
March 31st, 2020 Workshop 

Deep Learning for Natural Language Understanding (NLU) 
 

Basically, this workshop is about the deep learning for Arabic NLP. It will be hands on 

for linguists and engineers who are interested in building NLP models and applications. 

It will be held on the new campus El Alamein, north coast of Egypt, at the College of 

Artificial Intelligence, Arab Academy for Science Technology and Maritime Transport 

(AASTMT). The workshop will cover the following topics: 

1. Brief introduction to neural networks (Dr. Hanaa Bayoumi). 

The talk will illustrate how neural networks learn a certain function by 

analyzing input data through simple illustrative examples 

2. Distributive representation of texts: Word embedding (Dr. A. Sarah Hassan). 

Embedding means words or phrases from the vocabulary are mapped to vectors 

of real numbers. that words that are used in similar contexts will be given 

similar numerical vectors. These vectors will be placed close together within 

the high-dimensional semantic space. They will cluster together, and their 

distance to each other will be small.  

We will describe the different algorithms used to drive theses representations. 

3. Language modeling using transformers (Dr. Aly Fahmy). 

Transformers are seen as the key breakthrough for the state-of-art performance 

of deep learning methods on challenging natural language processing problems. 

They are built around the notion of “Attention” introduced in the paper 

“Attention is All you Need”. It is considered as one of top Machine Learning 

papers of the decade 

We will describe the structure of the transformers and emphasize what 

language characteristics are learned through attention. 

4. Hands on BERT: A pre-trained model for NLP tasks (Eng. Islam Hassan). 

BERT, Bidirectional Encoder Representations from Transformers, is a 

technique for NLP pre-training developed by Google. BERT model can be fine-

tuned with just one additional output layer to create state-of-the-art models for 

a wide range of NLP tasks such as Question-Answering, Named Entity 

Recognition, Textual Entailment, Coreference Resolution and many others. 



We will provide hands-on fine-tuning pre-trained BERT to NLP tasks 

involving one or two input sentences such as grammatical checking task and 

paraphrasing checking task respectively. where the in single sentences. 

It is recommended that you take your own laptop with you and be prepared to 

do the experiments yourself. 

 

The Invited speakers: 

Dr. Aly Fahmy, Dean of Artificial Intelligence College, Arab Academy for Sciences 

Technology and Maritime Transport (AASTMT) and his team. Dr. Fahmy was the 

Ex-Dean of Faculty of Computers and Artificial Intelligence, Cairo University.  

Transportation 

Transportation from Bibliotheca Alexandrina to Al-Elamein City's workshop will take 

place at 8:00 a.m. and back to Alexandrina Bibliotheca at 4:00 p.m. 

The transportation will be provided free by the Arab Academy for Sciences 

Technology and Maritime Transport.  

Workshop schedule 

March 31st, 2020 Deep Learning for Natural Language Processing (NLU) 

Time Activity 

09:45 - 10:00 Planned Arrival to El-Alamein City – AAST 

10:00 - 10:30 
Workshop Opening Honorary Chairman:  
Dr. Mostafa Hussein, AAST Vice President 

10:30 - 11:00 Brief Introduction to Neural Networks. 

11:00 - 11:45 
Distributive Representation of Texts:  

Word Embedding 
11:45 - 12:15 Coffee Break and Networking 

12:15 - 01:00 Language Modeling using Transformers. 
01:00 - 01:45 Hands on BERT: Grammar Checking Task 

01:45 - 02:15 Hands on BERT: Paraphrasing Checking Task 

02:15 - 02:30 Conference Closure 

02:30 - 03: 30 Lunch 

03:30 
Tour in New El-Alamein City and Back to Bibliotheca 

Alexandrina, Sidi Gaber Train Station and Cairo 
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Overview  

The objective of this workshop is to identify current and emerging natural language 

processing (NLP) efforts being applied using the different deep learning (DL) techniques. 

The workshop will provide insights into the different NLP tasks such as automated essay 

scoring, automatic classification, machine translation, paraphrase detection, question 

answering and text similarity. Also the basic fundamentals of DL and the different types of 

deep neural network such as Convolution Neural Network (CNN) and Recurrent Neural 

Network (RNN) will be covered. The amazing power of Word2Vec and Sent2Vec and their 

successful applications will be discussed in details. 

