
March 31st, 2020 Workshop

Deep Learning for Natural Language Understanding (NLU)

Basically, this workshop is about the deep learning for Arabic NLP. It will be hands on

for linguists and engineers who are interested in building NLP models and applications.

It will be held on the new campus El Alamein, north coast of Egypt, at the College of

Artificial Intelligence, Arab Academy for Science Technology and Maritime Transport

(AASTMT). The workshop will cover the following topics:

1. Brief introduction to neural networks (Dr. Hanaa Bayoumi).

The talk will illustrate how neural networks learn a certain function by

analyzing input data through simple illustrative examples

2. Distributive representation of texts: Word embedding (Dr. A. Sarah Hassan).

Embedding means words or phrases from the vocabulary are mapped to vectors

of real numbers. that words that are used in similar contexts will be given

similar numerical vectors. These vectors will be placed close together within

the high-dimensional semantic space. They will cluster together, and their

distance to each other will be small.

We will describe the different algorithms used to drive theses representations.

3. Language modeling using transformers (Dr. Aly Fahmy).

Transformers are seen as the key breakthrough for the state-of-art performance

of deep learning methods on challenging natural language processing problems.

They are built around the notion of “Attention” introduced in the paper

“Attention is All you Need”. It is considered as one of top Machine Learning

papers of the decade

We will describe the structure of the transformers and emphasize what

language characteristics are learned through attention.

4. Hands on BERT: A pre-trained model for NLP tasks (Eng. Islam Hassan).

BERT, Bidirectional Encoder Representations from Transformers, is a

technique for NLP pre-training developed by Google. BERT model can be fine-

tuned with just one additional output layer to create state-of-the-art models for

a wide range of NLP tasks such as Question-Answering, Named Entity

Recognition, Textual Entailment, Coreference Resolution and many others.

We will provide hands-on fine-tuning pre-trained BERT to NLP tasks

involving one or two input sentences such as grammatical checking task and

paraphrasing checking task respectively. where the in single sentences.

It is recommended that you take your own laptop with you and be prepared to

do the experiments yourself.

The Invited speakers:

Dr. Aly Fahmy, Dean of Artificial Intelligence College, Arab Academy for Sciences

Technology and Maritime Transport (AASTMT) and his team. Dr. Fahmy was the

Ex-Dean of Faculty of Computers and Artificial Intelligence, Cairo University.

Transportation

Transportation from Bibliotheca Alexandrina to Al-Elamein City's workshop will take

place at 8:00 a.m. and back to Alexandrina Bibliotheca at 4:00 p.m.

The transportation will be provided free by the Arab Academy for Sciences

Technology and Maritime Transport.

Workshop schedule

March 31st, 2020 Deep Learning for Natural Language Processing (NLU)

Time Activity

09:45 - 10:00 Planned Arrival to El-Alamein City – AAST

10:00 - 10:30
Workshop Opening Honorary Chairman:
Dr. Mostafa Hussein, AAST Vice President

10:30 - 11:00 Brief Introduction to Neural Networks.

11:00 - 11:45
Distributive Representation of Texts:

Word Embedding
11:45 - 12:15 Coffee Break and Networking

12:15 - 01:00 Language Modeling using Transformers.
01:00 - 01:45 Hands on BERT: Grammar Checking Task

01:45 - 02:15 Hands on BERT: Paraphrasing Checking Task

02:15 - 02:30 Conference Closure

02:30 - 03: 30 Lunch

03:30
Tour in New El-Alamein City and Back to Bibliotheca

Alexandrina, Sidi Gaber Train Station and Cairo

ESOLE 2018

Deep Learning Technologies for NLP Tasks
D E C E M B E R 6 , 2 0 1 8 | 9 : 3 0 A M T O 2 : 3 0 P M

Overview

The objective of this workshop is to identify current and emerging natural language

processing (NLP) efforts being applied using the different deep learning (DL) techniques.

The workshop will provide insights into the different NLP tasks such as automated essay

scoring, automatic classification, machine translation, paraphrase detection, question

answering and text similarity. Also the basic fundamentals of DL and the different types of

deep neural network such as Convolution Neural Network (CNN) and Recurrent Neural

Network (RNN) will be covered. The amazing power of Word2Vec and Sent2Vec and their

successful applications will be discussed in details.

