by:
Kamal Eldin Mahmoud

1

2

AGENDA

 Introduction

 Basic SRILM Tools

 ngram-count

 ngram

 ngram-merge

 Basic SRILM file format

 ngram-format

 nbest-format 22

3

AGENDA

Basic SRILM Scripts

 Training-scripts

 lm-scripts

 ppl-scripts

33

444

➢ SRILM is a collection of C++ libraries, executable

programs, and helper scripts.

➢ The toolkit supports creation and evaluation of a

variety of language model types based on N-gram

statistics.

➢The main purpose of SRILM is to support language

model estimation and evaluation.

➢ Since most LMs in SRILM are based on N-gram

statistics, the tools to accomplish these two purposes

are named ngram-count and ngram, respectively.

Introduction

555

Introduction

➢A standard LM (trigram with Good-Turing

discounting and Katz backoff for smoothing) would be

created by

ngram-count -text TRAINDATA -lm LM

➢The resulting LM may then be evaluated on a test

corpus using

ngram -lm LM -ppl TESTDATA -debug 0

6

Basic SRILM Tools

777

ngram-count

ngram-count generates and manipulates N-gram

counts, and estimates N-gram language models from

them.

Syntax:

Ngram-count [-help] option ...

888

ngram-count options

Each filename argument can be an ASCII file, or a

compressed file (name ending in .Z or .gz)

-help

Print option summary.

-version

Print version information.

-order n

Set the maximal order (length) of N-grams to count.

This also determines the order of the estimated LM,

if any. The default order is 3.

-memuse

Print memory usage statistics.

999

ngram-count options

-vocab file

Read a vocabulary from file.

-vocab-aliases file

Reads vocabulary alias definitions from file,

consisting of lines of the form

 alias word

 This causes all tokens alias to be mapped to word.

-write-vocab file

-write-vocab-index file

Write the vocabulary built in the counting process to

file.

101010

ngram-count counting options

-tolower

Map all vocabulary to lowercase.

-text textfile

Generate N-gram counts from text file.

-no-sos

Disable the automatic insertion of start-of-sentence

tokens in N-gram counting.

-no-eos

Disable the automatic insertion of end-of-sentence

tokens in N-gram counting.

-read countsfile

Read N-gram counts from a file.

111111

ngram-count counting options

-read-google dir

Read N-grams counts from an indexed directory

structure rooted in dir, in a format developed by

Google. The corresponding directory structure can

be created using the script make-google-ngrams .

-write file

-write-binary file

-write-order n

-writen file

Write total counts to file.

-sort

Output counts in lexicographic order, as required for

ngram-merge.

121212

ngram-count lm options

-lm lmfile

-write-binary-lm

Estimate a backoff N-gram model from the total

counts, and write it to lmfile .

-unk

Build an ``open vocabulary'' LM.

-map-unk word

Map out-of-vocabulary words to word.

131313

ngram-count lm options

-cdiscountn discount

Use Ney's absolute discounting for N-grams of order

n, using discount as the constant to subtract.

-wbdiscountn

Use Witten-Bell discounting for N-grams of order n.

-ndiscountn

 Use Ristad's natural discounting law for N-grams of

order n.

-addsmoothn delta

Smooth by adding delta to each N-gram count.

141414

ngram-count lm options

-kndiscountn

Use Chen and Goodman's modified Kneser-Ney

discounting for N-grams of order n.

-kn-counts-modified

Indicates that input counts have already been

modified for Kneser-Ney smoothing.

-interpolaten

 Causes the discounted N-gram probability estimates

at the specified order n to be interpolated with lower-

order estimates. Only Witten-Bell, absolute

discounting, and (original or modified) Kneser-Ney

smoothing currently support interpolation.

151515

ngram

Ngram performs various operations with N-gram-based

and related language models, including sentence

scoring, and perplexity computation.

Syntax:

ngram [-help] option ...

161616

ngram options

-help

Print option summary.

-version

Print version information.

-order n

Set the maximal N-gram order to be used, by default 3.

-memuse

Print memory usage statistics for the LM.

171717

ngram options

The following options determine the type of LM to

be used.

-null

Use a `null' LM as the main model (one that gives

probability 1 to all words).

-use-server S

Use a network LM server as the main model.

-lm file

Read the (main) N-gram model from file.

181818

ngram options

-tagged

Interpret the LM as containing word/tag N-grams.

-skip

Interpret the LM as a ``skip'' N-gram model.

-classes file

Interpret the LM as an N-gram over word classes.

-factored

Use a factored N-gram model.

-unk

Indicates that the LM is an open-class LM.

