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Why a language model?

• Suppose a machine is required to translate: 

“The human Race”. 

• The word “Race” has at least 2 meanings, which 

one to choose?

• Obviously, the choice depends on the “history” 

or the “context” preceding the word “Race”. E.g., 

“the human race” versus “the dogs race”.

• A statistical language model can solve this 

ambiguity by giving higher probability to the 

correct meaning.
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Probability in brief

• Joint probability: P(A,B) is the probability 

that events A and B are simultaneously 

true (observed together).

• Conditional probability: P(A|B): is the 

probability that A is true given that B is 

true (observed). 
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Relation between joint and conditional probabilities

• BAYES RULE:

P(A|B) = P(A,B)/P(B)

P(B|A) = P(A,B)/P(A)

Or;

P(A,B)= P(A).P(B|A) = P(B).P(A|B)
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Chain Rule

• The joint probability: 
P(A,B,C,D)=P(A).P(B|A).P(C|A,B).P(D|A,B,C)

• This will lend itself to the language modeling paradigm 
as we will be concerned by the joint probability of the 
occurrence of a word-sequence (W1,W2,W3,….Wn):

    P(W1,W2,W3,….Wn) 

    which will be put in terms of conditional 
probability terms: 

• P(W1).P(W2|W1).P(W3|W1,W2)………

        (More of this later)
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Language Modeling?

In the narrow sense, statistical language modeling 
is concerned by estimating the joint probability of 
a word sequence . P(W1,W2,W3,….Wn) 

 This is always converted into conditional probs:                           
P(Next Word | History)

                                  e.g., P(W3|W1,W2)

i.e., can we predict the next word given the 
previous words that have been observed?

In other words, if we have a History, find the Next-
Word that gives the highest prob.          
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Word Prediction

• Guess the next word...

       ... It is too late I want to go ???

... I notice three guys standing on the ???

• There are many sources of knowledge that can 

be used to inform this task, including arbitrary 

world knowledge and deeper history (It is too 

late)

• But it turns out that we can do pretty well by 

simply looking at the preceding words and 

keeping track of some fairly simple counts.



9

Word Prediction
• We can formalize this task using what are 

called N-gram models.

• N-grams are token sequences of length N.

• Our 2nd example contains the following 2-

grams (Bigrams)

– (I notice), (notice three), (three guys), (guys 

standing), (standing on), (on the)

• Given knowledge of counts of N-grams 

such as these, we can guess likely next 

words in a sequence.
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N-Gram Models

• More formally, we can use knowledge of 

the counts of N-grams to assess the 

conditional probability of candidate words 

as the next word in a sequence.

• In doing so, we actually use them to 

assess the joint probability of an entire 

sequence of words. (chain rule).
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Applications

• It turns out that being able to predict the next 
word (or any linguistic unit) in a sequence is an 
extremely useful thing to be able to do.

• As we’ll see, it lies at the core of the following 
applications
– Automatic speech recognition

– Handwriting and character recognition

– Spelling correction

– Machine translation

– Information retrieval

– And many more.



124/29/2024

ASR



134/29/2024

Source Channel Model for 
Machine Translation



SMT Architecture
Based on Bayes´ Decision 

Rule:

ê = argmax{ p(e | f) }
= argmax{ p(e) p(f | e) }
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Counting 

• Simple counting lies at the core of any 

probabilistic approach. So let’s first take a 

look at what we’re counting.

– He stepped out into the hall, was delighted to 

encounter a water brother.

• 13 tokens, 15 if we include “,” and “.” as separate 

tokens.

• Assuming we include the comma and period, how 

many bigrams are there?
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Counting
• Not always that simple

– I do uh main- mainly business data processing

• Spoken language poses various challenges.

– Should we count “uh” and other fillers as tokens?

– What about the repetition of “mainly”? Should such do-

overs count twice or just once?

– The answers depend on the application.

• If we’re focusing on something like ASR to support indexing 

for search, then “uh” isn’t helpful (it’s not likely to occur as a 

query).

• But filled pauses are very useful in dialog management, so 

we might want them there.
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Counting: Types and Tokens

• How about

– They picnicked by the pool, then lay back on 

the grass and looked at the stars.

• 18 tokens (again counting punctuation)

• But we might also note that “the” is used 3 

times, so there are only 16 unique types 

(as opposed to tokens).

• In going forward, we’ll have occasion to 

focus on counting both types and tokens 

of both words and N-grams.
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Counting: Wordforms

• Should “cats” and “cat” count as the same 

when we’re counting?

• How about “geese” and “goose”?

• Some terminology:

– Lemma: a set of lexical forms having the 

same stem, major part of speech, and rough 

word sense: (car, cars, automobile)

– Wordform: fully inflected surface form

• Again, we’ll have occasion to count both 

lemmas, morphemes, and wordforms
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Counting: Corpora
• So what happens when we look at large 

bodies of text instead of single utterances?