Agenda

Time Topic Speaker

9.30 Registration

10.00 Welcome Prof. Salwa ElRamly

10.15 Workshop Overview Prof. Aly Fahmy

10.30 Introduction to Deep Learning, Machine

learning and Neural Networks

Prof. Aly Fahmy – Dr. Hanaa Bayomi

11.15 Natural Language Processing Tasks Prof. Aly Fahmy – Dr. Hanaa Bayomi

11.45 Break

12.15 Hands On Chatbots and NLP Prof. Aly Fahmy - Dr. Nour El-Deen

Mahmoud

1.15 Hands on Applications of Word and

Sentence Embedding (Automated Short

Answer Scoring)

Prof. Aly Fahmy – TA. Sarah Hassan

2.15 Closing Remarks Prof. Aly Fahmy – Prof. Salwa ElRamly

Speakers

Prof AlyFahmy: Prof Aly Aly Fahmy is the former Dean of Faculty of Computers &

Information – Cairo University. His research interest is in Artificial Intelligence Topics

such as natural language processing, data and text mining, and information retrieval.

Prof Aly Fahmy has a number of publications. He obtained B.Sc in June 1972,

Computer Engineering Department Military Technical College (M.T.C) Excellent with

Honor Grade. DPL - Diploma: General Purpose Simulation, June 1973, Computer

Department, Military Technical College (M.T.C), M.Sc in Logical Database Systems

1976, Computer Department, E.N.S.A.E, Toulouse, France. Ph.D in Artificial

Intelligence Control of Automatic Deductions for Logic Based Systems 1979,

Computer Department, The Centre of Research and Studies, Toulouse,

France(C.E.R.T) under the supervision of H. Gallaire (Ex Vice President and Chief

Technical Officer of Xerox Corporation) and J.M. Nicolas.

Dr. Hanaa Bayomi: Currently working as a lecturer, Faculty of Computers and

Information, Cairo University. Her research interest is in Artificial Intelligent, Machine

Learning, Information Extraction, Opinion Mining, and Natural Language Processing.

She is currently investigating the impact of deep learning in different fields Medical,

Natural Language Processing and security. She obtained PhD degree from Faculty of

Computers and Information, Cairo University, Egypt in the field of opinion mining.

She received her BSc and Master degrees from Faculty of Computers and Information,

Cairo University, Egypt.

Dr. Nour El-Deen Mahmoud received his B.Sc, M.Sc and Ph.D degree in 2006, 2009

and 2013 respectively, all from Cairo University, Faculty of Computers and

Information, Information Technology Department, Cairo, Egypt. He had a Professional

M.Sc in Cloud Computing in 2018. Currently, he is an assistant professor in faculty of

computers and information, Cairo University. He had a professional experience in

designing and developing IT projects that include web technologies and chatbots for

Egyptian Universities and for several Industrial IT companies. For more information,

https://scholar.cu.edu.eg/nourmahmoud

Eng. Sarah Hassan, Currently working as teaching assistant- Faculty of Computers

and Information - Cairo University. Her research interests are machine learning, deep

learning and natural language processing. She is currently applying for master degree

with research on short answer clustering and automatic scoring based on paragraph

embedding. She graduated in 2010 from Faculty of Computers and Information, Cairo

University, Computer Science Department.

Machine Learning VS Deep Learning
Presented by : Dr. Hanaa Bayomi

h.mobarz@fci-cu.edu.eg

Agenda
1- Machine learning

Definition and types
machine Learning road map
feature selection

filter, wrapper and embedded
Model selection

cross validation(K-fold)

2- Deep learning
Definition
ML VS DL
DL architecture

fully connected NN
convolution NN
Recurrent NN (LSTM)

3- NLP Tasks

Machine Learning definition

Machine Learning types

Machine Learning types

Machine Learning types
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

ClusteringClassification

Dimensionality reductionRegression

Supervised Unsupervised

D
is

cr
et

e
C

o
n

ti
n

u
o
u

s

Learning Types

Feature selection

Performance of Machine Learning model

depend on

▪Choice of algorithm

▪Feature selection

▪Feature creation

▪Model selection

https://archive.ics.uci.edu/ml/datasets.html
UCI Machine Learning Repository: Data Sets

https://l.facebook.com/l.php?u=https://archive.ics.uci.edu/ml/datasets.html&h=ATOxFHFeM4cTLQf1aHUW5-68rBRnrlU6Shreu1xIXihH1Unj8ObS7I_SSTXU0xrvH-mCUyQJjDP7VRvcs-GzUYIzmgb9VM6qj9oPoCyNqLowT876B34Mnn3HOqEOEKi8Gw6ZrbWlYqLagYJGCSVKT039Kh7WfZHsV_WAN6q7l8C6mE1ugn-vW-G3-FHuauYf1o693xri1nCiCwGsuXUnZHZgVCDuK2SaJixxOq3E7y0O6UDUSjB5LpLDy9QOK5IXjvNJUn4OtNLH

Classification of FS methods

• Filter (single factor analysis)
– Assess the relevance of features only by looking at the essential

properties of the data.

– Usually, calculate the feature relevance score and remove low-
scoring features.

• Wrapper
– Bundle the search for best model with the FS.