Agenda 

Time Topic Speaker 

9.30  Registration 

10.00  Welcome Prof. Salwa ElRamly 

10.15  Workshop Overview Prof. Aly Fahmy 

10.30 Introduction to Deep Learning, Machine 

learning and Neural Networks 

Prof. Aly Fahmy – Dr. Hanaa Bayomi 

11.15 Natural Language Processing Tasks Prof. Aly Fahmy – Dr. Hanaa Bayomi 

11.45 Break 

12.15 Hands On Chatbots and NLP Prof. Aly Fahmy - Dr. Nour El-Deen 

Mahmoud 

1.15 Hands on Applications of Word and 

Sentence Embedding (Automated Short 

Answer Scoring) 

Prof. Aly Fahmy – TA. Sarah Hassan 

2.15 Closing Remarks Prof. Aly Fahmy – Prof. Salwa ElRamly 

 

Speakers  

 
Prof AlyFahmy: Prof Aly Aly Fahmy is the former Dean of Faculty of Computers & 

Information – Cairo University. His research interest is in Artificial Intelligence Topics 

such as natural language processing, data and text mining, and information retrieval. 

Prof Aly Fahmy has a number of publications. He obtained B.Sc in June 1972, 



Computer Engineering Department Military Technical College (M.T.C) Excellent with 

Honor Grade. DPL - Diploma: General Purpose Simulation, June 1973, Computer 

Department, Military Technical College (M.T.C), M.Sc in Logical Database Systems 

1976, Computer Department, E.N.S.A.E, Toulouse, France. Ph.D in Artificial 

Intelligence Control of Automatic Deductions for Logic Based Systems 1979, 

Computer Department, The Centre of Research and Studies, Toulouse, 

France(C.E.R.T) under the supervision of H. Gallaire (Ex Vice President and Chief 

Technical Officer of Xerox Corporation) and J.M. Nicolas.  

 

Dr. Hanaa Bayomi: Currently working as a lecturer, Faculty of Computers and 

Information, Cairo University. Her research interest is in Artificial Intelligent, Machine 

Learning, Information Extraction, Opinion Mining, and Natural Language Processing. 

She is currently investigating the impact of deep learning in different fields Medical, 

Natural Language Processing and security. She obtained PhD degree from Faculty of 

Computers and Information, Cairo University, Egypt in the field of opinion mining. 

She received her BSc and Master degrees from Faculty of Computers and Information, 

Cairo University, Egypt. 

 

Dr. Nour El-Deen Mahmoud received his B.Sc, M.Sc and Ph.D degree in 2006, 2009 

and 2013 respectively, all from Cairo University, Faculty of Computers and 

Information, Information Technology Department, Cairo, Egypt. He had a Professional 

M.Sc in Cloud Computing in 2018. Currently, he is an assistant professor in faculty of 

computers and information, Cairo University. He had a professional experience in 

designing and developing IT projects that include web technologies and chatbots for 

Egyptian Universities and for several Industrial IT companies. For more information, 

https://scholar.cu.edu.eg/nourmahmoud 

 

Eng. Sarah Hassan, Currently working as teaching assistant- Faculty of Computers 

and Information - Cairo University. Her research interests are machine learning, deep 

learning and natural language processing. She is currently applying for master degree 

with research on short answer clustering and automatic scoring based on paragraph 

embedding. She graduated in 2010 from Faculty of Computers and Information, Cairo 

University, Computer Science Department.  

 



Machine Learning   VS   Deep Learning
Presented by : Dr. Hanaa Bayomi

h.mobarz@fci-cu.edu.eg



Agenda
1- Machine learning

Definition and types
machine Learning road map
feature selection

filter, wrapper and embedded
Model selection

cross validation(K-fold)

2- Deep learning 
Definition 
ML VS DL
DL architecture 

fully connected NN
convolution NN
Recurrent NN  (LSTM)

3- NLP Tasks



Machine Learning definition



Machine Learning types



Machine Learning types



Machine Learning types
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Feature selection