• Brown et al (1992) large corpus of English 
text
– 583 million wordform tokens

– 293,181 wordform types

• Google
– Crawl of 1,024,908,267,229 English tokens

– 13,588,391 wordform types

• That seems like a lot of types...  After all, even large dictionaries of English 
have only around 500k types. Why so many here?•Numbers

•Misspellings
•Names
•Acronyms
•etc
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Language Modeling

• Back to word prediction

• We can model the word prediction task as 
the ability to assess the conditional 
probability of a word given the previous 
words in the sequence 

– P(wn|w1,w2…wn-1)

• We’ll call a statistical model that can 
assess this a Language Model
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Language Modeling

• How might we go about calculating such a 

conditional probability? 

– One way is to use the definition of conditional 

probabilities and look for counts. So to get

– P(the | its water is so transparent that)

• By definition that’s

Count(its water is so transparent that the)

  Count(its water is so transparent that)

We can get each of those counts in a large 

corpus.
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Very Easy Estimate

• According to Google those counts are 5/9.

– Unfortunately... 2 of those were to these 

slides... So maybe it’s really   3/7

– In any case, that’s not terribly convincing due 

to the small numbers involved.
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Language Modeling

• Unfortunately, for most sequences and for 

most text collections we won’t get good 

estimates from this method.

– What we’re likely to get is 0. Or worse 0/0.

• Clearly, we’ll have to be a little more 

clever.

– Let’s use the chain rule of probability

– And a particularly useful independence 

assumption.
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The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• For sequences...
– P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• In general 
– P(x1,x2,x3,…xn) = 

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

),(
)|(

BP

BAP
BAP =

)|().(),( BAPBPBAP =
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The Chain Rule

P(its water was so transparent)=
P(its)*

    P(water|its)*

       P(was|its water)*

          P(so|its water was)*

             P(transparent|its water was so)
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Unfortunately

• There are still a lot of possible sentences

• In general, we’ll never be able to get 

enough data to compute the statistics for 

those longer prefixes

– Same problem we had for the strings 

themselves
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Independence Assumption

• Make the simplifying assumption

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|a)

• Or maybe

– P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• That is, the probability in question is 
independent of its earlier history.
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Independence Assumption

• This particular kind of independence assumption 
is called a Markov assumption after the Russian 
mathematician Andrei Markov.
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So for each component in the product replace with the 

approximation (assuming a prefix of N)

 Bigram version

 

P(wn |w1
n−1)  P(wn |wn−N +1

n−1 )

Markov Assumption

 

P(wn |w1
n−1)  P(wn |wn−1)
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Estimating Bigram Probabilities

• The Maximum Likelihood 

Estimate (MLE):

 

P(wi |wi−1) =
count(wi−1,wi)

count(wi−1)
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Normalization

• For N-gram models to be probabilistically correct 
they have to obey prob. Normalization 
constraints:

• The sum over all words for the same context 
(history) must be 1.

• The context may be one word (bigram) or two 
words (trigram) or more.


−−

=
jallover

ij ContextWP 1)|(
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An Example: bigrams

• <s> I am Sam </s>

• <s> Sam I am </s>

• <s> I do not like green eggs and ham </s>
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estimates depend on the corpus

• The maximum likelihood estimate of some parameter of 
a model M from a training set T

– Is the estimate that maximizes the likelihood of the training 
set T given the model M

• Suppose the word Chinese occurs 400 times in a corpus 
of a million words (Brown corpus)

• What is the probability that a random word from some 
other text from the same distribution will be “Chinese”

• MLE estimate is 400/1000000 = .004

– This may be a bad estimate for some other corpus
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Berkeley Restaurant Project 

Sentences examples

• can you tell me about any good cantonese restaurants 

close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are 

available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day
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Bigram Counts

• Out of 9222 sentences

– e.g. “I want” occurred 827 times
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Bigram Probabilities
• Divide bigram counts by prefix unigram 

counts to get probabilities.
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examples

• P(Want | I ) = C(I Want) / C(I)

 = 827/2533 = 0.33

P(Food | Chinese) = C(Chinese Food) / 

C(Chinese)

= 82/158 = 0.52
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Bigram Estimates of Sentence 

Probabilities

• P(<s> I want english food </s>) =

   P(i|<s>)*

       P(want|I)*

         P(english|want)*

           P(food|english)*

             P(</s>|food)*

              =.000031
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Evaluation

• How do we know if our models are any 
good?

– And in particular, how do we know if one 
model is better than another?
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Evaluation

• Standard method

– Train parameters of our model on a training set.