– Generate and evaluate various subsets of features. The
evaluation is obtained by training and testing a specific ML
model.

• Embedded
– Embedded methods learn which features best contribute to the

accuracy of the model while the model is being created. The
most common type of embedded feature selection methods are
regularization methods.

Filter methods
• Filter methods are generally used as a

preprocessing step. The selection of features is

independent of any machine learning

algorithms.

• Two steps (score-and-filter approach)

1. assess each feature individually for its potential

in discriminating among classes in the data

2. features falling beyond threshold are eliminated

Wrappers

• Search for the best feature subset in

combination with a fixed classification

method.

• The goodness of a feature subset is determined

using cross-validation (k-fold, LOOCV) Leave-one-out

cross-validation

Embedded

Some of the most popular examples of these methods are LASSO and RIDGE

regression which have inbuilt penalization functions to reduce over fitting.

Lasso regression performs L1 regularization which adds penalty

equivalent to absolute value of the magnitude of coefficients.

Ridge regression performs L2 regularization which adds penalty

equivalent to square of the magnitude of coefficients.

Choosing the best model

➢ Deep learning is a particular kind of machine
learning that achieves great power and flexibility by
learning to represent the world as nested hierarchy
of concepts, with each concept defined in relation to
simpler concepts, and more abstract representations
computed in terms of less abstract ones.

➢ Learning deep (many layered) neural networks

➢ The more layers in a Neural Network, the more
abstract features can be represented

Deep Learning definition

Deep Learning definition

E.g. Classify a cat:
– Bottom Layers: Edge detectors, curves, corners straight lines
– Middle Layers: Fur patterns, eyes, ears
– Higher Layers: Body, head, legs
– Top Layer: Cat or Dog

Machine Learning VS Deep Learning

1- Data Dependency
- Deep learning need large amount of data to understand it perfectly

Machine Learning VS Deep Learning

2- Hardware Dependency
- Deep learning algorithms heavily depend on high-end

machines This is because the requirements of deep learning
algorithm include GPUs which are an integral part of its working.

- Machine Learning which can work on low-end machines.

3- Execution time
- deep learning algorithm takes a long time to train. This is because

there are so many parameters in a deep learning algorithm that training
them takes longer than usual.

Machine Learning VS Deep Learning

4- Feature engineering
- Deep learning algorithms try to learn high-level features from data.

- Machine Learning which can work on low-end machines.

Output
LayerHidden Layers

Input
Layer

Element of Neural Network

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Deep means many hidden layers

neuron

bwawawaz KK ++++= 2211

Neural Network

𝑓: 𝑅𝐾 → 𝑅

z

1w

2w

Kw…

1a

2a

Ka

+

b

()z

bias

y

Activation
functionweights

Neuron

Activation Function types

ReLU Softplus

Sigmoid/logistic Tanh

Binary Signum

Softmax

Vanilla

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Neural Network

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x

b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Neural Network training steps

Weight Initialization

Inputs Application

Sum of inputs - Weights product

Activation functions

Weights Adaptations

Back to step 2

1

2

3

4

5

6

0 ≤ α ≤ 10 ≤ ≤ 1Learning Rate

First method:

Regarding 5th step: Weights Adaptation

second method: Back propagation

Regarding 5th step: Weights Adaptation
Feedforward

In
p

u
ts

O
u

tp
u

ts

Backward

▪ Fowrward VS Backword passes

Fowrward Input
weights

backward

SOP
Prediction

Output
Prediction

Error

Prediction
Error

Prediction
Output

SOP
Input

weights

The Backpropagation algorithm is a sensible

approach for dividing the contribution of each

weight.

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Backword pass

What is the change in prediction Error (E) given the change in weight (W) ?
Get partial derivative of E W.R.T W

W

E

2)(
2

1
ydE −=

d (desired output) Const
y (predicted output)

s
sf

−+
=

e1

1
)(

s (Sum Of Product SOP)

bw iji

m

j
ixs +=

2)
1

(
2

1

e bwx
n

j
iiji

dE

 +−

−=

ww 21,

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative

2)(
2

1
ydE −= s

sfy
−+

==
e1

1
)(bwxwxs ++= 2211 ww 21,

W

E

y

E

s

y

ww

ss

21

,

Chain Rule

ww

s
x

s

y
x

y

EE

22

=

ww

s
x

s

y
x

y

EE

11

=

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Weight derivative

dyyd
yy

E
−=−

=

 2)(
2

1

)
e1

1
1(

e1

1

e1

1
sssss

y
−−− +

−
+

=
+

=

xbwxwx
ww

s
12211

11

=++

=

xbwxwx

ww

s
22211

22

=++

=

x
w

iss
i

dy
E

)
e1

1
1(

e1

1
)(

−− +
−

+
−=

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ interpreting derivatives

x
s

sf

w
i

i

dy
E

−=

)(
)(

W

Derivatives sign Derivatives Magnitude

Positive
directly proportional

Negative
opposite

second method: Back propagation

Regarding 5th step: Weights Adaptation

▪ Update the Weights

In order to update the weights , use the Gradient Descent

f(w)

w

+ slop

Wnew= Wold - (+ve)

f(w)

w

- slop

Wnew= Wold - (-ve)

Convolution Neural Network
CNN

➢ Convolutional neural networks (or convnets for short) are used in
situations where data can be expressed as a "map" wherein the
proximity between two data points indicates how related they are.