191919

ngram options

-ppl textfile

Compute sentence scores (log probabilities) and

perplexities from the sentences in textfile.

The -debug option controls the level of detail printed.

-debug 0

Only summary statistics for the entire corpus are

printed.

-debug 1

Statistics for individual sentences are printed.

202020

ngram options

-debug 2

Probabilities for each word, plus LM-dependent details

about backoff used etc., are printed.

-debug 3

Probabilities for all words are summed in each context,

and the sum is printed.

212121

ngram options

-nbest file

Read an N-best list in nbest-format and rerank the

hypotheses using the specified LM. The reordered N-

best list is written to stdout.

-nbest-files filelist

Process multiple N-best lists whose filenames are listed

in filelist.

-write-nbest-dir dir

Deposit rescored N-best lists into directory dir, using

filenames derived from the input ones.

222222

ngram options

-decipher-nbest

Output rescored N-best lists in Decipher 1.0 format,

rather than SRILM format.

-no-reorder

Output rescored N-best lists without sorting the

hypotheses by their new combined scores.

-max-nbest n

Limits the number of hypotheses read from an N-best

list.

232323

ngram options

-no-sos

Disable the automatic insertion of start-of-sentence

tokens for sentence probability computation.

-no-eos

Disable the automatic insertion of end-of-sentence

tokens for sentence probability computation.

242424

ngram-merge

ngram-merge reads two or more lexicographically

sorted N-gram count files and outputs the merged,

sorted counts.

Syntax:

ngram-merge [-help] [-write outfile] [-float-counts]

\ [--] infile1 infile2 ...

252525

Ngram-merge options

-write outfile

Write merged counts to outfile.

-float-counts

Process counts as floating point numbers.

--

Indicates the end of options, in case the first input

filename begins with ``-''.

26

Basic SRILM file

format

272727

ngram-format

ngram-format File format for ARPA backoff N-gram models

\data\

ngram 1=n1

ngram 2=n2.

..

ngram N=nN

\1-grams:

p w [bow]

...\

2-grams:

p w1 w2 [bow]

...

\N-grams:

p w1 ... wN

...

\end\

282828

nbest-format

SRILM currently understands three different formats

for lists of N-best hypotheses for rescoring or 1-best

hypothesis extraction. The first two formats originated

in the SRI Decipher(TM) recognition system, the third

format is particular to SRILM.

The first format consists of the header

 NBestList1.0

followed by one or more lines of the form

 (score) w1 w2 w3 ...

where score is a composite acoustic/language model

score from the recognizer, on the bytelog scale.

292929

nbest-format

The second Decipher(TM) format is an extension of

the first format that encodes word-level scores and

time alignments. It is marked by a header of the form

 NBestList2.0

 The hypotheses are in the format

 (score) w1 (st: st1 et: et1 g: g1 a: a1) w2 ...

where words are followed by start and end times,

language model and acoustic scores (bytelog-scaled),

respectively.

303030

nbest-format

The third format understood by SRILM lists

hypotheses in the format

 ascore lscore nwords w1 w2 w3 ...

where the first three columns contain the acoustic

model log probability, the language model log

probability, and the number of words in the hypothesis

string, respectively. All scores are logarithms base 10.

31

Basic SRILM Scripts

323232

Training-scripts

These scripts perform convenience tasks associated

with the training of language models.

get-gt-counts

Syntax

get-gt-counts max=K out=name [counts ...] >

gtcounts

Computes the counts-of-counts statistics needed in

Good-Turing smoothing. The frequencies of counts up

to K are computed (default is 10). The results are

stored in a series of files with root name,

name.gt1counts,..., name.gtNcounts.

333333

Training-scripts

make-gt-discounts

Santax:

make-gt-discounts min=min max=max gtcounts
Takes one of the output files of get-gt-counts and

computes the corresponding Good-Turing discounting

factors. The output can then be passed to ngram-count

via the -gtn options to control the smoothing during

model estimation.

343434

Training-scripts

make-abs-discount

Syntax

make-abs-discount gtcounts

 Computes the absolute discounting constant needed

for the ngram-count -cdiscountn options. Input is

one of the files produced by get-gt-counts.

353535

Training-scripts

make-kn-discount

Syntax

make-kn-discounts min=min gtcounts

 Computes the discounting constants used by the

modified Kneser-Ney smoothing method. Input is one

of the files produced by get-gt-counts.

363636

Training-scripts

make-batch-counts

Syntax

make-batch-counts file-list \ [batch-size [filter [

count-dir [options ...]]]]

 Performs the first stage in the construction of very

large N-gram count files. file-list is a list of input text

files. Lines starting with a `#' character are ignored.