– Look at the models performance on some new data

• This is exactly what happens in the real world; we 

want to know how our model performs on data we 

haven’t seen

– So use a test set. A dataset which is different than 

our training set, but is drawn from the same source

– Then we need an evaluation metric to tell us how 

well our model is doing on the test set.

• One such metric is  perplexity
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Unknown Words

• But once we start looking at test data, we’ll 
run into words that we haven’t seen before 
(pretty much regardless of how much 
training data you have) (zero unigrams)

• With an Open Vocabulary task

– Create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L, of size V

– From a dictionary or 

– A subset of terms from the training set

• At text normalization phase, any training word not in L changed to  
<UNK>

• Now we count that like a normal word

– At test time
• Use <UNK> counts for any word not in training
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Perplexity

• Perplexity is the probability 

of the test set (assigned by 

the language model), 

normalized by the number 

of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing 
probability
– The best language model is one that best predicts 

an unseen test set
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Lower perplexity means a better 

model

• Training 38 million words, test 1.5 million 

words, WSJ (Wall-Street Journal)
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Evaluating N-Gram Models

• Best evaluation for a language model

– Put model A into an application

• For example, a speech recognizer

– Evaluate the performance of the 
application with model A

– Put model B into the application and 
evaluate

– Compare performance of the application 
with the two models

– Extrinsic evaluation
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Difficulty of extrinsic (in-vivo) 

evaluation of  N-gram models
• Extrinsic evaluation

– This is really time-consuming

– Can take days to run an experiment

• So
– To evaluate N-grams we often use an intrinsic 

evaluation, an approximation called perplexity

– But perplexity is a poor approximation unless the test 
data looks similar to the training data

– So is generally only useful in pilot experiments

– But still, there is nothing like the real experiment!
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N-gram Zero Counts

• For the English language, 

– V2= 844 million possible bigrams...

–  So, for a medium size training data, e.g., 

Shakespeare novels, 300,000 bigrams were found 

Thus, 99.96% of the possible bigrams were never 

seen (have zero entries in the table)

– Does that mean that any test sentence that contains 

one of those bigrams should have a probability of 0?
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N-gram Zero Counts

• Some of those zeros are really zeros... 
– Things that really can’t or shouldn’t happen.

• On the other hand, some of them are just rare events. 
– If the training corpus had been a little bigger they would have had a 

count (probably a count of 1).

• Zipf’s Law (long tail phenomenon):
– A small number of events occur with high frequency

– A large number of events occur with low frequency

– You can quickly collect statistics on the high frequency events

– You might have to wait an arbitrarily long time to get valid statistics on 
low frequency events

• Result:
– Our estimates are sparse ! We have no counts at all for the vast bulk 

of things we want to estimate!

• Answer:
– Estimate the likelihood of unseen (zero count) N-grams! 

– N-gram Smoothing techniques
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Laplace Smoothing

• Also called add-one smoothing

• Just add one to all the counts!

• This adds extra V observations 

(V  is vocab. Size)

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

(making the volume N again)

)(

).1(1

VN

Nci

N +

+
=LaplaceP
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Laplace-Smoothed Bigram Counts
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Laplace-Smoothed Bigram 

Probabilities
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Reconstructed Counts
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Big Change to the Counts!

• C(want to) went from 608 to 238!

• P(to|want) from .66 to .26!

• Discount d= c*/c

– d for “Chinese food” = 0.1 !!! A 10x reduction

– So in general, Laplace is a blunt instrument

– Could use more fine-grained method (add-k)

• But Laplace smoothing not used for N-grams, as we 

have much better methods

• Despite its flaws, Laplace (add-k) is however still used to 

smooth other probabilistic models in NLP, especially

– For pilot studies

– in domains where the number of zeros isn’t so huge.
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Better Smoothing

• Intuition used by many smoothing 

algorithms, for example;

– Good-Turing

– Kneyser-Ney

– Witten-Bell

• Is to use the count of things we’ve seen 

once to help estimate the count of things 

we’ve never seen
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Good-Turing 
Josh Goodman Intuition

• Imagine you are fishing
– There are 8 species in this waters: carp, perch, 

whitefish, trout, salmon, eel, catfish, bass

• You have caught 
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel 

= 18 fish

• How likely is it that the next fish caught is from a new 
species (one not seen in our previous catch)?

– 3/18        (3 is number of events that seen once)

• Assuming so, how likely is it that next species is trout?

– Must be less than 1/18 because we just stole 3/18 of 
our probability mass to use on unseen events
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Good-Turing
Notation: Nx is the frequency-of-frequency-x

So N10=1

Number of fish species seen 10 times is 1 (carp)

N1=3

Number of fish species seen 1 time is 3 (trout, salmon, 

eel)

To estimate total number of unseen species (seen 0 

times)

Use number of species (bigrams) we’ve seen once (i.e. 3)

So, the estimated count c* for <unseen> is 3. 