➢ Convnets contain one or more of each of the following layers:

1. convolution layer
2. ReLU (rectified linear units) layer (element wise threshold)
3. pooling layer
4. fully connected layer
5. loss layer (during the training process)

introduction

1- Convolution layer
a convnet processes an image using a matrix of weights called filters (or
features) that detect specific attributes such as diagonal edges, vertical
edges, etc. Moreover, as the image progresses through each layer, the
filters are able to recognize more complex attributes.

The convolution layer is always the first step in a convnet. Let's say
we have a 10 x 10 pixel image, here represented by a 10 x 10 x 1
matrix of numbers:

Convolution layer

stride

•The ReLU (short for rectified linear units) layer commonly follows the
convolution layer.

• The addition of the ReLU layer allows the neural network to account
for non-linear relationships, i.e. the ReLU layer allows the convnet to
account for situations in which the relationship between the pixel value
inputs and the convnet output is not linear.

• the convolution operation is a linear one. y = w1x1 +w2x2 + w3x3 + ...

• The ReLU function takes a value x and returns 0 if x is negative
and x if x is positive.

2- ReLU Layer f(x) = max(0,x)

2- ReLU Layer f(x) = max(0,x)

Other functions such as tanh or the sigmoid function can
be used to add non-linearity to the network, but ReLU
generally works better in practice.

3- Pooling layer
• the pooling layer makes the convnet less sensitive to small changes in
the location of a feature
• Pooling also reduces the size of the feature map, thus simplifying
computation in later layers.

4- fully connected NN + loss layers

The fully-connected layer is where the final "decision" is made.

Recurrent Neural Network
RNN

Learning sequences

RNN VS Vanilla
Vanilla

• pass all input in the same time
• inputs are independent in each other
• fixed input and fixed output
•using different parameters with different layers in the network

Motivation

Image
classification

Image
captioning

Sentiment
analysis

Machine
translation

Synced sequence(video
classification)

RNN architecture
▪ RNNs are called recurrent because
they perform the same task for every
element of a sequence, with the
output being depended on the
previous computations (memory).

▪ Inputs x(t) outputs y(t) hidden state
s(t) the memory of the network
A delay unit is introduced to hold
activation until they are processed at
the next step.

▪ The decision a recurrent net reached at time step t-1 affects the
decision it will reach one moment later at time step t. So recurrent
networks have two sources of input, the present and the recent past,
which combine to determine how they respond to new data

RNN Architecture

 The recurrent network can be converted into a feed forward
network by unfolding over time

Vanishing Gradients

long-term dependencies

Recurrent NN - LSTM

The basic unit in the hidden layer of an LSTM network is a memory
block, it replaces the hidden unit in a traditional RNN. A memory block
contains one or more memory cell and a pair of adaptive multiplicative
gating units which gates input and output to all cells in the block.
Memory blocks allow cells to share the same gates thus reducing the
number of parameters. Each cell has in its core a recurrently self
connected linear unit called the “Constant error carousel” whose
activation we call the cell state.

Natural Language Processing
Tasks

1- Automatic Summarization

the process of shortening a text document
with software, in order to create a summary with
the major points of the original document.

There are two methods

1-extracting sentences or parts thereof from the original text
2- generating abstract summaries.

Tools- The Python library sumy,

2- Co reference resolution

Coreference resolution is the task of finding all
expressions that refer to the same entity in a text.

Tools- The Apache OpenNLP

tokenization, sentence segmentation, part-of-speech tagging, named entity
extraction, chunking, parsing, and co reference resolution.

3- Named Entity Recognition

Named-entity recognition (NER) (also known as entity
identification, entity chunking and entity extraction) is a subtask
of information extraction that seeks to locate and classify named
entities in text into pre-defined categories such as

Tools- The Apache OpenNLP

• number
•Device
•Jop
•Car
•Cell Phone

•person names
• company/organization names
• locations
• dates & time
• percentages
• monetary amounts (Currency)

4- Sentiment analysis

The task of finding the opinions of authors about specific entities.