These files will be grouped into batches of size batch-

size (default 10). The N-gram count files are left in

directory count-dir (``counts'' by default), where they

can be found by a subsequent run of merge-batch-

counts.

373737

Training-scripts

merge-batch-counts

Syntax

merge-batch-counts count-dir [file-list|start-iter]

Completes the construction of large count files.

Optionally, a file-list of count files to combine can be

specified. A number as second argument restarts the

merging process at iteration start-iter.

383838

Training-scripts

make-google-ngrams

Syntax

make-google-ngrams [dir=DIR] [per_file=N] [

gzip=0] \ [yahoo=1] [counts-file ...]

Takes a sorted count file as input and creates an

indexed directory structure, in a format developed by

Google to store very large N-gram collections.

Optional arguments specify the output directory dir

and the size N of individual N-gram files (default is 10

million N-grams per file). The gzip=0 option writes

plain. The yahoo=1 option may be used to read N-

gram count files in Yahoo-GALE format.

393939

Training-scripts

tolower-ngram-counts

Syntax

tolower-ngram-counts [counts-file ...]

Maps an N-gram counts file to all-lowercase. No

merging of N-grams that become identical in the

process is done.

404040

Training-scripts

reverse-ngram-counts

Syntax

reverse-ngram-counts [counts-file ...]

Reverses the word order of N-grams in a counts file or

stream.

reverse-text

Syntax

reverse-text [textfile ...]

Reverses the word order in text files, line-by-line.

414141

Training-scripts

compute-oov-rate

Syntax

compute-oov-rate vocab [counts ...]

 Determines the out-of-vocabulary rate of a corpus

from its unigram counts and a target vocabulary list in

vocab.

424242

lm-scripts

add-dummy-bows

Syntax

add-dummy-bows [lm-file] > new-lm-file

Adds dummy backoff weights to N-grams, even

where they are not required, to satisfy some

broken software that expects backoff weights on all

N-grams (except those of highest order).

434343

lm-scripts

change-lm-vocab

Syntax
change-lm-vocab -vocab vocab -lm lm-file -write-lm

new-lm-file \ [-tolower] [-subset] [ngram-options ...]

Modifies the vocabulary of an LM to be that in vocab.

Any N-grams containing OOV words are removed,

new words receive a unigram probability, and the

model is renormalized. The -tolower option causes

case distinctions to be ignored. -subset only

removes words from the LM vocabulary, without

adding any.

444444

lm-scripts

make-lm-subset

Syntax

make-lm-subset count-file|- [lm-file |-] > new-lm-file

Forms a new LM containing only the N-grams found

in the count-file. The result still needs to be

renormalized with ngram -renorm .

454545

lm-scripts

get-unigram-probs

Syntax

get-unigram-probs [linear=1] [lm-file]

 Extracts the unigram probabilities in a simple table

format from a backoff language model. The linear=1

option causes probabilities to be output on a linear

(instead of log) scale.

464646

ppl-scripts

These scripts process the output of the ngram option

-ppl to extract various useful information.

add-ppls

Syntax

add-ppls [ppl-file ...]

 Takes several ppl output files and computes an

aggregate perplexity and corpus statistics.

474747

ppl-scripts

subtract-ppls

Syntax

subtract-ppls ppl-file1 [ppl-file2 ...]

 Similarly computes an aggregate perplexity by

removing the statistics of zero or more ppl-file2 from

those in ppl-file1.

484848

ppl-scripts

compare-ppls

Syntax

compare-ppls [mindelta=D] ppl-file1 ppl-file2

Tallies the number of words for which two language

models produce the same, higher, or lower

probabilities. The input files should be ngram -

debug 2 -ppl output for the two models on the same

test set. The parameter D is the minimum absolute

difference for two log probabilities to be considered

different.

494949

ppl-scripts

compute-best-mix

Syntax

compute-best-mix [lambda='l1 l2 ...']

[precision=P] \ ppl-file1 [ppl-file2 ...]

Takes the output of several ngram -debug 2 –ppl

runs on the same test set and computes the optimal

interpolation weights for the corresponding models.

Initial weights may be specified as l1 l2 The

computation is iterative and stops when the

interpolation weights change by less than P (default

0.001).

505050

ppl-scripts

compute-best-sentence-mix

Syntax

compute-best-sentence-mix [lambda='l1 l2 ...']

[precision=P] \ ppl-file1 [ppl-file2 ...]

similarly optimizes the weights for sentence-level

interpolation of LMs. It requires input files generated

by ngram -debug 1 -ppl.

51

THANK YOU ☺

51