All other estimates are adjusted (down) to account for the 

stolen mass given for the unseen events, using the formula:
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GT Fish Example
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Bigram Frequencies of 

Frequencies and 

GT Re-estimates

AP Newswire: 22million words,   Berkeley: 9332 sentences
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Backoff and Interpolation

• Another really useful source of knowledge

• If we are estimating:

– trigram p(z|x,y) 

– but count(xyz) is zero

• Use info from:

– Bigram p(z|y)

• Or even:

– Unigram p(z)

• How to combine this trigram, bigram, 
unigram info in a valid fashion?
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Backoff Vs. Interpolation

1. Backoff: use trigram if you have it, 

otherwise bigram, otherwise unigram

2. Interpolation: mix all three by weights
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Interpolation

• Simple interpolation

• Lambdas conditional on context:
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How to Set the Lambdas?
• Use a held-out, or development corpus

• Choose lambdas which maximize the 

probability of some held-out data

– I.e. fix the N-gram probabilities

– Then search for lambda values that when 

plugged into previous equation give largest 

probability for held-out set

– Can use EM to do this search

– Can use direct search methods (Genetic, 

Swarm, etc…)
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Katz Backoff (very popular)
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Why discounts P* and alpha?

• MLE probabilities sum to 1

• So if we used MLE probabilities but backed off to 

lower order model when MLE prob is zero we 

would be adding extra probability mass (it is like 

in smoothing), and total probability would be 

greater than 1. So, we have to do discounting.
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OOV words: <UNK> word

• Out Of Vocabulary = OOV words

• create an unknown word token <UNK>

– Training of <UNK> probabilities
• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L 
changed to  <UNK>

• Now we train its probabilities like a normal word

– At decoding time
• If text input: Use UNK probabilities for any word not in 

training
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Other Approaches

Class-based LMs

Morpheme-based LMs

Skip LMs
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Class-based Language Models

• Standard word-based language models

• How to get robust n-gram estimates (                   )?

– Smoothing

• E.g. Kneyser-Ney, Good-Turing

– Class-based language models

p(w1,w2 ,...,wT ) = p(wt |w1,...,wt−1)
t=1

T



 p(wt |wt−1,wt−2 )
t=1

T



p(wt |wt−1)  p(wt |C(wt ))p(C(wt ) |C(wt−1))

p(wt |wt−1,wt−2 )
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Limitation of Word-based 

Language Models
• Words are inseparable whole units. 

– E.g. “book” and “books” are distinct vocabulary 

units

• Especially problematic in morphologically-

rich languages:

– E.g. Arabic, Finnish, Russian, Turkish

– Many unseen word contexts 

– High out-of-vocabulary rate

– High perplexity

Arabic k-t-b

Kitaab A book

Kitaab-iy My book

Kitaabu-hum Their book

Kutub Books
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Solution: Word as Factors

• Decompose words into “factors” (e.g. stems)

• Build language model over factors: P(w|factors)

• Two approaches for decomposition

– Linear 

• [e.g. Geutner, 1995]

– Parallel 

[Kirchhoff et. al., JHU Workshop 2002]

[Bilmes & Kirchhoff, NAACL/HLT 2003] 

WtWt-2 Wt-1

StSt-2 St-1

MtMt-2 Mt-1

stem suffixprefixsuffixstem



Different Kinds of Language 

Models
•cache language models (constantly adapting to a floating text) 

•trigger language models (can handle long distance effects) 

•POS-based language models, LM over POS tags

•class-based language models based on semantic classes 

•multilevel n-gram language models (mix many LM together) 

•interleaved language models (different LM for different parts 

of text) 

•morpheme-based language models (separate words into core 

and modifyers) 

•context free grammar language models (use simple and 

efficient LM-definition) 

•decision tree language models (handle long distance effects, 

use rules) 

•HMM language models (stochastic decision for combination of 

independent LMs) 

../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cache/cache.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/trigger/trigger.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/multilevel/multilevel.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/interleave/interleave.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/morpheme/morpheme.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/cfg/cfg.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/tree/tree.html
../../Lokale Einstellungen/Temporary Internet Files/speechCourse/slides/lm/special/hmm/hmm.html


HTK Tool Kit



What is HTK tool kit

HTK Tool Kit

The HTK language modeling tools are a 
group of programs designed for 
constructing and testing statistical n-gram 
language models



What to prepare

HTK Tool Kit

Training & Test Text

Dictionary



Training & Test Text

Plain text sentences

One sentence per line

Sentence starts with <s>

Sentence ends with </s>

HTK Tool Kit



Training Text Sample

<s> IT WAS ON A BITTERLY COLD NIGHT AND FROSTY 

MORNING TOWARDS THE END OF THE WINTER OF 

NINETY SEVEN THAT I WAS AWAKENED BY A TUGGING 

AT MY SHOULDER </s>

<s> IT WAS HOLMES </s>

HTK Tool Kit



Dictionary 

Plain text wordlist

One word per line

Alphabetically  ordered

HTK Tool Kit



Dictionary Sample

</s>

<s>

A

A.