Sentiment Analysis Problem

An opinion is a quintuple
(, , , ,)O F S_P OH T

Object

Feature

Subjectivity or Polarity classification

Opinion Holder

Time

https://github.com/Kyubyong
/nlp_tasks#coreference-

resolution

Concepts

Unit (Neurons)

A unit often refers to the activation
function in a layer by which the
inputs are transformed via a
nonlinear activation function (for
example by the logistic sigmoid
function). Usually, a unit has
several incoming connections and
several outgoing connections.

Input Layer Comprised of multiple Real-Valued inputs. Each input
must be linearly independent from each other.

Hidden Layers

Layers other than the input and
output layers. A layer is the
highest-level building block in
deep learning. A layer is a
container that usually receives
weighted input, transforms it with
a set of mostly non-linear
functions and then passes these
values as output to the next
layer.

Batch Normalization

Using mini-batches of examples, as opposed to one example at a time, is helpful in
several ways. First, the gradient of the loss over a mini-batch is an estimate of the
gradient over the training set, whose quality improves as the batch size increases.
Second, computation over a batch can be much more efficient than m computations for
individual examples, due to the parallelism afforded by the modern computing platforms.

With SGD, the training proceeds in steps, and
at each step we consider a mini- batch x1...m
of size m. The mini-batch is used to approx-
imate the gradient of the loss function with
respect to the parameters.

Cost/Loss(Min)
Objective(Max)
Functions

Maximum
Likelihood
Estimation (MLE)

Many cost functions are the result of applying Maximum Likelihood. For instance, the Least Squares
cost function can be obtained via Maximum Likelihood. Cross-Entropy is another example.

The likelihood of a parameter value (or vector of parameter values), θ,
given outcomes x, is equal to the probability (density) assumed for those
observed outcomes given those parameter values, that is

The natural logarithm of the likelihood function, called the log-likelihood, is more convenient to work with. Because the
logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same
points as the function itself, and hence the log-likelihood can be used in place of the likelihood in maximum likelihood
estimation and related techniques.

In general, for a fixed set of data and underlying
statistical model, the method of maximum likelihood
selects the set of values of the model parameters that
maximizes the likelihood function. Intuitively, this
maximizes the "agreement" of the selected model with
the observed data, and for discrete random variables it
indeed maximizes the probability of the observed data
under the resulting distribution. Maximum-likelihood
estimation gives a unified approach to estimation,
which is well-defined in the case of the normal
distribution and many other problems.

Cross-Entropy

Cross entropy can be used to define the loss
function in machine learning and optimization.
The true probability pi is the true label, and
the given distribution qi is the predicted value
of the current model.

Cross-entropy error function and logistic regression

Logistic The logistic loss function is defined as:

Quadratic

The use of a quadratic loss function is common, for example when
using least squares techniques. It is often more mathematically
tractable than other loss functions because of the properties of
variances, as well as being symmetric: an error above the target
causes the same loss as the same magnitude of error below the target.
If the target is t, then a quadratic loss function is:

0-1 Loss In statistics and decision theory, a frequently
used loss function is the 0-1 loss function

Hinge Loss
The hinge loss is a loss function used for
training classifiers. For an intended output t =
±1 and a classifier score y, the hinge loss of
the prediction y is defined as:

Exponential

Hellinger Distance
It is used to quantify the similarity between
two probability distributions. It is a type of f-
divergence.

To define the Hellinger distance in terms of
measure theory, let P and Q denote two
probability measures that are absolutely

continuous with respect to a third probability
measure λ. The square of the Hellinger

distance between P and Q is defined as the
quantity

Kullback-Leibler Divengence

Is a measure of how one probability
distribution diverges from a second expected
probability distribution. Applications include
characterizing the relative (Shannon) entropy
in information systems, randomness in
continuous time-series, and information gain
when comparing statistical models of
inference.

Discrete Continuous

Itakura–Saito distance

is a measure of the difference between an
original spectrum P(ω) and an approximation
P^(ω) of that spectrum. Although it is not a
perceptual measure, it is intended to reflect
perceptual (dis)similarity.

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Regularization

L1 norm Manhattan Distance

L1-norm is also known as least absolute
deviations (LAD), least absolute errors (LAE). It
is basically minimizing the sum of the
absolute differences (S) between the target
value and the estimated values.

L2 norm Euclidean Distance
L2-norm is also known as least squares. It is
basically minimizing the sum of the square of
the differences (S) between the target value
and the estimated values:

Early Stopping Early stopping rules provide guidance as to how many iterations can be
run before the learner begins to over-fit, and stop the algorithm then.

Dropout
Is a regularization technique for reducing overfitting in neural networks by preventing
complex co-adaptations on training data. It is a very efficient way of performing model
averaging with neural networks. The term "dropout" refers to dropping out units (both
hidden and visible) in a neural network

Sparse regularizer on columns
This regularizer defines an L2 norm on each
column and an L1 norm over all columns. It
can be solved by proximal methods.