Performance of Machine Learning model 

depend on

▪Choice of algorithm 

▪Feature selection

▪Feature creation

▪Model selection

https://archive.ics.uci.edu/ml/datasets.html
UCI Machine Learning Repository: Data Sets

https://l.facebook.com/l.php?u=https://archive.ics.uci.edu/ml/datasets.html&h=ATOxFHFeM4cTLQf1aHUW5-68rBRnrlU6Shreu1xIXihH1Unj8ObS7I_SSTXU0xrvH-mCUyQJjDP7VRvcs-GzUYIzmgb9VM6qj9oPoCyNqLowT876B34Mnn3HOqEOEKi8Gw6ZrbWlYqLagYJGCSVKT039Kh7WfZHsV_WAN6q7l8C6mE1ugn-vW-G3-FHuauYf1o693xri1nCiCwGsuXUnZHZgVCDuK2SaJixxOq3E7y0O6UDUSjB5LpLDy9QOK5IXjvNJUn4OtNLH


Classification of FS methods

• Filter (single factor analysis)
– Assess the relevance of features only by looking at the essential 

properties of the data.

– Usually, calculate the feature relevance score and remove low-
scoring features.

• Wrapper
– Bundle the search for best model with the FS.

– Generate and evaluate various subsets of features. The 
evaluation is obtained by training and testing a specific ML 
model.

• Embedded
– Embedded methods learn which features best contribute to the 

accuracy of the model while the model is being created. The 
most common type of embedded feature selection methods are 
regularization methods.



Filter methods
• Filter methods are generally used as a 

preprocessing step. The selection of features is 

independent of any machine learning 

algorithms.

• Two steps (score-and-filter approach)

1. assess each feature individually for its potential 

in discriminating among classes in the data

2. features falling beyond threshold are eliminated



Wrappers

• Search for the best feature subset in 

combination with a fixed classification 

method.

• The goodness of a feature subset is determined 

using cross-validation (k-fold, LOOCV) Leave-one-out 

cross-validation



Embedded

Some of the most popular examples of these methods are LASSO and RIDGE 

regression which have inbuilt penalization functions to reduce over fitting.

Lasso regression performs L1 regularization which adds penalty 

equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty 

equivalent to square of the magnitude of coefficients.



Choosing the best model









➢ Deep learning is a particular kind of machine
learning that achieves great power and flexibility by
learning to represent the world as nested hierarchy
of concepts, with each concept defined in relation to
simpler concepts, and more abstract representations
computed in terms of less abstract ones.

➢ Learning deep (many layered) neural networks 

➢ The more layers in a Neural Network, the more 
abstract features can be represented 

Deep Learning definition



Deep Learning definition

E.g. Classify a cat: 
– Bottom Layers: Edge detectors, curves, corners straight lines 
– Middle Layers: Fur patterns, eyes, ears 
– Higher Layers: Body, head, legs 
– Top Layer: Cat or Dog



Machine Learning  VS Deep Learning

1- Data Dependency
- Deep learning need large amount of data to understand it perfectly



Machine Learning  VS Deep Learning

2- Hardware Dependency
- Deep learning algorithms heavily depend on high-end     

machines This is because the requirements of deep learning 
algorithm include GPUs which are an integral part of its working.

- Machine Learning which can work on low-end machines.

3- Execution time
- deep learning algorithm takes a long time to train. This is because 

there are so many parameters in a deep learning algorithm that training 
them takes longer than usual.



Machine Learning  VS Deep Learning

4- Feature engineering
- Deep learning algorithms try to learn high-level features from data.

- Machine Learning which can work on low-end machines.
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Activation Function types

ReLU Softplus

Sigmoid/logistic Tanh

Binary Signum

Softmax



Vanilla 
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Neural Network  training steps

Weight Initialization

Inputs Application

Sum of inputs - Weights product

Activation functions

Weights Adaptations

Back to step 2

1

2

3

4

5

6



0  ≤ α ≤  10  ≤  ≤  1Learning Rate 

First method:

Regarding 5th step: Weights Adaptation



second method: Back propagation

Regarding 5th step: Weights Adaptation
Feedforward
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Backward

▪ Fowrward VS Backword passes

Fowrward Input 
weights

backward

SOP
Prediction 

Output
Prediction 

Error

Prediction 
Error

Prediction 
Output

SOP
Input 

weights

The Backpropagation algorithm is a sensible 

approach for dividing the contribution of each 

weight.