ABANDON

ABANDONED

ABBEY

ABDULLAH

ABE

HTK Tool Kit



N-gram LM

Vocabulary and class mapping + gram files sequencing

Gram Files

Training Text

Test Text

Perplexity 

Building a LM 

HTK Tool Kit



Building a LM 

HTK Tool Kit
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LBuild

N-gram LM



LNewMap

HTK Tool Kit

LNewMap [options] name mapfn

-e esc Change the contents of the EscMode header to esc.  
Default is RAW.

-f fld Add the field fld to the Fields header.



LNewMap

HTK Tool Kit

Example:

LNewMap -f WFC Holmes empty.wmap

Name = Holmes
SeqNo = 0
Entries = 0
EscMode = RAW
Fields = ID,WFC
\Words\



LGPrep

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-a n Allow upto n new words in input texts (default 100000).

-b n Set the internal gram buffer size to n (default 2000000). 
LGPrep stores incoming n-grams in this buffer. When the 
buffer is full, the contents are sorted and written to an output 
gram file. Thus, the buffer size determines the amount of 
process memory that LGPrep will use and the size of the 
individual output gram files.



LGPrep cont’d

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-d Directory in which to store the output gram files (default 
current directory).

-i n Set the index of the first gram file output to be n (default 0).

-n n Set the output n-gram size to n (default 3).

-r s Set the root name of the output gram files to s (default 
“gram”).



LGPrep cont’d

HTK Tool Kit

LGPrep [options] wordmap [textfile ...]

-s s Write the string s into the source field of the output gram 
files. This string should be a comment describing the text 
source.

-z Suppress gram file output. This option allows LGPrep to be 
used just to compute a word frequency map. It is also 
normally applied when applying edit rules to the input.



LGPrep cont’d

HTK Tool Kit

Example:

LGPrep -T 1 -a 100000 -b 2000000 -d holmes.0 –n 4
-s "Sherlock Holmes" empty.wmap 
D:\train\abbey_grange.txt, D:\train\beryl_coronet.txt,... 



LGPrep cont’d

HTK Tool Kit

WMAP file

Name = Holmes
SeqNo = 1
Entries = 18080
EscMode = RAW
Fields = ID,WFC
\Words\
<s> 65536 33669
IT 65537  8106
WAS  65538  7595
...



LGCopy

HTK Tool Kit

LGCopy  [options]  wordmap  [mult] gramfiles

-b n Set the internal gram buffer size to n (default 2000000). 
LGPrep stores incoming n-grams in this buffer. When the 
buffer is full, the contents are sorted and written to an output 
gram file. Thus, the buffer size determines the amount of 
process memory that LGPrep will use and the size of the 
individual output gram files.

-d Directory in which to store the output gram files (default 
current directory).



LGCopy cont’d

HTK Tool Kit

LGCopy  [options]  wordmap  [mult] gramfiles

-o n Output class mappings only. Normally all input n-grams are 

copied to the output,  however, if a class map is specified, 

this options forces the tool to output only n-grams 

containing at least one class symbol.



LGCopy cont’d

HTK Tool Kit

Example:

LGCopy -T 1 -b 2000000 -d D:\holmes.1 
D:\ holmes.0\wmap  D:\ holmes.0\gram.1 D:\ 
holmes.0\gram.2.....



LBuild

HTK Tool Kit

LBuild  [options]  wordmap  outfile  [mult] gramfile .. 

-c n c Set cutoff for n-gram to c.

-n n Set final model order to n.



LBuild cont’d

HTK Tool Kit

Example:

LBuild -T 1 -c 2 1 -c 3 1 -n 3 D:\lm_5k\5k.wmap
D:\lm_5k\tg2-1_1 D:\holmes.1\data.1 
D:\holmes.1\data.2...  D:\lm_5k\data.1 D:\lm_5k\data.12



LPlex

HTK Tool Kit

LPlex  [options]  langmodel  labelFiles

-n n Perform a perplexity test using the n-gram component of 
the model. Multiple tests can be specified. By default the 
tool will use the maximum value of n available.

-t    Text stream mode. If this option is set, the specified test 
files will be assumed to contain plain text.



LPlex cont’d

HTK Tool Kit

Example:

Lplex -n 3 -t D:\lm_5k\tg1_1 D:\test\red-
headed_league.txt
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➢ SRILM is a collection of C++ libraries, executable 

programs, and helper scripts. 