Nuclear norm regularization

Mean-constrained regularization

This regularizer constrains the functions learned for each task to be similar to
the overall average of the functions across all tasks. This is useful for
expressing prior information that each task is expected to share similarities
with each other task. An example is predicting blood iron levels measured at
different times of the day, where each task represents a different person.

Clustered mean-constrained regularization

This regularizer is similar to the mean-
constrained regularizer, but instead enforces
similarity between tasks within the same
cluster. This can capture more complex prior
information. This technique has been used to
predict Netflix recommendations.

Graph-based similarity
More general than above, similarity between
tasks can be defined by a function. The
regularizer encourages the model to learn
similar functions for similar tasks.

Weight Initialization

All Zero Initialization

In the ideal situation, with proper data
normalization it is reasonable to assume that
approximately half of the weights will be
positive and half of them will be negative. A
reasonable-sounding idea then might be to
set all the initial weights to zero, which you
expect to be the “best guess” in expectation.

But, this turns out to be a mistake, because if
every neuron in the network computes the
same output, then they will also all compute
the same gradients during back-propagation
and undergo the exact same parameter
updates. In other words, there is no source of
asymmetry between neurons if their weights
are initialized to be the same.

Initialization with Small Random Numbers

Thus, you still want the weights to be very
close to zero, but not identically zero. In this
way, you can random these neurons to small
numbers which are very close to zero, and it is
treated as symmetry breaking. The idea is that
the neurons are all random and unique in the
beginning, so they will compute distinct
updates and integrate themselves as diverse
parts of the full network.

The implementation for weights might simply
drawing values from a normal distribution with
zero mean, and unit standard deviation. It is
also possible to use small numbers drawn
from a uniform distribution, but this seems to
have relatively little impact on the final
performance in practice.

Calibrating the Variances

One problem with the above suggestion is
that the distribution of the outputs from a
randomly initialized neuron has a variance that
grows with the number of inputs. It turns out
that you can normalize the variance of each
neuron's output to 1 by scaling its weight
vector by the square root of its fan-in (i.e., its
number of inputs)

This ensures that all neurons in the network
initially have approximately the same output
distribution and empirically improves the rate
of convergence. The detailed derivations can
be found from Page. 18 to 23 of the slides.
Please note that, in the derivations, it does
not consider the influence of ReLU neurons.

Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)
Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Mini-batch Stochastic Gradient Descent
(SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Momentum

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will
increase the size of the steps taken towards
the minimum.

AdagradAdaptive learning rates for each parameter

Learning Rate

Neural networks are often trained by gradient
descent on the weights. This means at each
iteration we use backpropagation to calculate
the derivative of the loss function with respect
to each weight and subtract it from that
weight.

However, if you actually try that, the weights
will change far too much each iteration, which
will make them “overcorrect” and the loss will
actually increase/diverge. So in practice,
people usually multiply each derivative by a
small value called the “learning rate” before
they subtract it from its corresponding weight.

Tricks

Simplest recipe: keep it fixed and use the
same for all parameters.

Better results by allowing learning rates to decrease Options:

Reduce by 0.5 when validation error stops improving

Reduction by O(1/t) because of theoretical
convergence guarantees, with hyper-
parameters ε0 and τ and t is iteration
numbers.

Better yet: No hand-set learning of rates by using AdaGrad

Backpropagation

Is a method used in artificial neural networks to
calculate the error contribution of each neuron
after a batch of data. It calculates the gradient
of the loss function. It is commonly used in the
gradient descent optimization algorithm. It is
also called backward propagation of errors,
because the error is calculated at the output
and distributed back through the network
layers.Neural Network taking 4 dimension vector

representation of words.

In this method, we reuse partial derivatives
computed for higher layers in lower layers, for
efficiency.

Intuition for backpropagation

Simple Example (Circuits)Another Example (Circuits)

Simple Example (Flowgraphs)

Activation Functions

Defines the output of that node given an input
or set of inputs.

Types

ReLU

Sigmoid / Logistic

Binary

Tanh

Softplus

Softmax

Maxout

Leaky ReLU, PReLU, RReLU, ELU, SELU, and others.

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Well_defined
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Measure_theory
https://en.wikipedia.org/wiki/Probability_measure
https://en.wikipedia.org/wiki/Absolute_continuity
https://en.wikipedia.org/wiki/Absolute_continuity

Architectures Strategy

1. Select Network Structure appropriate for
problem

Structure: Single words, fixed windows,
sentence based, document level; bag of
words, recursive vs. recurrent, CNN

Nonlinearity (Activation Functions)

2. Check for implementation bugs with
gradient checks

1. Implement your gradient

2. Implement a finite difference computation
by looping through the parameters of your
network, adding and subtracting a small
epsilon (10-4) and estimate derivatives

3. Compare the two and make sure they are
almost the same

Using Gradient Checks

If you gradient fails and you don’t know why?
Simplify your model until you have no bug!