second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Backword pass

What is the change in prediction Error (E) given the change in weight (W) ?
Get partial derivative of  E  W.R.T W

W
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second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative

2)(
2

1
ydE −= s

sfy
−+

==
e1

1
)( bwxwxs ++= 2211 ww 21,

W

E





y

E





s

y





ww

ss

21

,








Chain Rule
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second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative
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second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ interpreting derivatives
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second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Update the Weights

In order to update the weights , use the Gradient Descent

f(w)

w

+ slop

Wnew= Wold - (+ve)

f(w)

w

- slop

Wnew= Wold - (-ve)



Convolution Neural Network
CNN



➢ Convolutional neural networks (or convnets for short) are used in 
situations where data can be expressed as a "map" wherein the 
proximity between two data points indicates how related they are.

➢ Convnets contain one or more of each of the following layers:

1. convolution layer
2. ReLU (rectified linear units) layer (element wise threshold)
3. pooling layer
4. fully connected layer
5. loss layer (during the training process)

introduction







1- Convolution layer
a convnet processes an image using a matrix of weights called filters (or
features) that detect specific attributes such as diagonal edges, vertical
edges, etc. Moreover, as the image progresses through each layer, the
filters are able to recognize more complex attributes.



The convolution layer is always the first step in a convnet. Let's say 
we have a 10 x 10 pixel image, here represented by a 10 x 10 x 1 
matrix of numbers:

Convolution layer















stride



•The ReLU (short for rectified linear units) layer commonly follows the 
convolution layer.

• The addition of the ReLU layer allows the neural network to account 
for non-linear relationships, i.e. the ReLU layer allows the convnet to 
account for situations in which the relationship between the pixel value 
inputs and the convnet output is not linear.

• the convolution operation is a linear one. y = w1x1 +w2x2 + w3x3 + ...

• The ReLU function takes a value x and returns 0 if x is negative 
and x if x is positive.  

2- ReLU Layer f(x) = max(0,x)



2- ReLU Layer f(x) = max(0,x)

Other functions such as tanh or the sigmoid function can 
be used to add non-linearity to the network, but ReLU
generally works better in practice.



3- Pooling layer
• the pooling layer makes the convnet less sensitive to small changes in 
the location of a feature
• Pooling also reduces the size of the feature map, thus simplifying 
computation in later layers.





4- fully connected NN + loss layers 

The fully-connected layer is where the final "decision" is made.







Recurrent Neural Network
RNN

Learning sequences



RNN VS Vanilla
Vanilla 

• pass all input in the same time
• inputs are  independent in each other
• fixed input and fixed output 
•using different parameters with different layers in the network



Motivation

Image 
classification

Image 
captioning

Sentiment 
analysis

Machine 
translation

Synced sequence(video 
classification)



RNN architecture
▪ RNNs are called recurrent because 
they perform the same task for every 
element of a sequence, with the 
output being depended on the 
previous computations (memory).

▪ Inputs x(t) outputs y(t) hidden state
s(t) the memory of the network
A delay unit is introduced to hold 
activation until they are processed at 
the next step.

▪ The decision a recurrent net reached at time step t-1 affects the 
decision it will reach one moment later at time step t. So recurrent 
networks have two sources of input, the present and the recent past, 
which combine to determine how they respond to new data



RNN Architecture

 The recurrent network can be converted into a feed forward 
network by unfolding over time



Vanishing Gradients

long-term dependencies 



Recurrent NN - LSTM

The basic unit in the hidden layer of an LSTM network is a memory
block, it replaces the hidden unit in a traditional RNN. A memory block
contains one or more memory cell and a pair of adaptive multiplicative
gating units which gates input and output to all cells in the block.
Memory blocks allow cells to share the same gates thus reducing the
number of parameters. Each cell has in its core a recurrently self
connected linear unit called the “Constant error carousel” whose
activation we call the cell state.



Natural Language Processing 
Tasks



1- Automatic Summarization

the process of shortening a text document
with software, in order to create a summary with
the major points of the original document.

There are two methods

1-extracting sentences or parts thereof from the original text
2- generating abstract summaries.

Tools- The Python library sumy,



2- Co reference resolution

Coreference resolution is the task of finding all
expressions that refer to the same entity in a text.

Tools- The Apache OpenNLP

tokenization, sentence segmentation, part-of-speech tagging, named entity
extraction, chunking, parsing, and co reference resolution.



3- Named Entity Recognition

Named-entity recognition (NER) (also known as entity
identification, entity chunking and entity extraction) is a subtask
of information extraction that seeks to locate and classify named
entities in text into pre-defined categories such as

Tools- The Apache OpenNLP

• number
•Device
•Jop
•Car
•Cell Phone

•person names
• company/organization names 
• locations 
• dates & time
• percentages
• monetary amounts (Currency)



4- Sentiment analysis

The task of finding the opinions of authors about specific entities.

Sentiment Analysis Problem

An opinion is a quintuple
(      ,    ,         ,       ,    )O F S_P OH T

Object

Feature

Subjectivity or Polarity classification

Opinion Holder

Time



https://github.com/Kyubyong
/nlp_tasks#coreference-

resolution





Concepts

Unit (Neurons)

A unit often refers to the activation 
function in a layer by which the 
inputs are transformed via a 
nonlinear activation function (for 
example by the logistic sigmoid 
function). Usually, a unit has 
several incoming connections and 
several outgoing connections.

Input Layer Comprised of multiple Real-Valued inputs. Each input 
must be linearly independent from each other.

Hidden Layers

Layers other than the input and 
output layers. A layer is the 
highest-level building block in 
deep learning. A layer is a 
container that usually receives 
weighted input, transforms it with 
a set of mostly non-linear 
functions and then passes these 
values as output to the next 
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in 
several ways. First, the gradient of the loss over a mini-batch is an estimate of the 
gradient over the training set, whose quality improves as the batch size increases. 
Second, computation over a batch can be much more efficient than m computations for 
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and 
at each step we consider a mini- batch x1...m 
of size m. The mini-batch is used to approx- 
imate the gradient of the loss function with 
respect to the parameters.

Cost/Loss(Min) 
Objective(Max) 
Functions

Maximum 
Likelihood 
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares 
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ, 
given outcomes x, is equal to the probability (density) assumed for those 
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the 
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same 
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood 
estimation and related techniques.

In general, for a fixed set of data and underlying 
statistical model, the method of maximum likelihood 
selects the set of values of the model parameters that 
maximizes the likelihood function. Intuitively, this 
maximizes the "agreement" of the selected model with 
the observed data, and for discrete random variables it 
indeed maximizes the probability of the observed data 
under the resulting distribution. Maximum-likelihood 
estimation gives a unified approach to estimation, 
which is well-defined in the case of the normal 
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss 
function in machine learning and optimization. 
The true probability pi is the true label, and 
the given distribution qi  is the predicted value 
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when 
using least squares techniques. It is often more mathematically 
tractable than other loss functions because of the properties of 
variances, as well as being symmetric: an error above the target 
causes the same loss as the same magnitude of error below the target. 
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently 
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for 
training classifiers. For an intended output t = 
±1 and a classifier score y, the hinge loss of 
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between 
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of 
measure theory, let P and Q denote two 
probability measures that are absolutely 

continuous with respect to a third probability 
measure λ. The square of the Hellinger 

distance between P and Q is defined as the 
quantity

Kullback-Leibler Divengence

Is a measure of how one probability 
distribution diverges from a second expected 
probability distribution. Applications include 
characterizing the relative (Shannon) entropy 
in information systems, randomness in 
continuous time-series, and information gain 
when comparing statistical models of 
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an 
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a 
perceptual measure, it is intended to reflect 
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Regularization

L1 norm Manhattan Distance

L1-norm is also known as least absolute 
deviations (LAD), least absolute errors (LAE). It 
is basically minimizing the sum of the 
absolute differences (S) between the target 
value and the estimated values.

L2 norm Euclidean Distance
L2-norm is also known as least squares. It is 
basically minimizing the sum of the square of 
the differences (S) between the target value 
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be 
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing 
complex co-adaptations on training data. It is a very efficient way of performing model 
averaging with neural networks. The term "dropout" refers to dropping out units (both 
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each 
column and an L1 norm over all columns. It 
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to 
the overall average of the functions across all tasks. This is useful for 
expressing prior information that each task is expected to share similarities 
with each other task. An example is predicting blood iron levels measured at 
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces 
similarity between tasks within the same 
cluster. This can capture more complex prior 
information. This technique has been used to 
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between 
tasks can be defined by a function. The 
regularizer encourages the model to learn 
similar functions for similar tasks.

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data 
normalization it is reasonable to assume that 
approximately half of the weights will be 
positive and half of them will be negative. A 
reasonable-sounding idea then might be to 
set all the initial weights to zero, which you 
expect to be the “best guess” in expectation. 

But, this turns out to be a mistake, because if 
every neuron in the network computes the 
same output, then they will also all compute 
the same gradients during back-propagation 
and undergo the exact same parameter 
updates. In other words, there is no source of 
asymmetry between neurons if their weights 
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very 
close to zero, but not identically zero. In this 
way, you can random these neurons to small 
numbers which are very close to zero, and it is 
treated as symmetry breaking. The idea is that 
the neurons are all random and unique in the 
beginning, so they will compute distinct 
updates and integrate themselves as diverse 
parts of the full network.

The implementation for weights might simply 
drawing values from a normal distribution with 
zero mean, and unit standard deviation. It is 
also possible to use small numbers drawn 
from a uniform distribution, but this seems to 
have relatively little impact on the final 
performance in practice.

Calibrating the Variances

One problem with the above suggestion is 
that the distribution of the outputs from a 
randomly initialized neuron has a variance that 
grows with the number of inputs. It turns out 
that you can normalize the variance of each 
neuron's output to 1 by scaling its weight 
vector by the square root of its fan-in (i.e., its 
number of inputs)

This ensures that all neurons in the network 
initially have approximately the same output 
distribution and empirically improves the rate 
of convergence. The detailed derivations can 
be found from Page. 18 to 23 of the slides. 
Please note that, in the derivations, it does 
not consider the influence of ReLU neurons.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

AdagradAdaptive learning rates for each parameter

Learning Rate

Neural networks are often trained by gradient 
descent on the weights. This means at each 
iteration we use backpropagation to calculate 
the derivative of the loss function with respect 
to each weight and subtract it from that 
weight. 

However, if you actually try that, the weights 
will change far too much each iteration, which 
will make them “overcorrect” and the loss will 
actually increase/diverge. So in practice, 
people usually multiply each derivative by a 
small value called the “learning rate” before 
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the 
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical 
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration 
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Backpropagation

Is a method used in artificial neural networks to 
calculate the error contribution of each neuron 
after a batch of data. It calculates the gradient 
of the loss function. It is commonly used in the 
gradient descent optimization algorithm. It is 
also called backward propagation of errors, 
because the error is calculated at the output 
and distributed back through the network 
layers.Neural Network taking 4 dimension vector 

representation of words.

In this method, we reuse partial derivatives 
computed for higher layers in lower layers, for 
efficiency. 

Intuition for backpropagation

Simple Example (Circuits)Another Example (Circuits)

Simple Example (Flowgraphs)

Activation Functions

Defines the output of that node given an input 
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity


Architectures Strategy

1. Select Network Structure appropriate for 
problem

Structure: Single words, fixed windows, 
sentence based, document level; bag of 
words, recursive vs. recurrent, CNN

Nonlinearity (Activation Functions)

2. Check for implementation bugs with 
gradient checks

1. Implement your gradient

2. Implement a finite difference computation 
by looping through the parameters of your 
network, adding and subtracting a small 
epsilon ( 10-4) and estimate derivatives

3. Compare the two and make sure they are 
almost the same

Using Gradient Checks

If you gradient fails and you don’t know why?
Simplify your model until you have no bug!

What now? Create a very tiny synthetic model 
and dataset

Example: Start from simplest model then go 
to what you want:

Only softmax on fixed input

Backprop into word vectors and softmax

Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add multiple 
units, bias • Add one softmax on top, then 
two softmax layers

Add bias

3. Parameter initialization

Initialize hidden layer biases to 0 and output 
(or reconstruction) biases to optimal value if 
weights were 0 (e.g., mean target or inverse 
sigmoid of mean target).

Initialize weights  Uniform(−r, r), r inversely 
proportional to fan-in (previous layer size) and 
fan-out (next layer size):

4. Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a 
local minimum of a function using gradient descent, one takes steps proportional to the 
negative of the gradient (or of the approximate gradient) of the function at the current point. If 
instead one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 or few examples:

Ordinary gradient descent as a batch method 
is very slow, should never be used. Use 2nd 
order batch method such as L-BFGS.

On large datasets, SGD usually wins over all 
batch methods. On smaller datasets L-BFGS 
or Conjugate Gradients win. Large-batch L-
BFGS extends the reach of L-BFGS [Le et al. 
ICML 2011].

Mini-batch Stochastic Gradient Descent 
(SGD)

Gradient descent uses total gradient over all 
examples per update, SGD updates after only 
1 example

Most commonly used now, Size of each mini 
batch B: 20 to 1000

Helps parallelizing any model by computing 
gradients for multiple elements of the batch in 
parallel

Momentum

Idea: Add a fraction v of previous update to 
current one. When the gradient keeps pointing 
in the same direction, this will
increase the size of the steps taken towards 
the minimum.

Reduce global learning rate when using a lot 
of momentum

Update Rule
v is initialized at 0

Momentum often increased after some 
epochs (0.5 à 0.99)

Adagrad

Adaptive learning rates for each parameter!

Learning rate is adapting differently for each 
parameter and rare parameters get larger 
updates than frequently occurring parameters. 
Word vectors!

5. Check if the model is powerful enough to 
overfit

If not, change model structure or make model “larger”

If you can overfit: Regularize to prevent 
overfitting:

Simple first step: Reduce model size by 
lowering number of units and layers and other 
parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave 
best validation error

Sparsity constraints on hidden activations, 
e.g., add to cost:

Dropout

Training time: at each instance of evaluation 
(in online SGD-training), randomly set 50% of 
the inputs to each neuron to 0

Test time: halve the model weights (now twice 
as many) This prevents feature co-adaptation: 
A feature cannot only be useful in the 
presence of particular other features

In a single layer: A kind of middle-ground 
between Naïve Bayes (where all feature 
weights are set independently) and logistic 
regression models (where weights are set in 
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

RNNs (Recursive)

Is a kind of deep neural 
network created by applying 
the same set of weights 
recursively over a structure, to 
produce a structured prediction 
over variable-size input 
structures, or a scalar 
prediction on it, by traversing a 
given structure in topological 
order.

RNNs have been successful for instance in 
learning sequence and tree structures in 
natural language processing, mainly phrase 
and sentence continuous representations 
based on word embedding.

RNNs (Recurrent)
Is a class of artificial neural network where connections between units form a 
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike 
feedforward neural networks, RNNs can use their internal memory to process 
arbitrary sequences of inputs. 

This makes them applicable to tasks such as 
unsegmented, connected handwriting recognition or 
speech recognition.

Convolutional Neural Networks (CNN)

They have applications in image and video 
recognition, recommender systems and 
natural language processing.

Pooling

Convolution

Subsampling

Auto-Encoders

Is an artificial neural network used for unsupervised 
learning of efficient codings.

The aim of an autoencoder 
is to learn a representation 
(encoding) for a set of data, 
typically for the purpose of 
dimensionality reduction. 
Recently, the autoencoder 
concept has become more 
widely used for learning 
generative models of data.

GANs

GANs or Generative 
Adversarial Networks are a 
class of artificial intelligence 
algorithms used in 
unsupervised machine 
learning, implemented by a 
system of two neural networks 
contesting with each other in a 
zero-sum game framework.

LSTMs

Long short-term memory - It is a type of recurrent (RNN), allowing 
data to flow both forwards and backwards within the network.

An LSTM is well-suited to learn from 
experience to classify, process and predict 
time series given time lags of unknown size 
and bound between important events. 
Relative insensitivity to gap length gives an 
advantage to LSTM over alternative RNNs, 
hidden Markov models and other sequence 
learning methods in numerous applications.

Feed Forward

Is an artificial neural network wherein connections between the units do not form a 
cycle. In this network, the information moves in only one direction, forward, from the 
input nodes, through the hidden nodes (if any) and to the output nodes. There are no 
cycles or loops in the network.

Kinds

Single-Layer Perceptron

The inputs are fed directly to the outputs via a 
series of weights. By adding an Logistic 
activation function to the outputs, the model 
is identical to a classical Logistic Regression 
model.

Multi-Layer Perceptron

This class of networks consists of multiple 
layers of computational units, usually 
interconnected in a feed-forward way. Each 
neuron in one layer has directed connections 
to the neurons of the subsequent layer. In 
many applications the units of these networks 
apply a sigmoid function as an activation 
function.



Tensorflow

Packages

tf Main Steps

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

4. Define the Session and Initialise Variables

5. Train the Model

6. Test Trained Model

tf.estimator

TensorFlow’s high-level machine learning API 
(tf.estimator) makes it easy to configure, train, and 
evaluate a variety of machine learning models.

tf.estimator.LinearClassifier: Constructs a linear classification model.

tf.estimator.LinearRegressor: Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimator.DNNRegressor: Construct a neural network regression model.

tf.estimator.DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

tf.estimator.DNNRegressor: Construct a neural network and linear combined regression model.

Main Steps

1. Define Feature Columns 

FeatureColumns are the primary way of 
encoding features for pre-canned tf.learn 
Estimators.

Categorical Numerical

When using FeatureColumns with tf.learn 
models, the type of feature column you 
should choose depends on the feature type 
and  the model type.

Continuous Features Can be represented by real_valued_column

Categorical Features

Can be represented by any 
sparse_column_with_* column 
(sparse_column_with_keys, 
sparse_column_with_vocabulary_file, 
sparse_column_with_hash_bucket, 
sparse_column_with_integerized_feature

2. Define your Layers, or use a prebuilt model

Using a pre-built Logistic Regression 
Classifier

3. Write the input_fn function This function holds the actual data (features 
and labels). Features is a python dictionary.

4. Train the model
Using the fit function, on the input_fn. Notice 
that the feature columns are fed to the model 
as arguments.

5. Predict and Evaluate Using the eval_input_fn defined previously.

Comparison to Numpy

Does lazy evaluation. Need to build the 
graph, and then run it in a session.

Main Components

Variables

Stateful nodes that output their current value, 
their state is retained across multiple 
executions of the graph.

Mostly Parameters we’re interested in tuning, 
such as Weights (W) and Biases (b).

Sharing

Variables can be shared by Explicitly passing 
tf.Variable objects around, or...

Implicitly wrapping tf.Variable objects within 
tf.variable_scope objects.Scopes

tf.variable_scope()

Provides simple name spacing to avoid cases 
when querying

tf.get_variable()Creates/Access variables from a variable 
scope

Placeholders
Nodes whose value is fed at execution time.

Inputs, Features (X) and Labels (y)

Mathematical 
OperationsMatMul, Add, ReLU, etc.

Graph
NodesThey are Operations, containing any number 

of inputs and outputs.

EdgesThe tensors that flow between the nodes.

Session

It a binding to a particular execution context: CPU, GPU.

Running a SessionInputs

FetchesList of graph nodes. Returns the output of 
these nodes.

Feeds

Dictionary mapping from graph nodes to 
concrete values.

Specified the value of each graph node given 
in the dictionary.

Phases

1. Construction

Assembles a computational graph

The computation graph has no numerical 
value until evaluated. 

All computations add nodes to global default graph

2. Execution

A Session object encapsulates the environment 
in which Tensor objects are evaluated

Uses a session to execute ops in the graph

Declared variables must be initialised before 
they have values.

When you train a model you use variables to hold and update 
parameters. Variables are in-memory buffers containing tensors.

TensorboardTensorFlow has some neat built-in visualization tools (TensorBoard).

Intuition

TensorFlow is a deep learning library recently open-sourced by 
Google. It provides primitives for defining functions on tensors and 
automatically computing their derivatives, expressed as a graph.

The Tensorflow Graph is build to contain all placeholders for X and y, 
all variables for W’s and b’s, all mathematical operations, the cost 
function, and the optimisation procedure. Then, at runtime, the values 
for the data are fed into that Graph, by placing the data batches in 
the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node 
over the network, and thus running Tensorflow models can be 
parallelised.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