➢ The toolkit supports creation and evaluation of a 

variety of language model types based on N-gram 

statistics.

➢The main purpose of SRILM is to support language 

model estimation and evaluation. 

➢ Since most LMs in SRILM are based on N-gram 

statistics, the tools to accomplish these two purposes 

are named ngram-count and ngram, respectively. 

Introduction 
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Introduction

➢A standard LM (trigram with Good-Turing 

discounting and Katz backoff for smoothing) would be 

created by

ngram-count -text TRAINDATA -lm LM

➢The resulting LM may then be evaluated on a test 

corpus using

ngram -lm LM -ppl TESTDATA -debug 0



6

Basic SRILM Tools
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ngram-count

ngram-count generates and manipulates N-gram 

counts, and estimates N-gram language models from 

them. 

Syntax: 

Ngram-count  [ -help ]   option ...
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ngram-count options 

Each filename argument can be an ASCII file, or a 

compressed file (name ending in .Z or .gz)

-help 

Print option summary. 

-version 

Print version information. 

-order n 

Set the maximal order (length) of N-grams to count. 

This also determines the order of the estimated LM, 

if any. The default order is 3. 

-memuse 

Print memory usage statistics. 
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ngram-count options 

-vocab file 

Read a vocabulary from file. 

-vocab-aliases file 

Reads vocabulary alias definitions from file, 

consisting of lines of the form 

 alias    word

 This causes all tokens alias to be mapped to word. 

-write-vocab file

-write-vocab-index file 

Write the vocabulary built in the counting process to 

file.
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ngram-count counting options 

-tolower 

Map all vocabulary to lowercase. 

-text textfile 

Generate N-gram counts from text file. 

-no-sos 

Disable the automatic insertion of start-of-sentence 

tokens in N-gram counting. 

-no-eos 

Disable the automatic insertion of end-of-sentence 

tokens in N-gram counting. 

-read countsfile 

Read N-gram counts from a file. 
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ngram-count counting options 

-read-google dir 

Read N-grams counts from an indexed directory 

structure rooted in dir, in a format developed by 

Google. The corresponding directory structure can 

be created using the script make-google-ngrams . 

 

-write file 

-write-binary file

-write-order n

-writen file 

Write total counts to file.

-sort 

Output counts in lexicographic order, as required for 

ngram-merge. 
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ngram-count lm options 

-lm lmfile 

-write-binary-lm 

Estimate a backoff N-gram model from the total 

counts, and write it to lmfile . 

-unk 

Build an ``open vocabulary'' LM.  

-map-unk word 

Map out-of-vocabulary words to word. 
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ngram-count lm options 

-cdiscountn discount 

Use Ney's absolute discounting for N-grams of order 

n, using discount as the constant to subtract. 

-wbdiscountn 

Use Witten-Bell discounting for N-grams of order n.  

-ndiscountn 

 Use Ristad's natural discounting law for N-grams of 

order n. 

-addsmoothn delta 

Smooth by adding delta to each N-gram count. 
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ngram-count lm options 

-kndiscountn 

Use Chen and Goodman's modified Kneser-Ney 

discounting for N-grams of order n. 

-kn-counts-modified 

Indicates that input counts have already been 

modified for Kneser-Ney smoothing. 

-interpolaten 

 Causes the discounted N-gram probability estimates 

at the specified order n to be interpolated with lower-

order estimates. Only Witten-Bell, absolute 

discounting, and (original or modified) Kneser-Ney 

smoothing currently support interpolation. 
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ngram

Ngram performs various operations with N-gram-based 

and related language models, including sentence 

scoring, and perplexity computation. 

Syntax:

ngram [ -help ] option ... 
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ngram options 

-help 

Print option summary. 

-version 

Print version information. 

-order n 

Set the maximal N-gram order to be used, by default 3.  

-memuse 

Print memory usage statistics for the LM. 
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ngram options 

The following options determine the type of LM to 

be used. 

-null 

Use a `null' LM as the main model (one that gives 

probability 1 to all words). 

-use-server S 

Use a network LM server as the main model. 

-lm file 

Read the (main) N-gram model from file.
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ngram options 

-tagged 

Interpret the LM as containing word/tag N-grams. 

-skip 

Interpret the LM as a ``skip'' N-gram model. 

-classes file 

Interpret the LM as an N-gram over word classes. 

-factored 

Use a factored N-gram model.

-unk 

Indicates that the LM is an open-class LM. 
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ngram options 

-ppl textfile 

Compute sentence scores (log probabilities) and 

perplexities from the sentences in textfile. 

The -debug option controls the level of detail printed. 

-debug 0 

Only summary statistics for the entire corpus are 

printed. 