What now? Create a very tiny synthetic model
and dataset

Example: Start from simplest model then go
to what you want:

Only softmax on fixed input

Backprop into word vectors and softmax

Add single unit single hidden layer

Add multi unit single layer

Add second layer single unit, add multiple
units, bias • Add one softmax on top, then
two softmax layers

Add bias

3. Parameter initialization

Initialize hidden layer biases to 0 and output
(or reconstruction) biases to optimal value if
weights were 0 (e.g., mean target or inverse
sigmoid of mean target).

Initialize weights Uniform(−r, r), r inversely
proportional to fan-in (previous layer size) and
fan-out (next layer size):

4. Optimization

Gradient Descent

Is a first-order iterative optimization algorithm for finding the minimum of a function. To find a
local minimum of a function using gradient descent, one takes steps proportional to the
negative of the gradient (or of the approximate gradient) of the function at the current point. If
instead one takes steps proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

Stochastic Gradient Descent (SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 or few examples:

Ordinary gradient descent as a batch method
is very slow, should never be used. Use 2nd
order batch method such as L-BFGS.

On large datasets, SGD usually wins over all
batch methods. On smaller datasets L-BFGS
or Conjugate Gradients win. Large-batch L-
BFGS extends the reach of L-BFGS [Le et al.
ICML 2011].

Mini-batch Stochastic Gradient Descent
(SGD)

Gradient descent uses total gradient over all
examples per update, SGD updates after only
1 example

Most commonly used now, Size of each mini
batch B: 20 to 1000

Helps parallelizing any model by computing
gradients for multiple elements of the batch in
parallel

Momentum

Idea: Add a fraction v of previous update to
current one. When the gradient keeps pointing
in the same direction, this will
increase the size of the steps taken towards
the minimum.

Reduce global learning rate when using a lot
of momentum

Update Rule
v is initialized at 0

Momentum often increased after some
epochs (0.5 à 0.99)

Adagrad

Adaptive learning rates for each parameter!

Learning rate is adapting differently for each
parameter and rare parameters get larger
updates than frequently occurring parameters.
Word vectors!

5. Check if the model is powerful enough to
overfit

If not, change model structure or make model “larger”

If you can overfit: Regularize to prevent
overfitting:

Simple first step: Reduce model size by
lowering number of units and layers and other
parameters

Standard L1 or L2 regularization on weights

Early Stopping: Use parameters that gave
best validation error

Sparsity constraints on hidden activations,
e.g., add to cost:

Dropout

Training time: at each instance of evaluation
(in online SGD-training), randomly set 50% of
the inputs to each neuron to 0

Test time: halve the model weights (now twice
as many) This prevents feature co-adaptation:
A feature cannot only be useful in the
presence of particular other features

In a single layer: A kind of middle-ground
between Naïve Bayes (where all feature
weights are set independently) and logistic
regression models (where weights are set in
the context of all others)

Can be thought of as a form of model bagging

It also acts as a strong regularizer

RNNs (Recursive)

Is a kind of deep neural
network created by applying
the same set of weights
recursively over a structure, to
produce a structured prediction
over variable-size input
structures, or a scalar
prediction on it, by traversing a
given structure in topological
order.

RNNs have been successful for instance in
learning sequence and tree structures in
natural language processing, mainly phrase
and sentence continuous representations
based on word embedding.

RNNs (Recurrent)
Is a class of artificial neural network where connections between units form a
directed cycle. This allows it to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs can use their internal memory to process
arbitrary sequences of inputs.

This makes them applicable to tasks such as
unsegmented, connected handwriting recognition or
speech recognition.

Convolutional Neural Networks (CNN)

They have applications in image and video
recognition, recommender systems and
natural language processing.

Pooling

Convolution

Subsampling

Auto-Encoders

Is an artificial neural network used for unsupervised
learning of efficient codings.

The aim of an autoencoder
is to learn a representation
(encoding) for a set of data,
typically for the purpose of
dimensionality reduction.
Recently, the autoencoder
concept has become more
widely used for learning
generative models of data.

GANs

GANs or Generative
Adversarial Networks are a
class of artificial intelligence
algorithms used in
unsupervised machine
learning, implemented by a
system of two neural networks
contesting with each other in a
zero-sum game framework.

LSTMs

Long short-term memory - It is a type of recurrent (RNN), allowing
data to flow both forwards and backwards within the network.