 

-debug 1 

Statistics for individual sentences are printed. 
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ngram options 

-debug 2 

Probabilities for each word, plus LM-dependent details 

about backoff used etc., are printed. 

-debug 3 

Probabilities for all words are summed in each context, 

and the sum is printed.  



212121

ngram options 

-nbest file 

Read an N-best list in nbest-format and rerank the 

hypotheses using the specified LM. The reordered N-

best list is written to stdout. 

-nbest-files filelist 

Process multiple N-best lists whose filenames are listed 

in filelist. 

-write-nbest-dir dir 

Deposit rescored N-best lists into directory dir, using 

filenames derived from the input ones. 
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ngram options 

-decipher-nbest 

Output rescored N-best lists in Decipher 1.0 format, 

rather than SRILM format. 

-no-reorder 

Output rescored N-best lists without sorting the 

hypotheses by their new combined scores. 

-max-nbest n 

Limits the number of hypotheses read from an N-best 

list. 



232323

ngram options 

-no-sos 

Disable the automatic insertion of start-of-sentence 

tokens for sentence probability computation. 

-no-eos 

Disable the automatic insertion of end-of-sentence 

tokens for sentence probability computation. 
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ngram-merge

ngram-merge reads two or more lexicographically 

sorted N-gram count files  and outputs the merged, 

sorted counts. 

Syntax:

ngram-merge [-help] [-write outfile ] [ -float-counts ] 

\ [ -- ] infile1 infile2 ... 
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Ngram-merge options 

-write outfile 

Write merged counts to outfile. 

-float-counts 

Process counts as floating point numbers.

-- 

Indicates the end of options, in case the first input 

filename begins with ``-''. 
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Basic SRILM file 

format
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ngram-format

ngram-format File format for ARPA backoff N-gram models 

\data\

ngram 1=n1

ngram 2=n2.

..

ngram N=nN

\1-grams:

p w  [bow]

...\

2-grams:

p w1 w2  [bow]

...

\N-grams:

p w1 ... wN

...

\end\ 
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nbest-format

SRILM currently understands three different formats 

for lists of N-best hypotheses for rescoring or 1-best 

hypothesis extraction. The first two formats originated 

in the SRI Decipher(TM) recognition system, the third 

format is particular to SRILM. 

The first format consists of the header 

  NBestList1.0 

followed by one or more lines of the form 

 (score) w1 w2 w3 ... 

where score is a composite acoustic/language model 

score from the recognizer, on the bytelog scale. 
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nbest-format

The second Decipher(TM) format is an extension of 

the first format that encodes word-level scores and 

time alignments. It is marked by a header of the form 

 NBestList2.0

 The hypotheses are in the format 

 (score) w1 ( st: st1 et: et1 g: g1 a: a1 ) w2 ... 

where words are followed by start and end times, 

language model and acoustic scores (bytelog-scaled), 

respectively. 
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nbest-format

The third format understood by SRILM lists 

hypotheses in the format 

 ascore lscore nwords w1 w2 w3 ... 

where the first three columns contain the acoustic 

model log probability, the language model log 

probability, and the number of words in the hypothesis 

string, respectively. All scores are logarithms base 10. 
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Basic SRILM Scripts
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Training-scripts

These scripts perform convenience tasks associated 

with the training of language models. 

get-gt-counts 

Syntax

get-gt-counts max=K out=name [ counts ... ] > 

gtcounts 

Computes the counts-of-counts statistics needed in 

Good-Turing smoothing. The frequencies of counts up 

to K are computed (default is 10). The results are 

stored in a series of files with root name, 

name.gt1counts,..., name.gtNcounts. 
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Training-scripts

make-gt-discounts 

Santax:

make-gt-discounts min=min max=max gtcounts 
Takes one of the output files of get-gt-counts and 

computes the corresponding Good-Turing discounting 

factors. The output can then be passed to ngram-count 

via the -gtn options to control the smoothing during 

model estimation. 
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Training-scripts

make-abs-discount

Syntax 

make-abs-discount gtcounts 

 Computes the absolute discounting constant needed 

for the ngram-count -cdiscountn options. Input is 

one of the files produced by get-gt-counts. 
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Training-scripts

make-kn-discount

Syntax

make-kn-discounts min=min gtcounts

 Computes the discounting constants used by the 

modified Kneser-Ney smoothing method. Input is one 

of the files produced by get-gt-counts.
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Training-scripts

make-batch-counts

Syntax

make-batch-counts file-list \ [ batch-size [ filter [ 

count-dir [ options ... ] ] ] ]

 Performs the first stage in the construction of very 

large N-gram count files. file-list is a list of input text 

files. Lines starting with a `#' character are ignored. 

These files will be grouped into batches of size batch-

size (default 10). The N-gram count files are left in 

directory count-dir (``counts'' by default), where they 

can be found by a subsequent run of merge-batch-

counts. 
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Training-scripts

merge-batch-counts

Syntax

merge-batch-counts count-dir [ file-list|start-iter ] 

Completes the construction of large count files. 

Optionally, a file-list of count files to combine can be 

specified. A number as second argument restarts the 

merging process at iteration start-iter. 
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Training-scripts

make-google-ngrams

Syntax 

make-google-ngrams [ dir=DIR ] [ per_file=N ] [ 

gzip=0 ] \ [ yahoo=1 ] [ counts-file ... ] 

Takes a sorted count file as input and creates an 

indexed directory structure, in a format developed by 

Google to store very large N-gram collections. 

Optional arguments specify the output directory dir 

and the size N of individual N-gram files (default is 10 

million N-grams per file). The gzip=0 option writes 

plain. The yahoo=1 option may be used to read N-

gram count files in Yahoo-GALE format. 
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Training-scripts

tolower-ngram-counts

Syntax

tolower-ngram-counts [ counts-file ... ] 

Maps an N-gram counts file to all-lowercase. No 

merging of N-grams that become identical in the 

process is done. 
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Training-scripts

reverse-ngram-counts

Syntax

reverse-ngram-counts [ counts-file ... ] 

Reverses the word order of N-grams in a counts file or 

stream.

reverse-text

Syntax

reverse-text [ textfile ... ] 

Reverses the word order in text files, line-by-line. 
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Training-scripts

compute-oov-rate 

Syntax

compute-oov-rate vocab [ counts ... ]

 Determines the out-of-vocabulary rate of a corpus 

from its unigram counts and a target vocabulary list in 

vocab. 
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lm-scripts

add-dummy-bows

Syntax 

add-dummy-bows [ lm-file ] > new-lm-file 

Adds dummy backoff weights to N-grams, even 

where they are not required, to satisfy some 

broken software that expects backoff weights on all 

N-grams (except those of highest order). 
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lm-scripts

change-lm-vocab

Syntax
change-lm-vocab -vocab vocab  -lm lm-file  -write-lm 

new-lm-file \ [ -tolower ] [ -subset ] [ ngram-options ... ] 

Modifies the vocabulary of an LM to be that in vocab. 

Any N-grams containing OOV words are removed, 

new words receive a unigram probability, and the 

model is renormalized. The -tolower option causes 

case distinctions to be ignored. -subset only 

removes words from the LM vocabulary, without 

adding any.  
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lm-scripts

make-lm-subset

Syntax

make-lm-subset count-file|- [ lm-file |- ] > new-lm-file 

Forms a new LM containing only the N-grams found 

in the count-file. The result still needs to be 

renormalized with ngram -renorm . 
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lm-scripts

get-unigram-probs

Syntax

get-unigram-probs [ linear=1 ] [ lm-file ]

 Extracts the unigram probabilities in a simple table 

format from a backoff language model. The linear=1 

option causes probabilities to be output on a linear 

(instead of log) scale. 
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ppl-scripts

These scripts process the output of the ngram option 

-ppl to extract various useful information. 

add-ppls 

Syntax

add-ppls [ ppl-file ... ]

 Takes several ppl output files and computes an 

aggregate perplexity and corpus statistics. 
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ppl-scripts

subtract-ppls 

Syntax

subtract-ppls ppl-file1 [ ppl-file2 ... ]

 Similarly computes an aggregate perplexity by 

removing the statistics of zero or more ppl-file2 from 

those in ppl-file1. 
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ppl-scripts

compare-ppls

Syntax

compare-ppls [ mindelta=D ] ppl-file1 ppl-file2 

Tallies the number of words for which two language 

models produce the same, higher, or lower 

probabilities. The input files should be ngram -

debug 2 -ppl output for the two models on the same 

test set. The parameter D is the minimum absolute 

difference for two log probabilities to be considered 

different. 
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ppl-scripts

compute-best-mix 

Syntax

compute-best-mix [ lambda='l1 l2 ...' ] 

[precision=P ] \ ppl-file1 [ ppl-file2 ... ] 

Takes the output of several ngram -debug 2 –ppl 

runs on the same test set and computes the optimal 

interpolation weights for the corresponding models. 

Initial weights may be specified as l1 l2 .... The 

computation is iterative and stops when the 

interpolation weights change by less than P (default 

0.001). 
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ppl-scripts

compute-best-sentence-mix 

Syntax

compute-best-sentence-mix [ lambda='l1 l2 ...' ] 

[precision=P ] \ ppl-file1 [ ppl-file2 ... ]

similarly optimizes the weights for sentence-level 

interpolation of LMs. It requires input files generated 

by ngram -debug 1 -ppl. 
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THANK YOU ☺
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