An LSTM is well-suited to learn from
experience to classify, process and predict
time series given time lags of unknown size
and bound between important events.
Relative insensitivity to gap length gives an
advantage to LSTM over alternative RNNs,
hidden Markov models and other sequence
learning methods in numerous applications.

Feed Forward

Is an artificial neural network wherein connections between the units do not form a
cycle. In this network, the information moves in only one direction, forward, from the
input nodes, through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network.

Kinds

Single-Layer Perceptron

The inputs are fed directly to the outputs via a
series of weights. By adding an Logistic
activation function to the outputs, the model
is identical to a classical Logistic Regression
model.

Multi-Layer Perceptron

This class of networks consists of multiple
layers of computational units, usually
interconnected in a feed-forward way. Each
neuron in one layer has directed connections
to the neurons of the subsequent layer. In
many applications the units of these networks
apply a sigmoid function as an activation
function.

Tensorflow

Packages

tf Main Steps

1. Create the Model

2. Define Target

3. Define Loss function and Optimizer

4. Define the Session and Initialise Variables

5. Train the Model

6. Test Trained Model

tf.estimator

TensorFlow’s high-level machine learning API
(tf.estimator) makes it easy to configure, train, and
evaluate a variety of machine learning models.

tf.estimator.LinearClassifier: Constructs a linear classification model.

tf.estimator.LinearRegressor: Constructs a linear regression model.

tf.estimator.DNNClassifier: Construct a neural network classification model.

tf.estimator.DNNRegressor: Construct a neural network regression model.

tf.estimator.DNNLinearCombinedClassifier: Construct a neural network and linear combined classification model.

tf.estimator.DNNRegressor: Construct a neural network and linear combined regression model.

Main Steps

1. Define Feature Columns

FeatureColumns are the primary way of
encoding features for pre-canned tf.learn
Estimators.

Categorical Numerical

When using FeatureColumns with tf.learn
models, the type of feature column you
should choose depends on the feature type
and the model type.

Continuous Features Can be represented by real_valued_column

Categorical Features

Can be represented by any
sparse_column_with_* column
(sparse_column_with_keys,
sparse_column_with_vocabulary_file,
sparse_column_with_hash_bucket,
sparse_column_with_integerized_feature

2. Define your Layers, or use a prebuilt model

Using a pre-built Logistic Regression
Classifier

3. Write the input_fn function This function holds the actual data (features
and labels). Features is a python dictionary.

4. Train the model
Using the fit function, on the input_fn. Notice
that the feature columns are fed to the model
as arguments.

5. Predict and Evaluate Using the eval_input_fn defined previously.

Comparison to Numpy

Does lazy evaluation. Need to build the
graph, and then run it in a session.

Main Components

Variables

Stateful nodes that output their current value,
their state is retained across multiple
executions of the graph.

Mostly Parameters we’re interested in tuning,
such as Weights (W) and Biases (b).

Sharing

Variables can be shared by Explicitly passing
tf.Variable objects around, or...

Implicitly wrapping tf.Variable objects within
tf.variable_scope objects.Scopes

tf.variable_scope()

Provides simple name spacing to avoid cases
when querying

tf.get_variable()Creates/Access variables from a variable
scope

Placeholders
Nodes whose value is fed at execution time.

Inputs, Features (X) and Labels (y)

Mathematical
OperationsMatMul, Add, ReLU, etc.

Graph
NodesThey are Operations, containing any number

of inputs and outputs.

EdgesThe tensors that flow between the nodes.

Session

It a binding to a particular execution context: CPU, GPU.

Running a SessionInputs

FetchesList of graph nodes. Returns the output of
these nodes.

Feeds

Dictionary mapping from graph nodes to
concrete values.

Specified the value of each graph node given
in the dictionary.

Phases

1. Construction

Assembles a computational graph

The computation graph has no numerical
value until evaluated.

All computations add nodes to global default graph

2. Execution

A Session object encapsulates the environment
in which Tensor objects are evaluated

Uses a session to execute ops in the graph

Declared variables must be initialised before
they have values.

When you train a model you use variables to hold and update
parameters. Variables are in-memory buffers containing tensors.

TensorboardTensorFlow has some neat built-in visualization tools (TensorBoard).

Intuition

TensorFlow is a deep learning library recently open-sourced by
Google. It provides primitives for defining functions on tensors and
automatically computing their derivatives, expressed as a graph.

The Tensorflow Graph is build to contain all placeholders for X and y,
all variables for W’s and b’s, all mathematical operations, the cost
function, and the optimisation procedure. Then, at runtime, the values
for the data are fed into that Graph, by placing the data batches in
the placeholders and running the Graph.

Each node in the Graph can then be connected to each other node
over the network, and thus running Tensorflow models can be
parallelised.

https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNLinearCombinedClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor

